
1

Solving the Multi-Instance Problem with Neural Networks

Zhi-Hua Zhou* and Min-Ling Zhang

National Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China

* Corresponding author. Tel.: +86-25-359-3163; fax: +86-25-330-0710.
E-mail addresses: zhouzh@nju.edu.cn (Z.-H. Zhou).

Abstract

Multi-instance learning was coined by Dietterich et al. recently in their investigation on drug activity prediction.

In such a learning framework, the training examples are bags composed of instances, and the task is to predict

the labels of unseen bags through analyzing the training bags with known labels. A bag is positive if it contains

at least one positive instance, while it is negative if it contains no positive instance. However, the labels of the

instances constituting the training bags are unknown. In this paper, the open problem of designing multi-

instance modification for neural networks is addressed. In detail, a neural network algorithm named

Backpropagation-MIP is presented, which is derived from the popular Backpropagation algorithm through

employing a new error function capturing the nature of multi-instance learning, i.e. the labels of the training

bags instead of that of the training instances are known. Experiments on both the real-world and artificial

benchmark multi-instance data show that the performance of Backpropagation-MIP is comparable to that of

some well-established multi-instance learning methods.

1. Introduction

At present, learning from examples is regarded as the most promising machine learning approach [19].

According to Maron [16], there are three frameworks for learning from examples. That is, supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning attempts to learn a concept for correctly

labeling unseen examples, where the training examples are with labels. Unsupervised learning attempts to learn

the structure of the underlying sources of examples, where the training examples are with no labels.

Reinforcement learning attempts to learn a mapping from states to actions, where the examples are with no

labels but with delayed rewards that could be viewed as delayed labels.

Recently, Dietterich et al. [9] proposed the notion of multi-instance learning in their investigation of drug

activity prediction. In multi-instance learning, the training set is composed of many bags each containing many

instances. If a bag contains at least one positive instance then it is labeled as a positive bag. Otherwise it is

labeled as a negative bag. The labels of the training bags are known, but that of the training instances are

unknown. The task is to learn something from the training set for correctly labeling unseen bags. Since such

kind of problem is quite different from those addressed by supervised learning, unsupervised learning, and

2

reinforcement learning, multi-instance learning was regarded as the fourth framework for learning from

examples [16].

When the notion of multi-instance learning was proposed, Dietterich et al. [9] indicated that a particular

interesting issue in this area is to design multi-instance modifications for neural networks. In this paper, this

open problem is addressed in the way that a neural network algorithm named Backpropagation-MIP, i.e.

Backpropagation for Multi-Instance Problems, is proposed. As its name implied, Backpropagation-MIP is

derived from the popular Backpropagation algorithm [23] through replacing its error function with a new

function defined to capture the nature of multi-instance learning, that is, the labels of the training bags instead of

that of the training instances are known. Experiments on the drug activity prediction data, which is the only real-

world benchmark test data for multi-instance learning at present, and some artificial benchmark multi-instance

data, show that the results obtained by Backpropagation-MIP are comparable to that of some well-established

multi-instance methods.

The rest of this paper is organized as follows. In Section 2, the drug activity prediction problem is briefly

introduced. In Section 3, previous works on multi-instance learning are reviewed. In Section 4,

Backpropagation-MIP is presented. In Section 5, experiments of Backpropagation-MIP on the real-world and

artificial data are reported. Finally in Section 6, the main contribution of this paper is summarized and several

issues for future work are indicated.

2. Drug Activity Prediction

Most drugs are small molecules working by binding to larger protein molecules such as enzymes and cell-

surface receptors. The potency of a drug is determined by the degree of binding. For molecules qualified to

make a drug, one of its low-energy shapes could tightly bind to the target area. While for molecules unqualified

to make a drug, none of its low-energy shapes could tightly bind to the target area.

