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ABSTRACT: Diagnosis of major depressive disorder (MDD) using resting-state functional
connectivity (rs-FC) data faces many challenges, such as the high dimensionality, small samples,
and individual difference. To assess the clinical value of rs-FC in MDD and identify the potential rs-
FC machine learning (ML) model for the individualized diagnosis of MDD, based on the rs-FC
data, a progressive three-step ML analysis was performed, including six different ML algorithms and
two dimension reduction methods, to investigate the classification performance of ML model in a
multicentral, large sample dataset [1021 MDD patients and 1100 normal controls (NCs)].
Furthermore, the linear least-squares fitted regression model was used to assess the relationships
between rs-FC features and the severity of clinical symptoms in MDD patients. Among used ML
methods, the rs-FC model constructed by the eXtreme Gradient Boosting (XGBoost) method
showed the optimal classification performance for distinguishing MDD patients from NCs at the
individual level (accuracy = 0.728, sensitivity = 0.720, specificity = 0.739, area under the curve =
0.831). Meanwhile, identified rs-FCs by the XGBoost model were primarily distributed within and
between the default mode network, limbic network, and visual network. More importantly, the 17
item individual Hamilton Depression Scale scores of MDD patients can be accurately predicted using rs-FC features identified by the
XGBoost model (adjusted R2 = 0.180, root mean squared error = 0.946). The XGBoost model using rs-FCs showed the optimal
classification performance between MDD patients and HCs, with the good generalization and neuroscientifical interpretability.

KEYWORDS: Major depressive disorder, resting-state functional connectivity, multiple-center, machine learning, classification,
eXtreme Gradient Boosting

■ INTRODUCTION

Major depressive disorder (MDD) is the most common of the
severe psychiatric diseases and the primary cause of disability
worldwide.1 Until now, the pathophysiology of MDD has been
understood considerably and various hypotheses have been
proposed, such as the monoamine hypothesis, hypothalamic−
pituitary−adrenal axis changes, inflammation, and neuro-
plasticity, but there is no single mechanism can completely
elucidate total aspects of the disease.2 Likewise, none of
universally accepted objective biomarkers are used for the
clinical diagnosis of MDD so far, although some indicators
show great potential, e.g., brain derived neurotrophic factor.3

Additionally, the misdiagnosis of MDD is one of the main
reasons for the poor treatment response of the antidepressant.4

Therefore, it is crucial to improve the diagnostic accuracy of
MDD in the clinic.
Advances in technology have made it possible to understand

the brain structure and function through neuroimaging; in
particular, the application of magnetic resonance imaging
(MRI) has important implications for the MDD study.5

Functional MRI (fMRI) can provide some useful information
about the brain functional connectivity (FC) involved in the
latent mechanism of MDD, e.g., the depressive emotion

regulation and impaired reward circuits related to anhedonia.6

Our previous study revealed that MDD patients had
significantly decreased reward network connectivity within
the prefrontal-striatal regions.7 Furthermore, Chen et al. found
that the functional dysconnectivity within prefrontal-limbic
and prefrontal-striatum systems might be relevant to the
dysregulation of negative and positive emotion processing in
MDD patients, respectively.8 However, the changes of whole-
brain FCs identified in MDD patients are associated with the
heterogeneous clinical presentation, which results in the
difficulty of replicating these findings by different research
groups. Meanwhile, studies on the brain FCs as effective
biomarkers have been largely based on the group-level rather
than individual statistics, which has limited utility in the clinical
diagnosis of MDD.
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Machine learning (ML) is capable of generalizing patterns
from the input data to generate a classification on new data and
has been widely used to build classifiers for the individual
diagnosis of MDD based on MRI-related data. For resting-state
FC (rs-FC) data, previous studies showed multiple classifiers
with the most accuracy (95%) for diagnosing MDD (Table
S1). However, these results need to be treated with caution
due to the sample sizes of these studies being fairly small.
Furthermore, a considerable hurdle of neuroimaging data is
high dimensionality, which raises an open question about
which ML algorithms is favorable for an rs-FC data based
classification. Although some previous studies had performed
multiple feature selection methods combined with the Support
Vector Machine (SVM) or one feature selection method
combine with multiple classification algorithms to build
models,9−12 these results were limited in their exploration of
ML methods, especially ensemble methods.13 Therefore, a
systematic investigation among different ML strategies is
necessary, which can provide instructive insights for building a
MDD classification model based on the rs-FC data.
The aims of the present study are to assess the potential

clinical value of rs-FC and to identify the optimal multivariate
ML model for the diagnosis of MDD (Figure 1). The largest
MDD cohort to date will be used to assess the performance of

these rs-FC classifiers at the individual level. Meanwhile, the
relationships between rs-FC features and the severity of clinical
symptoms in patients with MDD would be also explored.

