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Abstract. In multi-instance learning, the training set is composed of labeled bags each
consists of many unlabeled instances, that is, an object is represented by a set of feature
vectors instead of only one feature vector. Most current multi-instance learning algo-
rithms work through adapting single-instance learning algorithms to the multi-instance
representation, while this paper proposes a new solution which goes at an opposite
way, that is, adapting the multi-instance representation to single-instance learning al-
gorithms. In detail, the instances of all the bags are collected together and clustered
into d groups at first. Each bag is then re-represented by d binary features, where the
value of the i-th feature is set to one if the concerned bag has instances falling into
the i-th group and zero otherwise. Thus, each bag is represented by one feature vector
so that single-instance classifiers can be used to distinguish different classes of bags.
Through repeating the above process with different values of d, many classifiers can
be generated and then they can be combined into an ensemble for prediction. Exper-
iments show that the proposed method works well on standard as well as generalized
multi-instance problems.

Keywords: Machine Learning; Multi-instance Learning; Classification; Clustering; En-
semble Learning; Knowledge Representation; Constructive Induction

1. Introduction

During the past decades, learning from examples becomes one of the most flour-
ishing areas in machine learning. According to the label ambiguity, i.e. ambiguity
of the labels of training examples, research in this area can be roughly categorized
into three learning frameworks, i.e. supervised learning, unsupervised learning,
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and reinforcement learning (Maron, 1998). Supervised learning attempts to learn
a concept for correctly labeling unseen instances, where the training instances
are with known labels and therefore the label ambiguity is the minimum. Un-
supervised learning attempts to learn the structure of the underlying sources of
instances, where the training instances are without known labels and therefore
the label ambiguity is the maximum. Reinforcement learning attempts to learn a
mapping from states to actions, where the instances are with no labels but with
delayed rewards that can be viewed as delayed labels, and therefore its label
ambiguity is between that of supervised learning and unsupervised learning.

The term multi-instance learning was coined by Dietterich et al. (1997) when
they were investigating the problem of drug activity prediction. Here the train-
ing set is composed of labeled bags each consists of many unlabeled instances,
and the goal is to learn some concept from the training set for correctly label-
ing unseen bags. A bag is positively labeled if it contains at least one positive
instance and negatively labeled otherwise. Note that a positive bag may contain
hundreds of instances, among which maybe only one is really positive. This im-
plies that the false positive noise may be overwhelmingly high if a multi-instance
problem were regarded as a typical supervised learning problem through simply
assigning the label of a bag to the instances in the bag. Therefore, common
single-instance learning algorithms can hardly obtain good performance when
being applied to multi-instance problems directly. In fact, it has been shown
that learning algorithms ignoring the characteristics of multi-instance problems,
such as the traditional decision trees and neural networks, could not work well
in this scenario (Dietterich et al., 1997).

Actually, multi-instance learning is quite unique if looking it from the aspect
of label ambiguity. In contrast to supervised learning where all training instances
are with known labels, in multi-instance learning the labels of the training in-
stances are unknown; in contrast to unsupervised learning where all training
instances are without known labels, in multi-instance learning the labels of the
training bags are known; in contrast to reinforcement learning where the labels
of the training instances are delayed, in multi-instance learning there is not any
time delay. Since multi-instance problems extensively exist but are unique to
these addressed by previous learning frameworks, multi-instance learning has
been regarded as a new learning framework (Maron, 1998), and attracted much
attention of the machine learning community.

This paper deems that the difficulty of multi-instance learning mainly lies in
that it is accompanied with an unusual representation. Actually, a bag corre-
sponds to a real-world object while the instances in the bag are feature vectors
describing the object. In contrast to typical machine learning settings where an
object is represented by only one feature vector, in multi-instance learning an
object is represented by a set of (more than one) feature vectors.

Zhou and Zhang (2003) showed that single-instance supervised learning al-
gorithms can be adapted to multi-instance learning as long as their focuses are
shifted from the discrimination on the instances to the discrimination on the
bags. In fact, most current multi-instance learning algorithms can be viewed as
going along this way, that is, adapting single-instance learning algorithms to the
multi-instance representation.

