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Variational Label Enhancement for
Instance-Dependent Partial Label Learning

Ning Xu, Member, IEEE, Congyu Qiao, Yuchen Zhao, Xin Geng∗, Senior Member, IEEE,
and Min-Ling Zhang, Senior Member, IEEE

Abstract—Partial label learning (PLL) is a form of weakly supervised learning, where each training example is linked to a set of candidate
labels, among which only one label is correct. Most existing PLL approaches assume that the incorrect labels in each training example
are randomly picked as the candidate labels. However, in practice, this assumption may not hold true, as the candidate labels are often
instance-dependent. In this paper, we address the instance-dependent PLL problem and assume that each example is associated with a
latent label distribution where the incorrect label with a high degree is more likely to be annotated as a candidate label. Motivated by this
consideration, we propose two methods VALEN and MILEN, which train the predictive model via utilizing the latent label distributions
recovered by the label enhancement process. Specifically, VALEN recovers the latent label distributions via inferring the variational
posterior density parameterized by an inference model with the deduced evidence lower bound. MILEN recovers the latent label
distribution by adopting the variational approximation to bound the mutual information among the latent label distribution, observed labels
and augmented instances. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed methods.

Index Terms—Label enhancement, partial-label learning, instance-dependent partial-label learning.
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1 INTRODUCTION

PARTIAL label learning (PLL) deals with the problem where
each training example is associated with a set of candidate

labels, among which only one label is valid [5], [7], [50]. Due to
the difficulty in collecting exactly labeled data in many real-world
scenarios, PLL leverages inexact supervision instead of exact labels.
The need to learn from the inexact supervision leads to a wide
range of applications for PLL techniques, such as web mining [30],
multimedia content analysis [4], [37], ecoinformatics [29], [36],
etc.

To accomplish the task of learning from partial label data,
many approaches have been proposed. Identification-based PLL
approaches [5], [21], [29], [33], [50] regard the ground-truth
label as a latent variable and try to identify it. Average-based
approaches [7], [20], [53] treat all the candidate labels equally and
average the modeling outputs as the prediction. For confidence-
based approaches [10], [44], [55], the confidence of each label
is estimated instead of identifying the ground-truth label. These
approaches always adopt the randomly picked candidate labels
to corrupt benchmark data into partially labeled versions despite
having no explicit generation process of candidate label sets. To
depict the instance-independent generation process of candidate
label sets, Feng [11] proposes a statistical model and deduces a risk-
consistent method and a classifier-consistent method. Under the
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same generation process, another classifier-consistent risk estimator
is proposed for deep model and stochastic optimizers [31].

The previous methods assume that the candidate labels are
randomly sampled with the uniform generating procedure [11],
[31], which is commonly adopted to corrupt benchmark datasets
into partially labeled versions in their experiments. However, the
candidate labels are always instance-dependent (feature-dependent)
in practice as the incorrect labels related to the feature are more
likely to be picked as the candidate label set for each instance.
These methods usually do not perform as well as expected due to
the unrealistic assumption of the generating procedure of candidate
label sets.

In this paper, we consider instance-dependent PLL and assume
that each instance in PLL is associated with a latent label
distribution [14], [43], [46] constituted by the real number of
each label, representing the degree to each label describing the
feature. Then, the incorrect label with a high degree in the latent
label distribution is more likely to be annotated as the candidate
label. For example, the candidate label set of the handwritten
digits in Figure 1(a) contains “1”, “3” and “5”, where “1” and “3”
are not ground-truth but selected as candidate labels due to their
high degrees in the latent label distribution of the instance. The
object in Figure 1(b) is annotated with “bird” and “airplane” as
the degrees of these two labels are much higher than others in the
label distribution. The intrinsic ambiguity increases the difficulty
of annotating, which leads to the result that annotators pick the
candidate labels with high degrees in the latent label distribution of
each instance instead of annotating the ground-truth label directly
in PLL. Therefore, the latent label distribution is the essential
labeling information in partially labeled examples and worth being
leveraged for predictive model training.