In the middle of 1990’s, Dietterich et al. [9] investigated the problem of drug activity prediction. The goal

was to endow learning systems with the ability of predicting that whether a new molecule was qualified to make

some drug, through analyzing a collection of known molecules. The main difficulty of this problem is that each

molecule may have many alternative low-energy shapes, as illustrated in Fig. 1. But biochemists only know that

whether a molecule is qualified to make a drug or not, instead of knowing that which of its alternative low-

energy shapes responses for the qualification.

rotated

Fig. 1. The shape of a molecule changes as it rotates an internal bond

3

An intuitive solution is to use supervised learning algorithms by regarding all the low-energy shapes of the

molecules qualified to make the drug as positive training examples, while regarding all the low-energy shapes of

the molecules unqualified to make the drug as negative training examples. However, as shown by Dietterich et

al. [9], such a method can hardly work because there may be a great many of false positive examples.

In order to solve this problem, Dietterich et al. [9] regarded each molecule as a bag, and regarded the

alternative low-energy shapes of the molecule as the instances in the bag, thereby formulated multi-instance

learning. In order to represent the shapes, the molecule was placed in a standard position and orientation and

then a set of 162 rays emanating from the origin was constructed so that the molecular surface was sampled

approximately uniformly, as illustrated in Fig. 2. There were also four features that represented the position of

an oxygen atom on the molecular surface. Therefore each instance in the bags was represented by a 166-

dimensional numerical feature vector.

Based on such a representation, Dietterich et al. [9] proposed three Axis-Parallel Rectangle (abbreviated as

APR) algorithms, which attempts to search for appropriate axis-parallel rectangles constructed by the

conjunction of the features. Their experiments showed that the iterated-discrim APR algorithm achieves the best

result on the Musk data, which is the only real-world benchmark test data for multi-instance learning until now,

while the performance of popular supervised learning algorithms such as C4.5 decision tree and

Backpropagation neural network is very poor. Note that Dietterich et al. [9] indicated that since the APR

algorithms were optimized to the Musk data, the performance of iterated-discrim APR might be the upper bound

for this data.

It should be mentioned that multi-instance problems do not emerge suddenly from drug activity prediction.

In fact, they extensively exist in real-world applications [14, 24]. But unfortunately, machine learning

community has not paid special attention to such kinds of problems until Dietterich et al. [9].

3. Previous Works Review

Long and Tan [15] initiated the investigation of the PAC-learnability of axis-parallel rectangles under the multi-

instance learning framework. Resorting to P-concept [13], they showed that if the instances in the bags are

x1

x2

x3
x4

x5

x6

x7

x8

Fig. 2. The ray-based representation of the molecular shape

4

independently drawn from product distribution, then the APR is PAC-learnable. They also described a

polynomial-time theoretical algorithm. Auer et al. [3] showed that if the instances in the bags are not

independent then APR learning under the multi-instance learning framework is NP-hard. Moreover, they

presented a theoretical algorithm that does not require product distribution but with smaller sample complexity

than that of Long and Tan’s algorithm. This theoretical algorithm was transformed to a practical algorithm

named MULTINST later [2]. Blum and Kalai [5] described a reduction from the problem of PAC-learning under

the multi-instance learning framework to PAC-learning with one-sided random classification noise. With the

help of Statistical-Query Model [12], they also presented a theoretical algorithm with smaller sample complexity

than that of Auer et al.’s algorithm. Goldman et al. [10] presented an efficient on-line agnostic multi-instance

learning algorithm for learning the class of constant-dimension geometric patterns, which tolerated both noise

and concept shift. Later, this algorithm was extended so that it could deal with real-valued output [11].

As reviewed above, theoretical machine learning community has contributed much to multi-instance

learning. But since most of their results are obtained under assumptions such as the number of instances in the

bags must be a constant, which is often not the case in real problems, those results are hard to be used directly in

real-world applications.

Fortunately, some practical algorithms for multi-instance learning have been presented by the applied

machine learning community, the most famous one of which is the Diverse Density algorithm proposed by

Maron and Lozano-Pérez [17]. Diverse density of a point in the feature space is defined in the way that the more

positive bags and the less negative instances near the point, the bigger the diverse density of the point. Thus the

learning task is transformed to search for a point in the feature space with the biggest diverse density. This

algorithm has been successfully applied to a series of tasks. The first is to learn a simple description of a person

from a series of images [17], where the images were regarded as bags while the sub-images sampled from an

image were regarded as the instances in the corresponding bag. For each image, if a specific person appeared

then the corresponding bag was positively labeled. Otherwise the bag was negatively labeled. The second task is

stock selection, i.e. selecting stocks perform well for fundamental reasons [17]. In this task, 100 stocks with the

highest return of each month were regarded as a positive bag, while 5 stocks with the lowest return were

regarded as a negative bag, where the stocks were regarded as instances. The third task is natural scene

classification [18], where the images were regarded as bags, while blobs [18] sampled from an image were

regarded as the instances in the corresponding bag. If the user was interested in a part of an image, such as a

waterfall, then the corresponding bag was positively labeled. Otherwise the bag was negatively labeled. More

recently, the Diverse Density algorithm was extended and applied to content-based image retrieval [26].