In this paper, a new way to the solution of multi-instance learning is proposed,
that is, adapting the multi-instance representation to single-instance learning
algorithms. In detail, the bags are re-represented by features generated with
the help of a clustering process such that the multi-instance problem becomes
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a single-instance supervised learning problem, which is then solved by an en-
semble of classifiers. Since the clustering process is used to help change the
representation, it can be viewed as a specific scheme of constructive induction
(Bloedorn and Michalski, 1998). Therefore, the proposed method is called CcCE,
i.e. Constructive Clustering based Ensemble. Experiments show that CCE can
work well on not only standard multi-instance problems, but also generalized
multi-instance problems (Weidmann et al., 2003).

The rest of this paper is organized as follows. Section 2 briefly introduces
standard and generalized multi-instance learning. Section 3 presents CCE. Sec-
tion 4 reports on the experiments. Section 5 discusses on some related issues.
Finally, Section 6 concludes.

2. Multi-Instance Learning

Most drugs are small molecules working by binding to larger protein molecules
such as enzymes and cell-surface receptors. For molecules qualified to make a
drug, one of its low-energy shapes can tightly bind to the target area; while for
molecules unqualified to make a drug, none of its low-energy shapes can tightly
bind to the target area. In the middle of 1990s, Dietterich et al. (1997) investi-
gated the problem of drug activity prediction. The goal was to endow learning
systems with the ability of predicting that whether a new molecule was qual-
ified to make some drug, through analyzing a collection of known molecules.
The main difficulty of this task lies in that each molecule can have many al-
ternative low-energy shapes, but currently biochemists only know that whether
a molecule is qualified to make a drug or not, instead of knowing that which
of its alternative low-energy shapes responses for the qualification. In order to
solve this problem, Dietterich et al. (1997) regarded each molecule as a bag, and
regarded the alternative low-energy shapes of the molecule as the instances in
the bag, thereby formulated multi-instance learning. They then proposed three
azis-parallel rectangle (abbreviated as APR) algorithms to solve the drug ac-
tivity prediction problem, which attempt to search for appropriate axis-parallel
rectangles constructed by the conjunction of the features.

Long and Tan (1998) initiated the investigation of the PAcC-learnability of
APR under the multi-instance learning framework. They showed that if the in-
stances in the bags are independently drawn from product distribution, then the
APR is PAc-learnable. Auer et al. (1998) showed that if the instances in the
bags are not independent then APR learning under the multi-instance learning
framework is NP-hard. Moreover, they presented a theoretical algorithm that
does not require product distribution but with smaller sample complexity than
that of Long and Tan’s algorithm, which was transformed to a practical algo-
rithm named MULTINST later (Auer, 1997). Blum and Kalai (1998) described
a reduction from PAcC-learning under the multi-instance learning framework to
PAc-learning with one-sided random classification noise. They also presented a
theoretical algorithm with smaller sample complexity than that of the algorithm
of Auer et al. (1998).

Maron and Lozano-Pérez (1998) proposed a practical multi-instance learn-
ing algorithm, Diverse Density. This algorithm attempts to search for a point
in the feature space with the maximum diverse density, where the diverse den-
sity at a point in the feature space is defined to be a measure of how many
different positive bags have instances near that point, and how far the negative
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instances are from that point. Many other practical multi-instance learning al-
gorithms have been developed during the past years, such as Wang and Zucker
(2000)’s Citation-kNN and Bayesian-kNN, Ruffo (2000)’s multi-instance decision
tree RELIC, Chevaleyre and Zucker (2001)’s multi-instance decision tree ID3-MI
and multi-instance rule inducer RIPPER-MI, Zhou and Zhang (2002)’s multi-
instance neural network Bp-MIp, Zhang and Goldman (2002)’s EM-DD, Gértner
et al. (2002)’s MI Kernel, Andrews et al. (2003)’s MI SvM, Zhou and Zhang
(2003)’s multi-instance ensemble, and Xu and Frank (2004)’s MiBoosT. It is
noteworthy that almost all these algorithms attempt to adapt single-instance
supervised learning algorithms to the multi-instance representation, through
shifting their focuses from the discrimination on the instances to the discrimi-
nation on the bags (Zhou and Zhang, 2003). Nevertheless, multi-instance learn-
ing has already been applied to diverse applications including content-based
image retrieval (Yang and Lozano-Pérez, 2000; Zhang et al., 2002; Huang et
al., 2002; Zhou et al., 2003), scene classification (Maron and Ratan, 1998; Chen
and Wang, 2004), stock selection (Maron and Lozano-Pérez, 1998), landmark
matching (Goldman et al., 2001; Goldman and Scott, 2003), computer security
(Ruffo, 2000), web mining (Zhou et al., 2005), etc.