Motivated by the above consideration, we deal with the PLL
problem from two aspects. First, we enhance the labeling infor-
mation by recovering the latent label distribution for each training
example as a label enhancement process [43], [46]. Second, we run
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(a) Handwritten digits in MNIST [26]
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Fig. 1. The examples about the latent label distributions for partial label learning. The candidate labels are in the box and the red one is valid.

label enhancement and train the predictive model with recovered
label distributions iteratively. Given that the label distribution for
each example is latent and the data exhibits high dimensionality,
calculating the exact posterior density of the label distribution
becomes intractable. This complexity arises from the latent nature
of the label distributions, which are not directly observable and must
be inferred from the data, and the high-dimensional space of the
data, which significantly increases the computational complexity
and resource requirements for exact inference. As a result, exact
computation of the posterior density is not feasible, necessitating
the use of approximation methods such as variational inference to
estimate the posterior distribution in a computationally efficient
manner. We could approximate the true posterior distribution of
a model’s latent variables given observed data with a simpler,
parameterized family of distributions by choosing a distribution
from this family (the variational distribution) that is as close as
possible to the true posterior distribution.

The proposed method named VALEN, i.e., VAriational-
inference-based Label ENhancement for instance-dependent partial
label learning, uses the candidate labels to initialize the pre-
dictive model in the warm-up training stage, then recovers the
latent label distributions via inferring the variational posterior
density parameterized by an inference model with the deduced
evidence lower bound, and trains the predictive model with a
risk estimator by leveraging the candidate labels as well as the
label distributions. In addition, by adopting the data augmentation
on image datasets, MILEN, i.e., variational-Mutual-Information-
based Label ENhancement for instance-dependent partial label
learning is proposed to leverage the mutual information in the label
enhancement process. During the label enhancement process, the
latent label distribution is estimated by adopting the variational
approximation to bound the mutual information among the latent
label distribution, observed labels and augmented instances with
data augmentation. Our contributions can be summarized as
follows:

• We for the first time consider the instance-dependent PLL
and assume that each partially labeled example is associated
with a latent label distribution, which is the essential labeling
information and worth being recovered for predictive model
training.

• We propose two methods to recover the latent label distribution
for instance-dependent PLL. VALEN infers the posterior
density of the latent label distribution via deducing the
evidence lower bound for the approximate Dirichlet density, in
which the topological information and the features extracted
from the predictive model are leveraged. MILEN recovers
the latent label distribution by preserving the label-relevant

information while discarding the label-irrelevant information,
in which the mutual information among the augmented data
is leveraged.

• We train the predictive model with a proposed empirical
risk estimator by leveraging the candidate labels as well as
the label distributions. We iteratively recover the latent label
distributions and train the predictive model in every epoch.
After the network has been fully trained, the predictive model
can perform predictions for future test examples alone.

Experiments on the corrupted benchmark datasets and real-world
PLL datasets validate the effectiveness of the proposed method.

Preliminary results of this paper have been previously presented
in a shorter conference version [45]. However, in that version,
only the variational lower bound was utilized to recover label
distributions. In this extended paper, we aim to further investigate
the mutual information and propose an alternative method that
incorporates label enhancement and classifier training iteratively in
each epoch. This new method takes into account data augmentation
from the perspective of mutual information. Additionally, we
have included more datasets and compared them with additional
algorithms in our experiments. Furthermore, we have conducted
an active learning experiment on instance-dependent partial label
learning datasets to demonstrate the classifier could be improved
with human interaction.

The rest of this paper is organized as follows. In Section 2, we
provide a concise review and discussion of related work in the field.
Section 3 presents the technical details of the proposed methods.
This includes a comprehensive explanation of the methods and their
implementation. In Section 4, we present the experimental results
and provide further analysis and insights based on these results.
Finally, in Section 5, we conclude this paper by summarizing the
key findings and contributions and discussing potential directions
for future research.

2 RELATED WORK

As discussed in Section 1, the supervision information conveyed
by partially labeled training examples is implicit due to the hidden
ground-truth label within the candidate label set. Consequently,
partial label learning can be considered as a learning framework
with weak supervision [22], where the labeling information is
implicitly provided. The primary approach for addressing partial
label learning is disambiguation, which involves determining the
ground-truth label from the candidate label set associated with
each training example. Existing strategies for disambiguation
include identification-based and averaging-based approaches. In
identification-based disambiguation, the ground-truth label is
treated as a latent variable and identified during the learning
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process [5], [21], [29], [33], [50]. On the other hand, averaging-
based disambiguation treats all candidate labels equally and makes
predictions by averaging the model’s outputs [7], [20], [53].