Wang and Zucker [25] extended k-nearest neighbor algorithm for multi-instance learning through adopting

Hausdorff distance. Two algorithms, i.e. Bayesian-kNN and Citation-kNN, were presented. Bayesian-kNN labels

a bag through analyzing its neighboring bags with Bayes theory. Citation-kNN borrows the notion of citation of

scientific references, which labels a bag through analyzing not only its neighboring bags but also the bags that

regard the concerned bag as a neighbor. Ruffo [22] presented a decision tree algorithm named Relic, which is

the multi-instance version of C4.5. Later, Chevaleyre and Zucker [6] derived ID3-MI and RIPPER-MI, which

are multi-instance version of decision tree algorithm ID3 and rule learning algorithm RIPPER, where the key is

5

a multiple-instance entropy and a multiple-instance coverage function respectively.

It is worth mentioning that Chevaleyre and Zucker [6] indicated that some tasks, such natural scene

classification, are quite different from drug activity prediction in nature. This is because that in drug activity

prediction, the instances of a bag are the alternative descriptions of the bag, which cannot appear simultaneously.

While in natural scene classification, the instances of a bag are the descriptions of different parts of the bag,

which should appear simultaneously. In order to distinguish those two situations, Chevaleyre and Zucker [6]

coined the term multi-part learning for cases where the instances are partial descriptions of the bags, keeping

the term multi-instance learning for cases where the instances are alternative descriptions of the bags. However,

they indicated that multi-part problems could be solved with multi-instance learning algorithms [6].

In the early years of the research of multi-instance learning, most works are on multi-instance classification

with discrete-valued outputs. Recently, multi-instance regression with real-valued outputs begins to attract the

attention of some researchers. Ray and Page [20] showed that the general formulation of the multi-instance

regression task is NP-hard, and proposed an EM-based multi-instance regression algorithm. Amar et al. [1]

extended the Diverse Density algorithm for multi-instance regression. Moreover, they designed some method

for artificially generating multi-regression data. Their data sets are available from http://www.cs.wustl.edu/~sg/

multi-inst-data/.

Multi-instance learning has even attracted the attention of the Inductive Logic Programming community. De

Raedt [8] showed that multi-instance problems could be regarded as a bias on inductive logic programming. He

also suggested that the multi-instance paradigm could be the key between the propositional and relational

representations, being more expressive than the former, and much easier to learn than the latter. Zucker and

Ganascia [28, 29] presented REPEAT, an ILP system based on an ingenious bias which firstly reformulates the

relational examples in a multi-instance database, and then induces the final hypothesis with a multi-instance

learner.

It is worth noting that when Dietterich et al. [9] coined the term multi-instance learning, they indicated that a

particular interesting issue in this area is to design multi-instance modifications for decision trees, neural

networks, and other popular machine learning algorithms. During recent years, multi-instance version of

decision trees [6, 22], rule learning algorithms [6], and lazy learning algorithms [25], have already been

presented. However, designing neural networks for multi-instance learning is still an open problem until now.

4. Backpropagation-MIP

Suppose the training set is composed of N bags, i.e. {B1, B2, …, BN}, the i-th bag is composed of Mi instances,

i.e. {Bi1, Bi2, …,
iiMB }, each instance is a p-dimensional feature vector, e.g. the j-th instance of the i-th bag is

[Bij1, Bij2, …, Bijp]T. The desired output of a positive training bag is 1, while that of a negative training bag is 0.

Now suppose a neural network with p input units and one output unit is used to learn from the training set.