In the early years of the research of multi-instance learning, most work
were on multi-instance classification with discrete-valued outputs. Later, multi-
instance regression with real-valued outputs was studied (Amar et al., 2001; Ray
and Page, 2001). It is worth noting that multi-instance learning has also at-
tracted the attention of the ILP community. It has been suggested that multi-
instance problems could be regarded as a bias on inductive logic programming,
and the multi-instance paradigm could be the key between the propositional and
relational representations, being more expressive than the former, and much eas-
ier to learn than the latter (De Raedt, 1998). Recently, Alphonse and Matwin
(2004) successfully employed multi-instance learning to help relational learning.
At first, the original relational learning problem is approximated by a multi-
instance problem. Then, the resulting data is passed to feature selection tech-
niques adapted from propositional representations. Finally, the filtered data is
transformed back to relational representation for a relational learner to learn.
In this way, the expressive power of relational representation and the ease of
feature selection on propositional representation are gracefully combined. This
work confirms that multi-instance learning can really act as a bridge between
propositional and relational learning.

Recently, Weidmann et al. (2003) indicated that through employing different
assumptions of how the instances’ classifications determine their bag’s label,
different kinds of multi-instance problems can be defined. Formally, let x denote
the instance space and @ = {+,—} denote the set of class labels. A multi-
instance concept is a function on 2X — . In standard multi-instance learning,
this function is defined as Eq. 1, where ¢; € C is a specific concept from a concept
space C, and X C x is a set of instances.

v (X) e 3z e X :¢(x) (1)

Based on this recognition, Weidmann et al. (2003) defined three kinds of
generalized multi-instance problems, i.e. presence-based MI', threshold-based MI,
and count-based MI. Presence-based MI is defined in terms of the presence of

I Here “multi-instance” is abbreviated as MI.
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instances of each concept in a bag. For example, an MI concept of this category is
“only if instances of concept ¢; and instances of concept ¢ are present in the bag,
the class is positive”. Threshold-based MI requires a certain number of instances
of each concept to be present simultaneously. For example, an MI concept of this
category is “only if more than n., number of instances of concept ¢; and n.,
number of instances of concept co are present in the bag, the class is positive”.
Count-based MI requires a maximum as well as a minimum number of instances
of a certain concept in a bag. For example, an MI concept of this category is
“only if at most max., and at least min., number of instances of concept ¢; and
at most max,., and at least min., number of instances of concept cs are present
in the bag, the class is positive”. The formal definitions of presence-based MI,
threshold-based MI, and count-based MI are shown in Eqs. 2 to 4.

VPB(X)ﬁvciGC:A(X,Ci)Zl (2)
VTB(X) S Ve, e C A(X, Ci) > t; (3)
z/CB(X)@VciEC:tiSA(X,ci)gzi (4)

In Eqgs. 2 to 4, vpp, vrp and vop are functions defined on 2X — Q, C C C is
a given set of concepts, A is a counting function A : 2X x C — N which counts
the number of a given concept in a bag, t; € N and z; € N are respectively the
lower and upper threshold for concept c;.

It is worth mentioning that besides the presence-based MI, threshold-based
MI, and count-based MI defined by Weidmann et al. (2003), there is another
setting of generalized multi-instance learning, which was defined by Scott et al.
(2003). In this setting, the target concept is a set of points C' = {¢1,- -+, ¢k},
and the label for a bag B = {by,---,b,} is positive if and only if there is a
subset of r target points C = {¢],---,¢.} C C such that each ¢; € C is near
some point in B. It is evident that this setting is close to that of threshold-based
MI. Scott et al. proposed the GMIL-1 algorithm to solve this problem, which
was then reformulated as a kernel algorithm (Tao et al., 2004), reducing the
time complexity from exponential to polynomial. Later, this kernel was further
generalized along the line of count-based MI (Tao et al., 2004a). This paper
only considers Weidmann et al. (2003)’s settings of generalized multi-instance
learning since it seems they are more general.