Many existing algorithms attempt to adapt common learn-
ing techniques to handle partial label data and accomplish the
learning task. For maximum likelihood techniques, the likelihood
of observing each partially labeled training example is defined
over its candidate label set rather than the unknown ground-truth
label [21], [29]. K-nearest neighbor techniques determine the
class label of unseen instances by voting among the candidate
labels of its neighboring examples [20], [53]. Maximum margin
techniques define classification margins over the partially labeled
training examples based on discriminative modeling outputs from
candidate labels and non-candidate labels [33], [50]. Boosting
techniques update the weight of each partially labeled training
example and the confidence of candidate labels in each boosting
round [36]. Disambiguation-free strategies estimate the generalized
description degree using a graph Laplacian and perform multi-
output regression [44]. The confidence of each candidate label is
estimated by leveraging the manifold structure of the feature space
[55]. However, these methods primarily focus on estimating soft
labeling information and training predictive models in separate
stages, without considering the feedback from the predictive
models.

The aforementioned approaches addressed the problem in
specific, low-efficiency manners, which were not compatible with
high-efficient stochastic optimization. To tackle large-scale datasets,
recent works have employed deep networks with an entropy-based
regularizer to maximize the margin between potentially correct
labels and unlikely ones [49]. Another approach proposed by [31]
introduced a classifier-consistent risk estimator and a progressive
identification method, which are compatible with deep models
and stochastic optimizers. [11] presented a statistical model to
describe the generation process of candidate label sets, leading
to the development of risk-consistent and classifier-consistent
methods. In the work by [40], label-specific sampling probabilities
of candidate label sets were considered, and leveraged weight
loss functions were proposed to address the partial label learning
problem. [52] differentiated the true label from the candidate set
by utilizing class activation values. [39] introduced contrastive
representation learning and performed disambiguation based on
prototypes. Additionally, [41] designed a regularization loss by
revisiting the manifold consistency. These recent approaches aimed
to enhance the efficiency and effectiveness of partial label learning.

Previous methods have typically assumed that candidate labels
are randomly sampled using a uniform generating procedure.
However, in practical scenarios, candidate labels are often instance-
dependent or feature-dependent. This means that the incorrect
labels related to a specific feature are more likely to be selected as
the candidate label set for each instance. In this paper, we focus
on instance-dependent partial label learning, where we assume that
each instance is associated with a latent label distribution [9], [14],
[43], [46]. This label distribution consists of real-value numbers for
each label, representing the degree to which each label describes
the feature. Label enhancement (LE) methods [15], [43], [46] are
employed to recover the latent label distribution from observed
logical labels. The recovered label distribution serves as a pseudo
label [27], [35].

3 PROPOSED METHODS

First of all, we briefly introduce some necessary notations. Let X =
Rq be the q-dimensional instance space and Y = {y1, y2, ..., yc}
be the label space with c class labels. Given the PLL training set
D = {(xi, Si)|1 ≤ i ≤ n} where xi denotes the q-dimensional
instance and Si ⊆ Y denotes the candidate label set associated
with xi. Note that Si contains the correct label yxi of xi and the
task of PLL is to induce a multi-class classifier f : X 7→ Y from
D. For each PLL training example (xi, Si), we use the logical
label vector li = [ly1

i , l
y2

i , . . . , l
yc
i ]> ∈ {0, 1}c to represent

whether yj is the candidate label, i.e., lyji = 1 if yj ∈ Si,
otherwise lyji = 0. The label distribution of xi is denoted by
di = [dy1

i , d
y2

i , . . . , d
yc
i ]> ∈ [0, 1]c where

∑c
j=1 d

yj
i = 1. Then

L = [l1, l2, . . . , ln] and D = [d1,d2, . . . ,dn] represent the
logical label matrix and label distribution matrix, respectively. Let
zi denote the latent feature which is the latent representation of
observed instance xi. The representation captures the intrinsic
patterns and relationships within the instance, providing a more
meaningful dimension of information for the training. Then
Z = [z1, z2, . . . ,zn] represents the latent feature matrix. The
instance-dependent partial labels of xi are generated by the process
that the ground-truth label is selected as a partial label and each
incorrect label is selected as a partial label with a certain probability.

3.1 Overview

To address the instance-dependent partial label learning problem,
the proposed approaches, VALEN and MILEN, follow an iterative
process. They aim to recover the latent label distribution for each
example x and subsequently train the predictive model using the
recovered label distribution.