■ RESULT
Sample Composition. Specifically, 1021 MDD patients

and 1100 normal controls (NCs) were included in the present
study for building ML classifiers. The clinical characteristics of
these subjects were displayed in Table 1. There were

significant differences in gender and education years between
two groups, but no significant difference was observed in age.
Among MDD patients, there were 478 patients with first-
episode MDD and 197 patients with recurrent MDD; however,
346 patients were unclear for the episodicity status (first or
recurrent) due to the data being unavailable.

Performances of the Classification Analysis. Figure 1
showed the whole workflow of ten classification procedures,
and Figure 2 visualized the comparison of the performance of
these classifiers for differentiating between MDD patients and
NCs after controlling the age, gender, and education years.
Among these classifiers, eXtreme Gradient Boosting
(XGBoost) classifier showed the highest accuracy for
distinguishing MDD patients from NCs [accuracy = 0.728,
sensitivity = 0.720, specificity = 0.739, area under the curve
(AUC) = 0.831; Table S2] and was identified as the optimal
classifier. In addition, compared with Logistics Regression
(LR) and SVM classifiers (LR: accuracy = 0.598, AUC =
0.628; SVM: accuracy = 0.637, AUC = 0.681; Table S2), the
combined t test filter (TF) or Singular Value Decomposition
(SVD) method with the LR or SVM algorithm can obtain an
improved classification performance (TF+LR: accuracy =
0.624, AUC = 0.655; SVD+LR: accuracy = 0.657, AUC =
0.712; SVD+SVM: accuracy = 0.662, AUC = 0.724; SVD
+SVM: accuracy = 0.689, AUC = 0.759; Table S2). However,
the Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm did not show better classification
performance between MDD patients and NCs based on the
rs-FC data (accuracy = 0.643, AUC = 0.683; Table S2).

Identified rs-FC Features by the XGBoost Classifier.
As the optimal model for the classification between MDD

Figure 1. Study pipeline. MRI, magnetic resonance imaging; AAL,
Automated Anatomical Labeling; ROI, regions of interest; LR,
Logistics Regression; SVM, Support Vector Machine; RR Ridge
Regression; DT, Decision Tree; TF, t test filter; SVD, Singular Value
Decomposition; LASSO, Least Absolute Shrinkage and Selection
Operator; XGBoost, eXtreme Gradient Boosting; ACC, accuracy;
SEN, sensitivity; SPE, specificity; HAMD-17, 17 item Hamilton
Depression Rating Scale.

Table 1. Clinical Characteristics of the Subjectsc

mean ± standard deviation

variable MDD NC P-value

sample size 1021 1100
age (years) 35.52 ± 13.40 36.18 ± 15.69 0.605a

gender (male/female) 336/685 460/640 <0.001b

education (years) 11.70 ± 3.74 12.24 ± 4.99 <0.001a

Number of First-Episode or Relapse
first-episode 478
relapse 197
unknown 346

Number of Subjects Obtaining Treatment
drug-native 372
treatment 349
unknown 300

HAMD-17 Scores
21.70 ± 5.99

aMann−Whitney U test. bChi-square test. cMDD, major depressive
disorder; NC, normal control; HAMD-17, 17 item Hamilton
Depression Rating Scale.
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patients and NCs, 987 rs-FC features were identified in the
XGBoost classifier. Among these features, the FC between the
left inferior occipital gyrus and the right temporal pole showed
the strongest weight values, followed by the connectivity
between the right middle frontal gyrus and the right pallidum
(Figure 3A). Meanwhile, after arranging 987 rs-FCs to 90 brain
regions of the Automated Anatomical Labeling (AAL) atlas,
the right orbital part of the middle frontal gyrus, the left
fusiform gyrus, and the right superior occipital gyrus were
associated with more than 30 rs-FCs (Figure 3B).
Furthermore, identified rs-FCs in the XGBoost classifier