Since the goal of multi-instance learning is to predict the labels of unseen bags, the global error of the network

on the training set could be defined as:

1

N

i
i

E E
=

=∑ (1)

6

where Ei is the error of the network on Bi, which could be defined as:

2

1

1 max
2 j

i ij ij M
E o d

≤ ≤

 = − 
 

(2)

where oij is the actual output of the network on Bij, di is the desired output of Bi.

Eq.(2) means that if at least one instance of a positive training bag is perfectly predicted as positive, or all the

instances of a negative bag are perfectly predicted as negative, then the error on the concerned bag is zero and

the weights of the network will not be updated. Otherwise the weights will be updated according to the error on

the instance whose corresponding actual output is the maximal among all the instances in the bag. Note that

such an instance is the most easy to be predicted as positive for a positive bag, while is the most difficult to be

predicted as negative for a negative bag. It seems that this sets a low burden on producing a positive output but a

strong burden on producing a negative output. However, as Amar et al. [1] indicated, the value of a bag is fully

determined by its instance with the maximal output, nevertheless how many real positive or negative instances

in the bag. Therefore, in fact the burden on producing a positive or negative output is not unbalanced.

Thus, the global error of the network on the training set could be written as:

2

11 1

1 max
2 j

N N

i ij ij Mi i
E E o d

≤ ≤= =

 = = − 
 ∑ ∑ (3)

For comparison, if the Backpropagation algorithm is directly used then the global error should be:

()2

1 1 1 1 1

1
2

i iM MN N N

i ij ij i
i i j i j

E E E o d
= = = = =

= = = −∑ ∑∑ ∑∑ (4)

Note that the error function shown as Eq.(4) is defined at the level of training instances, while the one shown

as Eq.(3) is defined at the level of training bags. The main difference in their appearances is that Eq.(3) replaces

the second summation term of Eq.(4) with some terms incorporating the characteristics of multi-instance

learning, i.e. a positive bag contains at least one positive instance while a negative bag contains no positive

instance. It is also worth noting that the gradient direction derived from Eq.(3) and that derived from Eq.(4) are

quite different. In other words, the gradient defined at the level of training bags and that defined at the level of

training instances are different. We believe that this explains Dietterich et al.’s observation that Backpropagation

could not work well on multi-instance problem [9].

With the error function shown as Eq.(3), the training process of Backpropagation-MIP could be easily

derived because it is almost identical to the Backpropagation algorithm except that in the latter the weights are

updated for each training instance, but in the former the weights are updated for each training bag. In detail, in

each training epoch of Backpropagation-MIP, the training bags are fed to the network one by one. For bag Bi, if

it has been correctly predicted then no weight in the network is changed. Otherwise the weights are modified

according to the error on the instance whose corresponding actual output is the maximal in Bi. After that, Bi,j+1 is

fed to the network and the training process is iterated until the global error E decreases to a threshold or the

7

number of training epochs increases to a threshold.

In short, Backpropagation modifies networks according to training instances, while Backpropagation-MIP

Modifies networks according to training bags. In this way, Backpropagation-MIP captures the nature of multi-

instance learning where the labels of the training bags instead of that of the training instances are known.

Note that in training a Backpropagation-MIP network, the desired outputs of the bags, i.e. 1 for positive

while 0 for negative, can be replaced with 0.9 for positive while 0.1 for negative, which is a trick for speeding

up the training process [21]. When a trained Backpropagation-MIP network is used in prediction, a bag is

positively labeled if and only if the output of the network on at least one of its instances is not less than 0.5.

5. Experiments

5.1 Musk data sets

The Musk data is the only real-world benchmark test data for multi-instance learning at present. The data is

generated by Dietterich et al. in the way described in Section 2. There are two data sets, both of which are

publicly available from UCI Machine Learning Repository [4]. Information of those two data sets is

summarized in Table 1. Note that there are some irrelevant features and all the instances are unique [9].

Feedforward neural networks with one output unit, one hidden layer, and 166 input units each corresponds to

a dimension of the 166-dimensional feature vectors, are trained with the Backpropagation-MIP algorithm. The

activation functions of the functional units are Sigmoid. The learning rate is set to 0.05. The number of hidden

units varies from 20 to 100 with an interval of 20, while the number of training epochs varies from 50 to 1,000

with an interval of 50.