Before the main iterative process, a warm-up period is in-
troduced, as discussed in Subsection 3.2. During this phase, the
predictive model is trained using the PLL minimal loss [31]. This
warm-up period helps to establish a reasonable predictive model
before it starts fitting incorrect labels. Once the warm-up period
is completed, the features extracted from the predictive model are
utilized to recover the latent label distribution for each example,
thereby enhancing the overall performance of the partial label
learning process.

The details of the label enhancement process for instance-
dependent PLL are proposed in Subsection 3.3. VALEN recovers
the latent label distributions via inferring the variational posterior
density parameterized by an inference model with the deduced evi-
dence lower bound. Then VALEN derives the evidence lower bound
for optimizing the inference model, and the label distributions can
be generated from the variational posterior using this optimized
model. MILEN recovers the latent label distribution by adopting
the variational approximation to bound the mutual information
among the latent label distribution, observed labels, and augmented
instances with data augmentation. During the label enhancement
process, the primary objective is to maximize the preservation of
label-relevant information within the recovered label distribution
while discarding label-irrelevant information effectively.

In classifier training, the predictive model is trained by leverag-
ing the recovered label distributions and candidate labels with the
proposed empirical risk estimator in Subsection 3.4. We implement
label enhancement and classifier training iteratively in every epoch.
Once the models have been fully trained, the predictive model can
make predictions for future test instances independently.
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3.2 Warm-up Training
The predictive model θ is trained on partially labeled examples by
minimizing the PLL minimal loss function [31] defined as follows:

Lmin =
n∑
i=1

min
yj∈Si

`(f(xi), e
yj ), (1)

where ` is cross-entropy loss and eY = {eyj : yj ∈ Y} denotes
the standard canonical vector in Rc, i.e., the j-element in eyj
equals 1 and others equal 0. Similar to [31], the min operator in
Eq. (1) is replaced by using the current predictions for weighting
on the possible labels in warm-up training. Then we could extract
the feature φ of each x via using the predictive model.

3.3 Variational Label Enhancement
3.3.1 VALEN

We assume that the prior density p(d) is a Dirichlet with α̂, i.e.,
p (d) = Dir (d | α̂) where α̂ = [ε, ε, . . . , ε]> is a c-dimensional
vector with a minor value ε. Then we let the prior density p(D) be
the product of each Dirichlet

p(D) =
n∏
i=1

Dir(di|α̂). (2)

Similarly, the prior density p(z) is assumed to be a standard
Gaussian with mean µ̂ and standard deviation σ̂ where µ̂ =
[0, 0, . . . , 0] and σ̂ = [1, 1, . . . , 1]. The prior density for the entire
latent feature Z is then represented as the product of each Gaussian
distribution for each example zi

p(Z) =
n∏
i=1

Gau(zi|µ̂, σ̂). (3)

Next, we consider the topological information of the feature
space using the affinity graph G = (V,E,A). The vertex
set V corresponds to the feature vectors of each example and
contains n elements: V = φ1,φ2, . . . ,φn. The edge set E
corresponds to pairs of feature vectors that represent the rela-
tionships between different examples. Each edge is represented
as E = (φi,φj) | 1 ≤ i 6= j ≤ n. The sparse adjacency matrix
A is used to represent the edge connections in the graph, where
aij = 1 if φi is in the set N (φj), which contains the k-nearest
neighbors ofφj . The diagonal elements of A are set to 1 to indicate
self-connections.

We consider the topological information of the feature space,
which is represented by the affinity graph G = (V,E,A). Here,
the feature vector φi of each example could be extracted from the
predictive model θ in the current epoch, V = {φi | 1 ≤ i ≤ n}
denotes the vertex set V corresponds to the feature vectors of each
example, each edge is represented as E = {(φi,φj) | 1 ≤ i 6=
j ≤ n}, and a sparse adjacency matrix A = [aij ]n×n can be
obtained by

aij =

{
1 if φi ∈ N (φj)
0 otherwise , (4)

where N (φj) is the set for k-nearest neighbors of φj and the
diagonal elements of A are set to 1.

The goal of the VALEN is to approximate the posterior density
p(D,Z|L,Φ,A), where Φ, A, and L represent observed feature
matrix, adjacency matrix, and logical labels, respectively. Due to
computational complexity, the exact posterior density is challenging

to compute. To address this, the posterior density is decomposed
as

p(D,Z|L,Φ,A) = p(D|L,Φ,A)p(Z|D,Φ). (5)

Here, we assume that Z is independent of L and A when the
latent variable D is given in the condition, allowing us to remove
L and A from the conditional distribution p(Z|D,L,Φ,A). This
independence assumption simplifies the modeling process and
makes the inference more tractable.