3. CCE

As mentioned before, since in multi-instance learning each bag is represented by a
set of feature vectors, common supervised learning algorithms can hardly be ap-
plied directly to obtain good performance. Actually, most current multi-instance
learning algorithms were derived in nature through enabling single-instance su-
pervised learning algorithms deal with objects described by feature vector sets
instead of a single feature vector, which goes the way of shifting the focuses of
the algorithms from the discrimination on the instances to the discrimination on
the bags (Zhou and Zhang, 2003). As such a strategy of adapting single-instance
learning algorithms to meet the multi-instance representation has obtained some
success, an opposite strategy, i.e. adapting the multi-instance representation to
meet the requirement of existing single-instance supervised learning algorithms,
can also be considered. This is really the start point of CCE.



6 Z.-H. Zhou, M.-L. Zhang

In CCE, the instances contained in all the bags are collected together at first.
Since the labels of the instances are unknown, a clustering algorithm is employed
to cluster the instances into d groups. Intuitively, since clustering can help find
the inherent structure of a data set, the clustered d groups might implicitly
encode some information on the distribution of the instances of different bags.
Therefore, CCE tries to re-represent the bags based on the clustering results. In
detail, d features are generated in the way that if a bag has instance in the i-th
group, then the value of the i-th feature is set to 1 and 0 otherwise. Thus, each
bag is represented by a d-dimensional binary feature vector such that common
single-instance supervised classifiers can be employed to distinguish the bags.

It is evident that various clustering results can be generated for a specific
set of instances. Since there is no criterion available for judging which kind of
clustering result is the best for the re-representation of the bags, a possible
solution is to produce many classifiers based on different clustering results and
then combine their predictions, which is adopted by CCE. Note that this is not a
disadvantage but an advantage, because in this way, CCE can utilize the power
of ensemble learning (Dietterich, 2000) to achieve strong generalization ability.

In general, for obtaining a good ensemble, the component learners should
be as diverse as possible. In CCE, diverse classifiers can be easily obtained be-
cause they can be trained in different instance spaces. In fact, the clustering
process in CCE can be repeated many times, each time the instances are clus-
tered into different numbers of groups. These clustering results are then used
to help represent the bags as binary feature vectors with different dimensions.
Therefore, different classifiers can be trained with different dimensional feature
vectors. This can be viewed as a specific process of manipulating the input fea-
tures, which has been identified as an effective paradigm for generating diverse
classifiers (Dietterich, 2000).

When an unseen bag is given for classification, CCE re-represents it through
querying the clustering results, then feeds the generated feature vectors to their
corresponding component classifiers, and finally obtains the classification from
the ensemble. This implies that the clustering results, at least the center of
each clustered group, should be stored such that the instances of the unseen
bag can be assigned to appropriate groups through measuring their distances to
different centers. Note that although CCE is not so efficient as multi-instance
learning algorithms which do not query on training instances in prediction, such
as RELIC (Ruffo, 2000), it is more efficient than algorithms which require storing
and querying all the training instances in prediction, such as Citation-kNN and
Bayesian-kNN (Wang and Zucker, 2000).

In the definition of standard as well as generalized multi-instance learning,
the label of a bag is actually determined by the relationship between the feature
vector set describing the bag and the target points in the instance space. In
CCE, such a relationship is implicitly encoded in the single binary feature vector
describing the bag. For example, assume that the task is to learn the problem
“only if instances of concept ¢; and instances of concept cy are present in the
bag, the class is positive”, and assume that the instances have been clustered
into a number of groups where several groups belong to concept ¢; and several
belong to concept co. Then, if the single binary feature vector of an unseen bag
takes value 1 at a bit corresponding to any group belonging to concept ¢; as well
as a bit corresponding to any group belonging to concept ¢, this unseen bag is
positive because instances of concept ¢; and instances of concept co are present
in the bag. Therefore, it is evident that CCE can be applied to generalized multi-
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Table 1. Pseudo-code describing the CCE algorithm

CcE(B, D, Cluster, Classifier)

Input: B: A set of [ bags {X', X?2,..., X!}
D: A set of m numbers {d1,d2,...,dm}
Cluster: Clustering algorithm
Classifier: Classifier training algorithm

Z — 10
for i € {1..1} do

for x € X do Z «+— Z U {x}
end of for

for i € {1.m} do
Cluster(Z,d;) % cluster Z into d; groups
Si—0
for j € {1..I} do
for k € {1..di} do yi «— QOverlap (Xj,groupk)
% gy, is 1 if X7 has instances in the k-th group, and 0 otherwise
ylabeld « Getlabel(X7)
S; — S;u{<y],... ,yfii,ylabelj >}
end of for
C; — Classifier(S;)
end of for

Output: Label (X) < arg max > 1
telt -} i: Cy (5(\1) =t

% )?, is the corresponding feature vector of the bag X for C;

instance problems without any modification, which is a prominent advantage,
while most current multi-instance learning algorithms cannot.