Leave-one-out test is performed on both data sets. In detail, one bag is used to test while the others are used

to train a neural network. Such a process is repeated in the way that each bag in the data set has been used as the

test bag once. In other words, the number of neural networks trained for each kind of configuration, i.e. the

number of hidden units and training epochs, equals to the number of bags in the data set. The final result for

each kind of configuration is the average result of the neural networks trained for the configuration.

The curves of the predictive accuracy on Musk1 and Musk2 changes as the number of training epoch

increasing are depicted in Fig. 3 and Fig. 4 respectively.

Fig. 3 and Fig. 4 show that the number of hidden units does not significantly affect the predictive accuracy

of the Backpropagation-MIP networks, while the number of training epoch significantly affects the predictive

accuracy. In fact, there is an obvious trend that as the number of training epoch increasing, the predictive

accuracy of the networks also increases. Due to the limitation of computational costs, at present we have only

Table 1. Musk data (72 molecules are shared in both data sets)

bags instances per bag
data set dim.

total musk non-musk
instances

min max ave.
Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

8

trained the networks to 1,000 epochs. But we believe that if the networks were trained with more epochs, the

predictive accuracy could be further improved.

In Fig.3 and Fig.4, the best performance of Backpropagation-MIP were 83.7% on Musk1 and 80.4% on

Musk2, both were obtained by the networks with 80 hidden units and 950 training epochs. Table 2 compares the

results with those reported in the literatures. Note that no standard deviation is shown in Table 2 because most of

the results are obtained using leave-one-out test and there is no variation for this test method although usually

the difference between the leave-one-out and the 10-fold is not significant [25].

Table 2 shows that, Backpropagation-MIP is significantly better than MULTINST [2], and is comparable to

Relic [22] on Musk1; it is significantly better than RIPPER-MI [6] and GFS elim-count APR [9], and is

comparable to GFS elim-kde APR [9] on Musk2.

Note that although Backpropagation-MIP is only better than some instead of all the well-established multi-

instance learning methods on predictive accuracy, it has its own advantages. For example, Dietterich et al.’s

APR algorithms [9] were specially designed for the Musk data, while Backpropagation-MIP is a general

algorithm so that its applicability is better than that of the APR algorithms. Wang and Zucker’s extended kNN

50%

60%

70%

80%

90%

50 150 250 350 450 550 650 750 850 950

training epoch

pr
ed

ic
tiv

e
ac

cu
ra

cy 20hu

40hu

60hu

80hu

100hu

Fig. 3. The predictive accuracy on Musk1 changes as the number of training epoch increasing

60%

65%

70%

75%

80%

85%

50 150 250 350 450 550 650 750 850 950

training epoch

pr
ed

ic
tiv

e
ac

cu
ra

cy 20hu

40hu

60hu

80hu

100hu

Fig. 4. The predictive accuracy on Musk2 changes as the number of training epoch increasing

9

algorithms [25] are lazy learning methods requiring much time cost for iterative processes on prediction, while

the time cost of Backpropagation-MIP on prediction is trivial. Maron and Lozano-Pérez’s Diverse Density

algorithm [17] employed some feature selection mechanism, while Backpropagation-MIP has not performed

feature selection and we believe that its performance could be further improved if appropriate feature selection

mechanism is used. More important, Backpropagation-MIP is easy to be adapted for multi-instance regression

problems.

Table 2 also indicates that the performance of all the multi-instance learning methods is better than that of

Backpropagation and C4.5, which is especially obvious on Musk2 that is more difficult to learn than Musk1.

This observation supports Dietterich et al.’s claim [9] that traditional supervised learning methods can hardly

work well on multi-instance problems because they have not incorporated the characteristics of multi-instance

learning.

5.2 Artificial data sets

Prior research performed under multi-instance learning is for classification. However, binding affinity between

molecules and receptors is quantitative, borne out in quantities such as the energy released by the molecule-

receptor pair upon binding and hence a real-valued label of binding strength is preferable. Fortunately, Amar et

al. [1] presented a method for creating artificial multi-instance data. This method generates an artificial receptor

at first. Then, artificial molecules with several instances per bag are generated, with each feature value

considered as the distance from the origin to the molecular surface when all molecules are in the same

orientation. Each feature has a scale factor to represent its importance in the binding process. The binding

energies between the artificial molecules and receptor are calculated based on the Lennard-Jones potential for

intermolecular interactions.