The fixed-form density q(D|L,Φ,A) and q(Z|D,Φ) are
employed to approximate the true posterior p(D|L,Φ,A)
and p(Z|D,Φ) respectively. We let the approximate posterior
qw1

(D|L,Φ,A) be the product of each Dirichlet parameterized
by a vector αi = [α1

i , α
2
i , . . . , α

c
i ]
> and let the qw2

(Z|D,Φ)
be the product of each Gaussian parameterized by the mean
vector µi = [µ1

i , µ
2
i , . . . , µ

J
i ] and standard deviation vector

σi = [σ1
i , σ

2
i , . . . , σ

J
i ] where J is the dimension of the latent

feature Z:

qw1
(D | L,Φ,A) =

n∏
i=1

Dir (di|αi) , (6)

qw2
(Z|D,Φ) =

n∏
i=1

Gau(zi|µi,σi). (7)

Here, the parameters ∆ = [α1,α2, . . . ,αn] are out-
puts of the inference model parameterized by w1, which
is defined as a two-layer GCN [24] by GCN(L,Φ,A) =

Ã ReLU
(
ÃUW0

)
W1, with U = [Φ; L] and weights W0,

W1. Here Ã = Â−
1
2 AÂ−

1
2 is the symmetrically normalized

weight matrix where Â is the degree matrix of A. The parameters
Λ = [µ1,µ2, . . . ,µn,σ1,σ2, . . . ,σn] are outputs of a inference
model parameterized by w2, which is defined as a 4-hidden-layer
convolutional networks.

By employing Variational Bayes techniques, we can derive a
lower bound on the marginal likelihood of the model, ensuring
that the approximate posterior distribution qw(D,Z|L,Φ,A)
closely approximates the true posterior p(D,Z|L,Φ,A). Given
the logical label matrix L, feature matrix Φ, and the corresponding
A, the evidence lower bound (ELBO) can be derived as follows:

LELBO = Eqw(D,Z|L,Φ,A)[log p(Φ|D,Z)]

+ Eqw(D,Z|L,Φ,A)[log p(L,A|D)]

− KL[qw1
(D|L,Φ,A)||p(D)]

− KL[qw2
(Z|D,Φ)||p(Z)].

(8)

According to Eq. (2) and Eq. (6) , the first KL divergence in
Eq. (8) can be analytically calculated as follows:

KL (qw1
(D|L,Φ,A)|p(D)) =

n∑
i=1

(
log Γ(

c∑
j=1

αji )

−
c∑
j=1

log Γ(αji )− log Γ(c · ε) + c log Γ(ε)

+
c∑
j=1

(αji − ε)(ψ(αji )− ψ(
c∑
j=1

αji ))

)
,

(9)

where Γ(·) and ψ(·) are Gamma function and Digamma function,
respectively.
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According to Eq. (3) and Eq. (7), the second KL divergence in
Eq. (8) can be analytically calculated as follows:

KL(qw2
(Z|D,Φ)||p(Z)) =

n∑
i=1

J∑
j=1

(
1 + log((σji ))

−(µji )
2 − (σji )

2

)
.

(10)

As the first term in Eq. (8) is computationally intractable, we
employ the implicit reparameterization trick [12] to approximate
it using Monte Carlo (MC) estimation. p(φi|D,Z) is assumed to
be product of each Gaussian parameterized by the mean vector
µ̄

(m)
i = [µ̄

1(m)
i , µ̄

2(m)
i , . . . , µ̄

q(m)
i ] and standard deviation vector

σ̄i = [σ̄
1(m)
i , σ̄

2(m)
i , . . . , σ̄

q(m)
i ] which are computed from m-th

sampling D(m) and Z(m) with a 4-hidden-layer convolutional
network pη1(Φ|D,Z) parameterized by η1 where q is the
dimension of φ, then the first term of Eq. (8) can be calculated:

Eqw(D,Z|L,Φ,A)[log p(Φ|D,Z)] =
1

M

n∑
i

q∑
j

M∑
m(

− 1

2
log 2π − log σ̄

j(m)
i − (φji − µ̄

j(m)
i )2

2σ̄
j(m)
i

)
.