included 159 intranetwork FCs and 828 internetwork FCs, and
these FCs were characterized by (1) most intranetwork FCs
within the default mode network (DMN) (58 rs-FCs),
followed by the limbic network (LN) (33 rs-FCs) and the
visual network (VN) (28 rs-FCs) and (2) greater internetwork
connectivity (>50 rs-FCs) comprised (i) between regions of
DMN and LN, VN, sensorimotor network (SMN), and
frontoparietal network (FPN); (ii) between regions of LN and
VN; and (iii) between regions of VN and SMN (Figure 3C).
Linear Regression Analysis. The application of the linear

regression model to the 987 rs-FC features of the XGBoost
classifier allowed quantitative prediction of the 17 item
Hamilton Depression Rating Scale (HAMD-17) scores with
accuracy [multiple R2 = 0.975, adjusted R2 = 0.180, mean
absolute error (MAE) = 0.739, root mean squared error
(RMSE) = 0.946; Figure 4A]. The weight distribution of these

rs-FC features for the regression model was displayed in Figure
S1, and the top 50 features of the absolute weight were
primarily associated with DMN (Figure 4B).

■ DISCUSSION

Using the large MDD data set, the present study compared rs-
FC based classification among 10 ML classification algorithms
and evaluated the effect of identified rs-FC features for the
prediction of HAMD-17 scores in MDD patients. The results
showed that (I) 4 commonly used ML algorithms [SVM, LR,
Decision Tree (DT), and Ridge Regression (RR)] performed
similarly poor rs-FC-based classification; however, the addition
of the feature selection step (TF or SVD) can obviously
improve the performance of using ML classification algorithms
alone. (II) The LASSO algorithm (linear model) provided a
nonideal discrimination with the high-dimensional rs-FC data,
although the feature filtering process was also performed
during the modeling period. (III) Compared with other
models, the XGBoost method achieved the best classification
performance between 1022 MDD patients and 1100 NCs.
(IV) Frontal and occipital gyrus-related rs-FC features played
an important role in the XGBoost classification, and rs-FC
features identified by the XGBoost algorithm were primarily
distributed within and between DMN, LN, and VN. (V) The
HAMD-17 score can be predicted accurately for each MDD
patient using rs-FC features of the XGBoost classifier. Taken

Figure 2. Classification results of multiple classifiers. (A) The accuracy, recall, and specificity of ten kinds of classifiers. (B) ROC curve of ten kinds
of classifiers. LR, Logistics Regression; SVM, Support Vector Machine; RR Ridge Regression; DT, Decision Tree; TF, t test filter; SVD, Singular
Value Decomposition; LASSO, Least Absolute Shrinkage and Selection Operator; XGBoost, eXtreme Gradient Boosting; ROC, receiver operating
characteristic; AUC, area under the curve.
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together, the XGBoost classification model, based on rs-FC
biomarkers reflecting the severity of the depressive symptom,
can be used in the objective diagnosis of MDD.
Strictly progressive three-step ML analysis was used, after

consideration of the high-dimensional problem and the
interactive relationship between input features, to identify the
optimal classification model (i.e., XGBoost model). The
ensemble ML method is a combination of multiple simple
algorithms, and the classification is achieved by a weighted
vote among the simple classifiers.14 XGBoost, one of the most
commonly used ensemble methods, performs the classification
by a weighted prediction among the trees, which can reduce
classification bias and contribute to increasing the general-
izability of the model.15,16 In addition, compared with the
Random Forest that is the other one commonly used ensemble
method, the biggest advantage of XGBoost is its speed,17

which suggests that the larger and more complex data set can
be efficiently handled with less computational effort using
XGBoost. Meanwhile, as a boosting method, XGBoost has the

convenient parameter adjustment and can improve the
prediction results by adding a new decision tree based on
the existing trees, which is the other advantage.18 While
XGBoost had been successfully used in other classification
tasks,19,20 few studies were found to apply this method for the
classification of MDD patients except for one study of
functional near-infraredspectroscopy.21 Therefore, in the
present study, the XGBoost method was used excellently in
the identification of MDD and showed good applicability for
the high-dimensional rs-FC data.
Consistent with previous studies,21,22 the present study

demonstrated that XGBoost provided the best discrimination
between two groups at the individual level as compared with
other ML methods. In addition, frontal and occipital gyrus-
related rs-FC features showed primary contribution for the
XGBoost model, and the identified rs-FC features in the
XGBoost classification model were distributed primarily within
and between DMN, LN, and VN. Previous studies indicated
that frontal regions participated in the reward-related