The artificial data sets are named as LJ-r.f.s where r is the number of relevant features, f is the number of

features, and s is the number of different scale factors used for the relevant features. To partially mimic the Musk

data, some data sets only use labels that are not near 1/2 (indicated by the ‘S’ suffix) and all scale factors for the

Table 2. Comparison of the predictive accuracy on the Musk data

algorithm Musk1
%correct algorithm Musk2

%correct

iterated-discrim APR [9] 92.4 iterated-discrim APR [9] 89.2
Citation-kNN [25] 92.4 Relic [22] 87.3
GFS elim-kde APR [9] 91.3 Citation-kNN [25] 86.3
GFS elim-count APR [9] 90.2 MULTINST [2] 84.0
Bayesian-kNN [25] 90.2 Diverse Density [17] 82.5
Diverse Density [17] 88.9 Bayesian-kNN [25] 82.4
RIPPER-MI [6] 88.0 Backpropagation-MIP 80.4
Backpropagation-MIP 83.7 GFS elim-kde APR [9] 80.4
Relic [22] 83.7 RIPPER-MI [6] 77.0
MULTINST [2] 76.7 GFS elim-count APR [9] 75.5

Backpropagation [9] 75.0 Backpropagation [9] 67.7
C4.5 [9] 68.5 C4.5 [9] 58.8

10

relevant features are randomly selected between [0.9, 1]. Note that these data sets are mainly designed for multi-

instance regression, but they can also be used for multi-instance classification through rounding the real-valued

label to 0 or 1.

In this paper, four artificial data sets, i.e. LJ-160.166.1, LJ-160.166.1-S, LJ-80.166.1, and LJ-80.166.1-S, are

used. Each data set contains 92 bags. Feedforward neural networks with one output unit, one hidden layer with

80 units, and 166 input units each corresponds to a dimension of the 166-dimensional feature vectors, are trained

with the Backpropagation-MIP algorithm. The activation functions of the functional units are Sigmoid. The

learning rate is set to 0.05. The number of training epochs varies from 50 to 500 with an interval of 50.

Leave-one-out test is performed on these data sets. The curves of the predictive accuracy changes as the

number of training epoch increasing are depicted in Fig. 5.

Fig. 5 shows an obvious trend that as the number of training epoch increasing, the predictive accuracy of the

networks also increases. The best performance of Backpropagation-MIP in Fig.5 is compared with those

reported in the literature [1], as shown in Table 3 where both the predictive error and squared loss are reported.

Table 3 shows that, although the performance of Backpropagation-MIP is worse than that of Citation-kNN

[25], it is significantly better than that of the most famous multi-instance learning algorithm, i.e. Diverse

Density [17], on LJ-160.166.1 and LJ-80.166.1-S. This not only shows the effectiveness of Backpropagation-

MIP in multi-instance regression, but also suggests that the rank of Backpropagation-MIP among multi-instance

learning methods may be better than that was shown in Table 2.

50%

60%

70%

80%

90%

50 100 150 200 250 300 350 400 450 500

training epoch

pr
ed

ic
tiv

e
ac

cu
ra

cy LJ-160.166.1

LJ-160.166.1-S

LJ-80.166.1

LJ-80.166.1-S

Fig. 5. The predictive accuracy on artificial data sets changes as the number of training epoch increasing

Table 3. Comparison of the predictive error and squared loss on the artificial data sets

Backpropagation-MIP Diverse Density Citation-kNN
data

%err loss %err loss %err loss

LJ-160.166.1 16.3 0.0398 23.9 0.0852 4.3 0.0014
LJ-160.166.1-S 18.5 0.0731 0.0 0.0052 0.0 0.0022
LJ-80.166.1 18.5 0.0487 N/A N/A 8.6 0.0109
LJ-80.166.1-S 18.5 0.0752 53.3 0.116 0.0 0.0025

11

6. Conclusion and Future Work

In this paper, a neural network algorithm named Backpropagation-MIP, which is the multi-instance version of

Backpropagation, is proposed. Through employing a new error function, Backpropagation-MIP captures the

nature of multi-instance learning, i.e. the labels of the training bags instead of that of the training instances are

known. Experiments on both the real-world and artificial benchmark multi-instance data show that

Backpropagation-MIP achieves performance comparable to some well-established multi-instance learning

methods. This addresses the open problem raised by Dietterich et al. [9], that is, designing multi-instance

modifications for neural networks.