The pseudo-code of CCE is presented in Table 1. Many algorithms (Hinneburg
and Keim, 2003; Ordonez and Omiecinski, 2004; Zhou et al., 2000; Abbass et al.,
2001; Hodge and Austin, 2005) can be used to implement the clustering process
and the classifier. In this paper, k-means is employed for clustering, while support
vector machines are used as the classifiers. In combining the predictions of the
classifiers, majority voting is used in this paper, but note that other schemes are
also applicable.

4. Experiments
4.1. Musk Data Sets

Musk data is a real-world benchmark test data for standard multi-instance learn-
ing algorithms, which was generated in the research of drug activity prediction
(Dietterich et al., 1997). There are two data sets, i.e. Muskl and Musk2, both
publicly available at the UCI machine learning repository (Blake et al., 1998).
Muskl1 contains 47 positive bags and 45 negative bags, and the number of in-
stances contained in each bag ranges from 2 to 40. Musk2 contains 39 positive
bags and 63 negative bags, and the number of instances contained in each bag
ranges from 1 to 1,044. Each instance in the bags is represented by 166 continuous
attributes. Detailed information on the Musk data is tabulated in Table 2.
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Table 2. The Musk data (72 molecules are shared in both data sets)

. Bags Instances per bag
Data set  Dim. Instances -
Total Musk  Non-musk Min Max Ave.
Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

Leave-one-out test is performed on the Musk data sets. Each time CCE clus-
ters the instances into five different numbers of groups, and then five classifiers
are trained and combined. The best predictive error rates of CCE are compared
with the best results reported in the literatures, as shown in Table 3. Note that
these results were obtained with different experimental methodologies. For exam-
ple, the results of MI Kernel 2 were average values of 1,000 runs each randomly
leaves out 10 bags for testing while using the remaining bags to train the classifier
(Géartner et al., 2002), the results of the TLC algorithms 3 were obtained with
10 runs of 10-fold cross-validation (Weidmann et al., 2003), while the results of
CcCE were obtained with leave-one-out test.

Table 3 shows that on Muskl CCE ranks the 3rd among all the 21 algorithms
while on Musk2 it ranks the 5th. Note that among all these algorithms, besides
CcE, only MI Kernel and TLC without AS can be used to tackle generalized
multi-instance problems (Weidmann et al., 2003). It can be found from Table 3
that the performance of CCE is comparable to that of MI Kernel on Musk1 but
worse on Musk2 *, while much better than that of TLC without AS on both
Musk1 and Musk2. These observations support the claim that CCE illustrates a
new way to solve multi-instance problems, that is, adapting the multi-instance
representation to common single-instance supervised learning algorithms.

Fig. 1 shows the performance of the single classifiers trained after the clus-
tering process employed by CCE, where the number of clusters ranges from 2 to
80. Fig. 2 shows the best performance of the classifier ensembles generated by
CCE, where the number of classifiers used ranges from 3 to 21 with interval 2.

Comparing Figs. 1 and 2, it can be found that the ensembles are strong
although the single classifiers are not strong. Actually, the best predictive accu-
racy of the single classifier is 85.9% on Musk1 and 80.4% on Musk2, both worse
than that of Diverse Density (88.9% on Musk! and 82.5% on Musk2); but the
best predictive accuracy of the CCE ensemble is 92.4% on Musk! and 87.3% on
Musk2, both much better than that of Diverse Density. Moreover, Fig. 2 reveals
that no matter which ensemble size is used, the performance of CCE ensemble
is always higher than 89.1% on Musk! and 83.3% on Musk2, consistently better
than that of Diverse Density. These observations tell that the performance of
the single classifier is relatively sensitive to the clustering process, while that of
the CCE ensemble is relatively robust owing to the contribution of the ensemble
process.

2 This method was called as “MI SvM” by Weidmann et al. (2003), but originally it was
named as MI Kernel (Gértner et al., 2002) and MI SvM is usually used to refer to Andrews et
al. (2003)’s method.