Figure 3. Features from the XGBoost classifier of whole-brain functional connectivity analysis using AAL template. (A) The weight of all features in
the 90 × 90 matrix. The colored squares represent the present rs-FC features used in the classifier, and the darker the color, the greater the weight
of the rs-FC feature. (B) The distribution of 987 rs-FC features of the classifier in 90 brain regions of AAL template. X-axis represents the sequence
of brain regions of AAL template, and Y-axis represents the number of rs-FC at each node. (C) The distribution of 987 rs-FC features in 8 resting-
state networks. In the left panel, the box in the ring represents brain regions, and the line connecting two boxes represents rs-FC of the two brain
regions. Eight functional network modules are arranged to 90 brain regions, and these networks comprise functional connections linking different
modules and connections within single modules. In the right panel, the rs-FC features within and between resting-state networks were visualized.
Nodes with a larger size represent more rs-FCs within-network. Line width between nodes represents the number of rs-FCs of between-networks.
XGBoost, eXtreme Gradient Boosting; rs-FC, resting-state functional connectivity; AAL, Automated Anatomical Labeling; DMN, default mode
network; FPN, frontoparietal network; LN, limbic network; VAN, ventral attention network; SMN, sensorimotor network; DAN, dorsal attention
network; VN, visual network; SUB, subcortical system.
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processing in MDD,23 and the emotion-related regulation
circuit comprised the fronto-limbic neural networks and DMN,
whose abnormal function alterations were the primary
characteristic of MDD.24−26 In addition, dysfunctional DMN
and LN connectivity patterns are not only associated with the
identification of depression but are also valuable to guide
individualized treatment strategies.27−29 Furthermore, the
primary visual cortex located in the occipital gyrus, can
regulate the emotional processing via the amygdala and
striatum,30 which may be implicated in the MDD develop-
ment. Meanwhile, the neural activity in the visual cortex may
be a potential biomarker to predict the response to
interventions in MDD, including antidepressant drugs31,32

and repetitive transcranial magnetic stimulation.33 More
importantly, rs-FC features identified by the XGBoost can be
used for the individual prediction of HAMD-17 scores in
MDD patients, which further suggested that effective features
of the XGBoost model were associated with the severity of the
depressive symptom. Consequently, rs-FC data combined with
the XGBoost method can provide an ideal classification
performance in the diagnosis of MDD, and in the XGBoost
model, identified rs-FCs within and between intrinsic brain
networks may characterize the pathophysiology in MDD.
In the present study, data-driven ML approaches were used

to make classifications from high-dimensional rs-FC data, and
based on a multicentral, large-scale sample size, we proposed
the XGBoost classification model for MDD with the better
generalization and mechanistic interpretative. The current
XGBoost classifier can achieve the accurate diagnosis of MDD
patients at the personal level and be suitable to the high-
dimensional neuroimaging data, which may be used as a
convenient tool in the screening of MDD or a reliable
diagnostic aid in the clinical practice of MDD. Although sex
differences in emotion processing may play a role in inducing a
difference of brain activity and women’s increased risk for
MDD,34 the classification performances and identified rs-FC
features of the male model, the female model, and the

integrated model were similar (Figure S2), which further
suggested that the present XGBoost model had better
generalization and stability and could accurately diagnose
MDD without being affected by sex differences.
The present study has several limitations. (I) Exclusively

Chinese samples in the present multicentral databset may limit
the generalization of the XGBoost classifier to other
populations, and the UK Biobank database will be considered
to test the current model in the subsequent study. (II) The
detailed clinical information, such as the number of prior
depressive episodes, negative life events, therapy details, and
more neuropsychological assessments, was not provided for
each MDD patient in some study sites, which limited our
further analysis to explore the potential mechanism of the
classification model and assess the classification performance in
different MDD subtypes. (III) An inevitable issue of the
multicentral data set is heterogeneity of MDD patients.
Refining the homogeneity of subjects by using the single
study site may improve the performance of the current
classifier. Along this line, we selected the largest subdataset
(S20 dataset) with 248 MDD patients and 251 NCs from the
present multicentral dataset35 to test the present XGBoost
classifier. The accuracy of the classifier for the S20 dataset was
0.880 (sensitivity = 0.936, specificity = 0.825), and the AUC
value was 0.944 (Figure S3), which suggested that the present
XGBoost model showed the stronger discriminability and
noninferiority classification performance when compared with
previous studies with small samples (Table S1).
In conclusion, based on the high-dimensional rs-FC data, the

XGBoost model showed the optimal classification performance
between MDD patients and HCs, with good generalization,
which suggested that rs-FCs have a diagnostic potential for
MDD, and the XGBoost algorithm is a promising approach to
achieve the individualized diagnosis of MDD. In addition,
those rs-FCs identified by the XGBoost model can afford
better neuroscientific interpretability for the pathophysiology
of MDD.