Maron [16] indicated that from the aspect of the ambiguity in the training sets, multi-instance learning should

be placed in somewhere between supervised learning, whose training sets are with no ambiguity, and

unsupervised learning, whose training sets are with maximal ambiguity. Since some popular supervised learning

algorithms could be adapted for multi-instance learning, such as some researchers’ works on decision trees [6,

22], rule learning algorithms [6], lazy learning algorithms [25], and our work on neural networks in this paper,

we believe that multi-instance learning should be placed more close to supervised learning than to unsupervised

learning.

An advantage of Backpropagation-MIP is that it is a general algorithm that has not been optimized toward

any data, which means that it could be easily applied to applications such as content-based image retrieval. Find

more real-world multi-instance problems and apply Backpropagation-MIP to them is another interesting issue

for future works. Note that when applying Backpropagation-MIP to real-world problems, it is not very feasible

to experimentally choose appropriate configurations, i.e. the number of hidden units and training epochs, to

achieve the best performance. Therefore an important work is to develop some mechanisms for estimating the

appropriate configuration of Backpropagation-MIP for concrete problems.

Moreover, since many algorithms working well on multi-instance problems, such as iterated-discrim APR [9]

and Diverse Density [17], have inbuilt feature selection schemes, it will be interesting to explore that whether

the performance of Backpropagation-MIP could be significantly improved with the help of feature selection.

Furthermore, recent research has shown that neural network ensemble could significantly improve the

generalization ability of neural network based learning systems, which has become a hot topic in both machine

learning and neural network communities [27]. So, it is interesting to see that whether better results could be

obtained with ensembles of Backpropagation-MIP networks.

Acknowledgements

The comments and suggestions from the anonymous reviewers greatly improved this paper. This research is

supported by the National Natural Science Foundation of China under Grant Number 60105004 and the

Innovative Investigator Project of the Natural Science Foundation of Jiangsu Province under Grant Number

BK2001406.

12

References

[1] R. A. Amar, D. R. Dooly, S. A. Goldman, and Q. Zhang. "Multiple-instance learning of real-valued data," in:

Proceedings of the 18th International Conference on Machine Learning, Williamstown, MA, pp.3-10, 2001.

[2] P. Auer. "On learning from multi-instance examples: empirical evaluation of a theoretical approach," in

Proceedings of the 14th International Conference on Machine Learning, Nashville, TN, pp.21-29, 1997.

[3] P. Auer, P. M. Long, and A. Srinivasan. "Approximating hyper-rectangles: learning and pseudo-random sets,"

Journal of Computer and System Sciences, vol.57, no.3, pp.376-388, 1998.

[4] C. Blake, E. Keogh, and C. J. Merz. "UCI repository of machine learning databases" [http://www.ics.uci.edu/

~mlearn/MLRepository.html], Department of Information and Computer Science, University of California,

Irvine, CA, 1998.

[5] A. Blum and A. Kalai. "A note on learning from multiple-instance examples," Machine Learning, vol.30,

no.1, pp.23-29, 1998.

[6] Y. Chevaleyre and J.-D. Zucker. "Solving multiple-instance and multiple-part learning problems with

decision trees and decision rules. Application to the mutagenesis Problem," in Lecture Notes in Artificial

Intelligence 2056, E. Stroulia and S. Matwin, Eds. Berlin: Springer, pp.204-214, 2001.

[7] Y. Chevaleyre and J.-D. Zucker. "A framework for learning rules from multiple instance data," in Lecture

Notes in Artificial Intelligence 2167, L. De Raedt and P. Flach, Eds. Berlin: Springer, pp.49-60, 2001.

[8] L. De Raedt. "Attribute-value learning versus inductive logic programming: the missing links," in Lecture

Notes in Artificial Intelligence 1446, D. Page, Ed. Berlin: Springer, pp.1-8, 1998.