3 “TrLc with/without AS” means TLC with/without attribute selection. The performance of
TLc with AS on Musk is not available (Weidmann et al., 2003).

4 The best predictive error rates of MI Kernel reported by Weidmann et al. (2003) were 13.6%
on Musk! and 12.0% on Musk2. The latter is slightly better while the former is much worse
than that of CcE.
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Table 3. The best predictive error rates (%) on Musk data sets

Musk1

Algorithm Error

MI Ensemble 3.1 (Zhou and Zhang, 2003)
EM-DD 3.2 (Zhang and Goldman, 2002)
Cce 7.6

Iterated-discrim APR
Citation-kNN

MI Kernel

GFs elim-kde APR
GFs elim-count APR
Bayesian-kNN
Diverse Density

TLc without AS

7.6 (Dietterich et al., 1997)

7.6 (Wang and Zucker, 2000)

7.6 (Gértner et al., 2002)

8.7 (Dietterich et al., 1997)

9.8 (Dietterich et al., 1997)

9.8 (Wang and Zucker, 2000)

11.1 (Maron and Lozano-Pérez, 1998)
11.3 (Weidmann et al., 2003)

RIPPER-MI 12.0 (Chevaleyre and Zucker, 2001)
Bp-MIP-PCA 12.0 (Zhang and Zhou, 2004)
MiBoosT 12.1 (Xu and Frank, 2004)
BP-MIP-DD 14.1 (Zhang and Zhou, 2004)
RELIC 16.3 (Ruffo, 2000)

Bp-m1p 16.3 (Zhou and Zhang, 2002)
MI Svm 22.1 (Andrews et al., 2003)
MULTINST 23.3 (Auer, 1997)

BP 25.0 (Dietterich et al., 1997)
C4.5 31.5 (Dietterich et al., 1997)
Musk2

Algorithm Error

MI Ensemble 3.0 (Zhou and Zhang, 2003)
EM-DD 4.0 (Zhang and Goldman, 2002)
MI Kernel 7.8 (Géartner et al., 2002)
Iterated-discrim Apr  10.8 (Dietterich et al., 1997)
CcE 12.7

RELIC 12.7 (Ruffo, 2000)
Citation-kNN 13.7 (Wang and Zucker, 2000)
MI Svm 15.7 (Andrews et al., 2003)
MULTINST 16.0 (Auer, 1997)

MiBoosT 16.0 (Xu and Frank, 2004)
Bp-MIP-PCA 16.7 (Zhang and Zhou, 2004)

TLc without AS
Diverse Density
Bayesian-kNN

GFs elim-kde APR
Bp-Mip

Bp-MIP-DD
RIPPER-MI

GFs elim-count APR
BP

C4.5

16.9 (Weidmann et al., 2003)

17.5 (Maron and Lozano-Pérez, 1998)
17.6 (Wang and Zucker, 2000)

19.6 (Dietterich et al., 1997)

19.6 (Zhou and Zhang, 2002)

19.6 (Zhang and Zhou, 2004)

23.0 (Chevaleyre and Zucker, 2001)
24.5 (Dietterich et al., 1997)

32.3 (Dietterich et al., 1997)

41.2 (Dietterich et al., 1997)

4.2. Generalized MI Data Sets

Weidmann et al. (2003) designed some methods for artificially generating gener-
alized multi-instance data sets. In every data set they generated, there are five
different training sets each containing 50 positive and 50 negative bags, and a big
test set containing 5,000 positive and 5,000 negative bags. The average test set
accuracy of the classifiers trained on each of these five training sets is recorded
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Fig. 1. Predictive accuracy of single classifiers trained from different number of clusters
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Fig. 2. The best predictive accuracy of CCE ensembles with different ensemble sizes

as the predictive accuracy of the concerned learning algorithm on that data set.
Note that in this subsection, the results of MI Kernel and the TLC algorithms
are from the literature (Weidmann et al., 2003).

In generating presence-based MI data sets, |C| concepts were used. To gen-
erate a positive bag, the number of instances in a concept was chosen randomly
from {1,...,10} for each concept. The number of random instances was selected
with equal probability from {10|C|,...,10|C|+ 10}. Hence the minimal bag size
in this data set was |C| + 10|C| and the maximal bag size 20|C| 4 10. In this
paper, four presence-based MI data sets are used. The results are shown in Ta-
ble 4, where the numbers following ‘+’ are standard deviations. Here the name
of the data set ‘2-10-5" means this data set was generated with 2 concepts, 10
relevant and 5 irrelevant attributes.