Figure 4. Linear regression analysis. (A) Scatter plot showing the predicted HAMD-17 scores for each subject and their actual HAMD-17 scores.
Predicted score derived from 987 valid rs-FC features of the XGBoost classifier using linear regression model fitted by least-squares. (B) The
distribution of the top 50 rs-FC features of the absolute weight score for the prediction model in the resting-state networks. The node with a larger
size represents more rs-FCs related with the brain region. HAMD-17, 17 item Hamilton Depression Rating Scale; XGBoost, eXtreme Gradient
Boosting; rs-FC, resting-state functional connectivity.
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■ METHODS AND MATERIALS
Subjects. The REST-meta-MDD consortium is made up of

different research groups across China and establish a multicenter,
large-scale dataset that had been used in some previous studies.28,35,36

The sample size that consisted of 1021 MDD patients and 1100 NCs
from 24 study sites was used for analysis in the present study. The
details on the inclusion and exclusion criteria can be found in the
Supporting Information. All MDD patients met the Diagnostic and
Statistical Manual of Mental Disorders IV criteria and underwent the
HAMD-17 assessment. Each study site obtained approval from the
local ethics committees, and all subjects or their legal guardians signed
written consent forms. Clinical features of included subjects were
displayed in Table 1.
MRI Data Preprocessing. Resting-state MRI data were acquired

and preprocessed at each site using the Data Processing Assistant for
Resting-State fMRI (http://www.restfmri.net/forum/dparsf) with a
standard protocol,37,38 which had been described in detail in previous
studies35,36 and the Supporting Information. Detailed MRI acquisition
parameters for the different scanners were displayed in Table S3.
Whole-Brain FC Analysis. The AAL atlas, which is a widely used

anatomical template including 78 cortical regions and 12 subcortical
regions, was used to parcellate the cerebrum into 90 regions of
interest (ROIs) (Table S4). The ROI-to-ROI FC analysis was
performed using GRETNA (v2.0.0)39 under the MATLAB environ-
ment (The MathWorks, Inc., Natick, MA, USA). The representative
time series of each region was obtained by averaging the time series
over all voxels in this region. Subsequently, the Pearson’s correlation
coefficients were computed in each possible ROI pair, and a Fisher’s r-
to-z transformation was performed for transforming the correlation
coefficients to the z-score space, which can normalize the data to a
standard normal distribution.40 For each subject, a 90 × 90 matrix was
obtained; then, the triangular portions of the matrix were extracted for
transformation to a vectorial feature space with the 4005 dimensions.
ML Analysis. In the present study, a progressive three-step ML

analysis was performed, including six different ML algorithms and two
dimension reduction methods (Table S5). Details of these methods
can be found in the Supporting Information. Python (ver3.7; www.
python.org) was used for coding the algorithm. To make the results
reproducible, all random seeds are recorded.
Step 1: Classical ML Algorithms. Four commonly used ML

classification algorithms, including SVM, LR, DT, and RR, were
performed for constructing the classification model based on the total
4005 rs-FCs features among all subjects, respectively.
Step 2: Feature Selection Combined With Classical ML

Algorithms. For high-dimensional rs-FC data, the number of
dimensions should be reduced to avoid the “curse of dimension-
ality”.41 The ML methods that were used in “Step 1”, without an
inherent feature selection ability, may be vulnerable to the high-
dimensional data (Table S5). In the present study, two feature
selection strategies (TF and SVD42) were applied to combine with LR
and SVM algorithms for building a classification model, respectively.
The introduction of dimension reduction techniques reduced the
dimension of feature spaces from 4005 to 1000.
Step 3: Linear and Nonlinear ML Method. Linear ML methods

may fail to perform the classification task based on the rs-FC data in
consideration of the nonlinear relationship among input features.43 In
the present study, the LASSO,44 a linear ML method, and the
XGBoost,16 a nonlinear ML method, were used to build a
classification model, respectively. The inherent feature selection
ability of these methods can contribute to achieving the dimension
reduction for the rs-FC data (Table S5).
XGBoost Algorithm. XGBoost is an improved Gradient Boosted

Decision Tree45 algorithm designed for speed and performance, and
the advantage of this method is to efficiently model nonlinear
relationships in structural data. Briefly, this method repeatedly trains
successive decision trees (weak learners) based on a set of the
subject’s FC features for constructing a combined strong classifier and
generated an “overall score” to each subject for predicting the
outcome. The derivations of objective function are as follows.