(11)

For the second term of Eq. (8), we decompose it as:

p(L | D) =
n∏
i=1

p (li | D) ,

p(A | D) =
n∏
i=1

n∏
j=1

p (aij | di,dj) ,

with p (aij = 1 | di,dj) = s
(
d>i dj

)
.

(12)

Here, the function s(·) refers to the logistic sigmoid function. Addi-
tionally, we assume that p (li|D) follows a multivariate Bernoulli
distribution with probabilities τi. To simplify the observation
model, we compute T(m) = [τ

(m)
1 , τ

(m)
2 , . . . , τ

(m)
n ] from the

m-th sampling of D(m) using a three-layer MLP parameterized by
η2. Consequently, we can calculate the second term of Eq. (8) as
follows:

Eqw(D,Z|L,Φ,A)[log pη2
(L,A|D)] =

1

M

M∑
m=1

(
tr
(

(I− L)
>

log
(
I−T(m)

))
+ tr

(
L> log T(m)

)
− ‖A− S

(
D(m)D(m)>

)
‖2F

)
.

(13)

It is worth mentioning that during the training process, we can use
only one Monte Carlo (MC) sample in Eq. (13), as suggested in
[23], [46]. This can significantly reduce the computational burden
and make the training more efficient.

Moreover, VALEN enhances the label enhancement process
by incorporating the compatibility loss, which ensures that the
reconstructed label distributions should not deviate significantly
from the estimated confidences ζ(xi) [11], [31] obtained from the
current prediction f(xi;θ):

Lo = − 1

n

n∑
i=1

c∑
j=1

ζj(xi) log d
yj
i , (14)

Algorithm 1 VALEN Algorithm
Input: The PLL training set D = {(xi, Si)}ni=1, epoch T and

iteration I;
1: Initialize the predictive model θ by warm-up training. The

observation model η = [η1,η2] and reference model w =
[w1,w2] are initialized with some initial values.

2: Extract the features Φ by using the predictive model θ after
warm-up training and then calculate A;

3: for t = 1, . . . , T do
4: Shuffle the training set D = {(xi, Si)}ni=1 into I mini-

batches;
5: for k = 1, . . . , I do
6: Obtain label distribution di corresponding to each

example xi by Eq. (6);
7: Update θ, w and η by forward computation and back-

propagation by fusing Eq. (16) and Eq. (28);
8: end for
9: end for

Output: The predictive model θ.

where

ζj(xi) =

{
fj(xi;θ)∑

yk∈Si
fk(xi;θ)

if yj ∈ Si
0 otherwise.

(15)

Now, we can straightforwardly derive the objective function for
label enhancement as

LLE = λLo − LELBO, (16)

where λ is a hyper-parameter. The label distribution matrix D is
sampled from q(D|L,Φ,A), i.e., di ∼ Dir(αi). Importantly, the
implicit reparameterization gradient [12] is employed, allowing the
gradients to be computed analytically in the backward pass. This
avoids the inversion of the standardization function and facilitates
efficient optimization during training.

Finally, VALEN trains the classifier in Subsection 3.4 via using
the recovered label distributions. The algorithmic description of
the VALEN is shown in Algorithm 1.

3.3.2 MILEN

In this subsection, we propose a novel label enhancement
approach for instance-dependent PLL named MILEN, which
leverages the mutual information [1], [17], [57] among aug-
mented data through data augmentation [8], [39]. Let A(x) =
{Augk(x)|1 ≤ k ≤ K} be the set of randomly augmented
instances, where Augk(x) denotes k-th random augmentation
of the original instance, and K denotes the number of aug-
mentations. The k-th augmented instance matrix is denoted by
XAugk = [Augk(x1),Augk(x2), . . . ,Augk(xn)], and the label
distribution matrix corresponding to XAugk is denoted by DAugk .
For convenience, let XAug0 denote the original instance X, and
DAug0 denote the latent label distribution matrix corresponding to
the original instance X.