In generating threshold-based MI data sets, Weidmann et al. (2003) also used
|C| concepts. They chose thresholds t; = 4 and t5 = 2 for data sets with |C| = 2,
and t; = 2, to = 7 and t3 = 5 for data sets with |C| = 3. For positive bags,
the number of instances of concept ¢; was chosen randomly from {t;,...,10}.
To form a negative bag, they replaced at least (A(X,¢;) —¢; + 1) instances of
a concept ¢; in a positive bag X by random instances. The minimal bag size
in this data set is ), ¢; + 10|C|, the maximal size is 20|C| + 10. In this paper,
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Table 4. Predictive accuracy (%) on presence-based MI data sets

Data set MI Kernel TLc without AS  TLc with AS CcCE
2-10-5 82.00 £+ 1.53 85.18 + 10.07 96.67 + 1.58  88.95 £+ 0.31
3-5-5 82.12 £+ 0.98 81.93 £+ 2.90 99.98 + 0.04 82.86 £ 0.46

3-5-10 81.43 £ 0.96 86.32 £ 6.48 98.49 £ 1.74 78.88 £ 1.03
3-10-5 84.27 + 1.44 78.07 £ 0.91 87.41 £6.24  84.93 £ 0.90

Table 5. Predictive accuracy (%) on threshold-based MI data sets

Data set MI Kernel TLc without AS  TLc with AS CcE

42-10-5 85.36 £+ 0.92 88.65 £ 10.12 96.58 & 1.91  87.64 + 1.34
42-10-10  83.93 £ 0.36 84.59 £ 8.08 95.89 £ 2.05 88.04 £ 0.38
275-5-10  82.73 £ 0.85 86.42 £+ 5.39 93.75 £ 6.63  79.59 £ 0.26
275-10-5  87.05 + 0.75 86.92 + 6.56 90.44 £ 4.63 84.39 £ 0.65

four threshold-based MI data sets are used. The results are shown in Table 5,
where the numbers following ‘+’ are standard deviations. Here the name of the
data set ‘42-10-5" means this data set has at least 4 instances of the first concept
and 2 instances of the second concept in a positive bag, with 10 relevant and 5
irrelevant attributes.

In generating count-based MI data sets, Weidmann et al. (2003) still used
|C| concepts. They used the same value for both thresholds ¢; and z;. Hence, the
number of instances of concept ¢; is exactly z; in a positive bag. They set z; = 4
and zo = 4 for data sets with |C| = 2, and 21 = 2, 29 = 7 and z3 = 5 for data sets
with |C] = 3. A negative bag can be created by either increasing or decreasing
the required number z; of instances for a particular ¢;. They chose a new number
from {0,...,2z; —1}U{z; +1,...,10} with equal probability. If this number was
less than z;, they replaced instances of concept ¢; by random instances; if it was
greater, they replaced random instances by instances of concept ¢;. The minimal
bag size in this data set is ), z; + 10|C|, and the maximal possible bag size
is Y.z + 10|C| + 10. In this paper, four count-based MI data sets are used.
The results are shown in Table 6, where the numbers following ‘£’ are standard
deviations. Here the name of the data set ‘42-10-0" means this data set requires
exactly 4 instances of the first concept and 2 instances of the second concept in
a positive bag, with 10 relevant and 0 irrelevant attributes.

Tables 4 to 6 show that although the performance of CCE is not so good as
that of TLC with AS, it is comparable to that of MI Kernel and TLC without
AS. The fact that the performance of CCE on count-based MI is not well might
because the binary feature vectors used by CCE are not sufficient for represent-
ing the exact number of instances in a cluster. Note that the TLC methods were

Table 6. Predictive accuracy (%) on count-based MI data sets

Data set MI Kernel TLC without AS  TLc with AS CCE

42-10-0 55.21 £ 1.76 90.89 £ 6.25 92.76 £ 1.64  57.69 £ 1.69
42-10-10  55.59 + 2.81 51.05 £ 1.60 65.10 £ 20.35 57.79 £ 1.72
275-5-10  52.34 £ 0.50 50.33 £ 0.72 56.94 £ 11.64 52.74 + 0.81
275-10-0  54.52 £+ 1.54 87.85 £+ 4.26 89.86 £ 3.40  53.39 £ 1.24
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specifically designed for generalized multi-instance problems. Therefore, the ex-
perimental results tell that CCE can work well, at least not bad, on generalized
multi-instance problems.