Supposing a data set of n samples and m features D = {(xi, yi)} (| D
| = n, xi ∈ Rm, yi = {0,1}), XGBoost will learn K decision trees and
predict the output with their sum:

∑ϕ̂ = = ∈
=

y x f x f( ) ( ),i i
k

K

k i k
1

where is the space of the decision trees. To learn the set of decision
trees used in XGBoost, we minimize the following regularized
objective:

∑ ∑ϕ = ̂ + Ωl y y f( ) ( , ) ( )
i

i i
k

k

where l(yi, ŷi) is cross entropy and

γ λΩ = +f T w( )
1
2
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where T is the number of leaves in the tree and w is the leaf weight.
XGBoost will start with a base tree classifier, which is a constant:

∑=
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i
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at the t-th iteration. XGBoost will need to add f t to minimize the
following objective:
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which can be simplified as the following with second-order
approximation:
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where gi is the first-order derivative of f t(xi) and hi is the second-order
derivative of f t(xi).

Then, the loss function reduction given split is
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With the above equation, the best split of the tree could be found
by enumerates over all the possible splits, which is also known as the
exact greedy algorithm. The whole algorithm for the XGBoost model
was shown in Figure S4.

Furthermore, the parameters of XGBoost are restricted by L1 norm,
which results in the less informative features possibly being dropped
during training; therefore, the XGBoost method is adaptive to the
high-dimensional data set.

Hyper-Parameter Optimization and Cross-Validation. To
obtain the optimum parameter sets of each ML method, the grid
search was performed for the ML algorithm with fewer hyper-
parameters. In addition, because the XGBoost algorithm included
relatively complicated hyper-parameters (Table S6), an empirical
strategy that achieves parameter tuning step-by-step was added and
performed (Figure S4), and details were displayed in the Supporting
Information.

Additionally, the 10-fold cross-validation was used to assess the
generalization ability of various classifiers. In the process of cross-
validation, samples were divided into 10 folds of equal size, and 9
folds were used for training; the remaining 1 fold was used as a test
set. This process was performed for 10 rounds, and the average
accuracy, sensitivity, and specificity were calculated to quantify the
classification performance of models. Furthermore, the receiver
operating characteristic curve was created by plotting the true positive
rate against the false positive rate to measure the classification ability
of the classifier. The AUC was used to reflect the performance of the
classifier.
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Linear Regression Analysis. The relationship between clinical
scores and rs-FCs was investigated using the linear regression analysis.
Linear least-squares was used to fit the regression model for predicting
the individual HAMD-17 score in MDD patients using the identified
rs-FC features by the optimal classifier.
Assuming N features were retaining from the model, we performed

a linear regression between the kept N features and HAMD-17 scores
for the 1021 MDD patients, which can be formulated as

β ε= +y X

where X is 1021 × N feature matrix, y is 1021 × 1 response vector,
and β is N × 1 coefficient vector. By least-squares approximation,46

we want to minimize

∑ β −x y
1
2

( )
i

i i
2

solving the objective function, we have

β ̂ = −X X X y( )T T1

The accuracy of the prediction model was evaluated with four
frequently used statistics:47−49 multiple R2, adjusted R2, MAE, and
RMSE.
Network Analysis. To better interpret the performance of the

optimal classifier, captured rs-FC features by the classifier would be
further analyzed using a standard 7-system template.50 As in our
previous study,51 the priori network modules for brain regions of the
AAL atlas were defined; then, each AAL label (Table S4) was assigned
to a matched functional system defined by Yeo et al.50 In addition,
subcortical regions were assigned to an eighth functional system
named the subcortical module. As a result, the primary modular
partition used in the present study included eight functional networks,
i.e., DMN, FPN, LN, ventral attention network, SMN, dorsal
attention network, VN, and subcortical system.
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