Let I(X,Y) = H(X) − H(X|Y) denote the mutual
information, a Shannon entropy-based measure of relevant in-
formation between two random variables X and Y, where
H(X) = −

∫
dxp(x) log p(x) is the Shannon entropy for the

variable X, and H(X|Y) = −
∫

d(x,y)p(x,y) log p(x|y) is
the conditional entropy for X given Y. Also, let I(X,Y|Z) =
H(X|Z)−H(X|Y,Z) denote the conditional mutual information,



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

𝐃Aug0 𝐋Aug0𝚫Aug0 𝚲Aug0
Dirichlet Gaussian

Sample

𝐃Aug𝑘 𝐋Aug𝑘𝚫Aug𝑘 𝚲Aug𝑘

𝐗Aug0

𝐗Aug𝑘

𝐼(𝐃Aug0 , 𝐗Aug0) 𝐼(𝐃Aug0 , 𝐋Aug0)

𝐼(𝐃Aug𝑘 , 𝐗Aug𝑘) 𝐼(𝐃Aug𝑘 , 𝐋Aug𝑘)

𝐼(𝐃Aug𝑘 , 𝐃Aug0)

𝐼(𝐃Aug𝑘 , 𝐗Aug0|𝐗Aug𝑘)

ℒ𝑜

Sampling

Sampling Sample

ℒ𝑀𝐼

Dirichlet Gaussian

Fig. 2. An illustration of the optimization procedure in our MILEN approach, where the inference model κ and ν are respectively instantiated by MLPs
to recover the label distributions from the original training data and augmented training data.

a measure of relevant information between two random variables X
and Y given Z. According to the definition of mutual information,
the larger I(X,Y) is, the more relevant information in X is
provided by Y.

The framework of MILEN is illustrated in Fig 2. Firstly, we
consider the recovered label distribution in one augmentation.
As we mention in Section 1, a label with a high degree in the
latent label distribution is more likely to be annotated as the
candidate label. This suggests that the recovered label distribution
DAugk should be highly relevant to the logical label matrix LAugk

in one augmentation, i.e., DAugk should preserve label-relevant
information. Meanwhile, since the instance contains label-irrelevant
information, e.g. object detection from a complex background
image, the recovered label distribution DAugk should discard the
label-irrelevant information in the instance matrix XAugk .

In addition, we consider the recovered label distribution
between the original instance and its augmentations. Since the
instance matrix XAugk of all augmentation is augmented from
XAug0 , their corresponding latent label distributions should be
closely relevant. Besides, the recovered label distribution is
encouraged to contain augmentation-specific information.

Based on the above consideration and the definition of mu-
tual information, i.e., the larger I(X,Y) is, the more relevant
information in X is provided by Y, we have the following
optimization objective to estimate the latent label distributions
in each augmentation:

min
DAug0 ,DAug1 ,...,DAugk

K∑
k=0

[
− β1I(DAugk ,L)+

I(DAugk ,XAugk)
]

+
K∑
k=1

[
− β2I(DAugk ,DAug0)

+ I(DAugk ,XAug0 |XAugk)
]
.

(17)

Here, β1 and β2 are the hyperparameters that control the impor-
tance of the mutual information term.

For the first term of Eq. (17), we introduce the variational
approximation q(l|dAugk) to p(l|dAugk). Then by assuming that
the Markov chain L↔ XAugk ↔ DAugk holds, we can obtain an
upper bound on the first term of Eq. (17):

−β1I(DAugk ,L) ≤ −β1
∫

d(Augk(x), l, dAugk)

p(Augk(x), l)p(dAugk |Augk(x)) log q(l|dAugk).
(18)

MILEN assumes that

pκ(DAugk |XAugk) =
n∏
i=1

Dir(d
Augk
i |αAugk

i ), (19)

where the parameters ∆Augk = [α
Augk
1 ,α

Augk
2 , . . . ,α

Augk
n ] are

outputs of the model parameterized by κ, and

qν(L|DAugk) =
n∏
i=1

Gau(li|µ
Augk
i , I), (20)

where the parameters ΛAugk = [µ
Augk
1 ,µ

Augk
2 , . . . ,µ

Augk
n ] are

outputs of the model parameterized by ν. Note that the label
distribution matrix of augmented instances DAugk is sampled from
p(DAugk |XAugk), i.e., dAugk

i ∼ Dir(α
Augk
i ), where the implicit

reparameterization gradient [12] is also employed to allow the
gradients to be computed analytically in backward pass.

For the second term of Eq. (17), we also introduce the
variational approximation q(dAugk) to p(dAugk). Then we can
obtain an upper bound on the second term of Eq. (17):

I(DAugk ,XAugk) ≤
∫

d(Augk(x), dAugk)

p(Augk(x),dAugk) log
p(dAugk |Augk(x))

q(dAugk)
.