[9] T. G. Dietterich, R. H. Lathrop, and T. Lozano-Pérez. "Solving the multiple-instance problem with axis-

parallel rectangles," Artificial Intelligence, vol.89, no.1-2, pp.31-71, 1997.

[10] S. A. Goldman, S. S. Kwek, and S. D. Scott. "Agnostic learning of geometric patterns," Journal of

Computer and System Sciences, vol.62, no.1, pp.123-151, 2001.

[11] S. A. Goldman and S. D. Scott. "Multiple-instance learning of real-valued geometric patterns," Technical

Report UNL-CSE-99-006, Department of Computer Science and Engineering, University of Nebraska,

Lincon, NE, 2000.

[12] M. Kearns. "Efficient noise-tolerant learning from statistical queries," in Proceedings of the 25th Annual

ACM Symposium on Theory of Computing, San Diego, CA, pp.392-401, 1993.

[13] M. J. Kearns and R. E. Schapire. "Efficient distribution-free learning of probabilistic concepts," Journal of

Computer and System Sciences, vol.48, no.3, pp.464-497, 1994.

[14] R. Lindsay, B. Buchanan, E. Feigenbaum E, and J. Lederberg. Applications of Artificial Intelligence to

Organic Chemistry: The DENDRAL Project, New York: McGraw-Hill, 1980.

[15] P. M. Long and L. Tan. "PAC learning axis-aligned rectangles with respect to product distributions from

multiple-instance examples," Machine Learning, vol.30, no.1, pp.7-21, 1998.

[16] O. Maron. "Learning from ambiguity," PhD dissertation, Department of Electrical Engineering and

Computer Science, MIT, Jun. 1998.

[17] O. Maron and T. Lozano-Pérez. "A framework for multiple-instance learning," in: Advances in Neural

Information Processing Systems 10, M. I. Jordan, M. J. Kearns, and S. A. Solla, Eds. Cambridge, MA: MIT

13

Press, pp.570-576, 1998.

[18] O. Maron and A. L. Ratan. "Multiple-instance learning for natural scene classification," in Proceedings of

the 15th International Conference on Machine Learning, Madison, WI, pp.341-349, 1998.

[19] T. M. Mitchell, Machine Learning, New York: McGraw-Hill, 1997.

[20] S. Ray and D. Page. "Multiple instance regression," in Proceedings of the 18th International Conference

on Machine Learning, Williamstown, MA, 2001.

[21] R. D. Reed and R. J. Marks II, Neural Smithing, Cambridge, MA: MIT Press, 1999.

[22] G. Ruffo. "Learning single and multiple instance decision tree for computer security applications," PhD

dissertation, Department of Computer Science, University of Turin, Torino, Italy, 2000.

[23] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error

propagation," in Parallel Distributed Processing: explorations in the microstructure of cognition, vol.1, D. E.

Rumelhart and J. L. McClelland, Eds. Cambridge, MA: MIT Press, pp.318-362, 1986.

[24] M. Sebag and C. Rouveirol. "Tractable induction and classification in first order logic," in Proceedings of

the 15th International Joint Conference on Artificial Intelligence, Nagoya, Japan, pp.888-893, 1997.

[25] J. Wang and J.-D. Zucker. "Solving the multiple-instance problem: a lazy learning approach," in

Proceedings of the 17th International Conference on Machine Learning, San Francisco, CA, pp.1119-1125,

2000.

[26] C. Yang and T. Lozano-Pérez. "Image database retrieval with multiple-instance learning techniques," in

Proceedings of the 16th International Conference on Data Engineering, San Diego, CA, pp.233-243, 2000.

[27] Z.-H. Zhou, J. Wu, and W. Tang. "Ensembling neural networks: many could be better than all, " Artificial

Intelligence, vol.137, no.1-2, pp.239-263, 2002.

[28] J.-D. Zucker and J.-G. Ganascia. "Changes of representation for efficient learning in structural domains," in

Proceedings of the 13th International Conference on Machine Learning, Bary, Italy, pp.543-551, 1996.

[29] J.-D. Zucker and J.-G. Ganascia. "Learning structurally indeterminate clauses," in Lecture Notes in

Artificial Intelligence 1446, D. Page, Ed. Berlin: Springer, pp.235-244, 1998.