5. Discussion

Weidmann et al. (2003) proposed TLC to tackle generalized multi-instance prob-
lems, which constructs a meta-instance for each bag and then passes the meta-
instance and the class label of the corresponding bag together to a common
classifier. TLC uses a standard decision tree for imposing a structure on the in-
stance space, which is trained on the set of all instances contained in all bags
where the instances are labeled with their bag’s class label, such that a meta-
instance is generated for each bag. It is obvious that the role of the decision
tree in TLC can be taken place by some other supervised learning algorithms
such as rule induction algorithms. Nevertheless, it is worth noting that TLC gen-
erates only one meta-instance for each bag. In contrast to TLc, CCE employs
clustering to impose different structures on the instance space, in each structure
a meta-instance can be generated for each bag. That is, CCE generates multi-
ple meta-instances for each bag, therefore it can utilize the power of ensemble
learning in making predictions with an ensemble instead of a single classifier.

Zhou and Zhang (2003) proposed to build multi-instance ensembles to solve
multi-instance problems. In detail, they used a popular ensemble learning method
to generate ensembles of multi-instance learners including Iterated-discrim APR,
Diverse Density, Citation-kNN, and EM-DD, and obtained better results than
single learners. In contrast to CCE, the multi-instance ensemble method does
not change the representation of the bags. Moreover, since the base learners
it employed were designed for standard multi-instance problems, these multi-
instance ensembles could only be applied to standard multi-instance problems.

Data with complex structures are usually difficult to learn with traditional
machine learning paradigms. Although the structure of multi-instance data is
not so complex as that of multimedia data, it is really more complex than tra-
ditionally used feature vector structure. In order to learn multi-instance data,
a usually adopted way is to modify common learning algorithms to meet com-
plex representations (Zhou and Zhang, 2003), while CCE goes an opposite way,
i.e. simplifying complex representations to meet common learning algorithms. In
fact, such an idea of changing the representation has been studied in the area of
constructive induction as early as (Michalski, 1983).

Constructive induction is a general approach for dealing with inadequate
features found in original data. Commonly, it improves the representation by
constructing new features from the instance space, so that the learning tasks
become easier to be performed or the learning results are improved. Roughly
speaking, there are three kinds of constructive induction schemes classified ac-
cording to the information used in searching for the best representation space
(Bloedorn and Michalski, 1998), that is, data-driven constructive induction that
exploits input examples, hypothesis-driven constructive induction that exploits
intermediate hypotheses, and knowledge-driven constructive induction that ex-
ploits domain knowledge. The clustering process employed by CCE is actually
used to help construct new features from the original instances, which can be
viewed as a data-driven constructive induction process. Therefore, the success
of CCE also indicates that, although constructive induction is not so hot as be-
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fore, this technique might be well proven useful in learning data with complex
structures.

6. Conclusion

Most current multi-instance learning algorithms were derived from supervised
learning algorithms through shifting their focuses from the discrimination on
the instances to the discrimination on the bags, that is, adapting single-instance
algorithms to the multi-instance representation. The main contribution of this
paper is the illustration of the feasibility of an opposite way to the solution of
multi-instance learning, that is, adapting the multi-instance representation to
the single-instance algorithms.

The CCE method proposed in this paper employs a clustering process to
help construct new features, on which common supervised learning algorithms
can work. Besides, CCE utilizes the power of ensemble learning paradigms to
achieve strong generalization ability. Experiments show that CCE can work well
on standard multi-instance problems. Moreover, experiments show that CCE
can be applied to generalized multi-instance problems without any modification,
which is difficult for most current multi-instance learning algorithms.

There are many possible ways for modifying the multi-instance representa-
tion. For example, the number of instances of a bag belonging to the clustered
groups can be used as feature values such that each bag is represented by an
integer instead of a binary feature vector. Exploring other schemes for adapting
multi-instance representation to single-instance algorithms is an interesting issue
for future work.

Moreover, the success of CCE discloses that in learning data with complex
structures, constructive induction techniques might be useful. Trying to apply
these techniques to tasks involving complex structures of data, such as multime-
dia stream data, is also an interesting issue to be explored in the future.
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