(21)

Here, to optimize Eq. (21), we assume that q(DAugk) =∏n
i=1Dir(d

Augk
i |α̂).
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For the third term of Eq. (17), we could define an infoNCE MI
estimator, following the formulation of [34],

− β2I(DAugk ,DAug0) ≤ −β2Î infoNCE(DAugk ,DAug0)

:= β2Ex∼p(x)
[
B(dAugk ,dAug0)−

Ex′∼p(x)

[
log
∑
x′

eB(d
Augk ,d′Aug0 )

]]
,

(22)

where B is a function to calculate the cosine similarity.
For the fourth term of Eq. (17), we optimize the upper bound

according to that the entropy is non-negative:

I(DAugk ,XAug0 |XAugk) = H(DAugk |XAugk)

−H(DAugk |XAug0 ,XAugk)

≤ H(DAugk |XAugk)

= −
∫

d(Augk(x), dAugk)p(Augk(x))

p(dAugk |Augk(x)) log p(dAugk |Augk(x)).

(23)

According to 18, 21, 22, 23, we can calculate the optimization
objective related to mutual information in 17 as follows:

LMI =
1

n

n∑
i=1

K∑
k=0

[1

2
β1‖µ

Augk
i − li‖22

+
(

log Γ(
c∑
j=1

α
j,Augk
i )−

c∑
j=1

log Γ(α
j,Augk
i )

− log Γ(c · ε) + c log Γ(ε)

+
c∑
j=1

(α
j,Augk
i − ε)(ψ(α

j,Augk
i )− ψ(

c∑
j=1

α
j,Augk
i ))

)]

− 1

n

n∑
i=1

K∑
k=1

[
β2 log

eB(d
Augk ,dAug0 )∑

x′ eB(d
Augk ,d′Aug0 )

+
(

log Γ(
c∑
j=1

α
j,Augk
i )−

c∑
j=1

log Γ(α
j,Augk
i )

+
c∑
j=1

(α
j,Augk
i − 1)(ψ(α

j,Augk
i )− ψ(

c∑
j=1

α
j,Augk
i ))

)]
.

(24)

Similar to VALEN, MILEN enforces the recovered label distri-
butions of each augmented data point not to be completely different
from the confidence ζ(Augk(xi)) [11], [31] estimated by current
prediction f(Augk(xi);θ):

LAug
o = − 1

n

n∑
i=1

c∑
j=1

K∑
k=0

ζj(Augk(xi)) log d
yj ,Augk
i , (25)

where

ζj(Augk(xi)) =

{
fj(Augk(xi);θ)∑

yr∈Si
fr(Augk(xi);θ)

if yj ∈ Si
0 otherwise.

(26)

Then, we can formulate the MILEN optimization objective LLE
as follows:

LLE = λLAug
o − LMI , (27)

where λ is a hyper-parameter.
Finally, MILEN trains the classifier in Subsection 3.4 by using

the recovered label distributions. The algorithmic description of
the MILEN is shown in Algorithm 2.

Algorithm 2 MILEN Algorithm
Input: The PLL training set D = {(xi, Si)}ni=1, epoch T and

iteration I;
1: Initialize the predictive model θ by warm-up training, the

mutual information models κ and ν;
2: for t = 1, . . . , T do
3: Augment training set D = {(xi, Si)}ni=1 into DAug =
{(A(xi), Si)}ni=1;

4: Shuffle augmented training set DAug = {(A(xi), Si)}ni=1

into B mini-batches;
5: for b = 1, . . . , B do
6: for k = 0, . . . ,K do
7: Obtain label distribution dAugk

i for each example
x

Augk
i in A(xi) by Eq. (19);

8: end for
9: Update θ, κ and ν by forward computation and back-

propagation by fusing Eq. (27) and Eq. (28);
10: end for
11: end for
Output: The predictive model θ.

3.4 Classifier Training

To train the predictive model, we minimize the following empirical
risk estimator by levering the recovered label distributions:

R̂V (f) =
1

n

n∑
i=1

 ∑
yj∈Si

d
yj
i∑

yj∈Si
d
yj
i

`(f(xi), e
yj )

 . (28)

Here we adopt the average value of di sampled by di ∼ Dir(αi).
We can use any deep neural network as the predictive model,
and then equip it with the VALEN or MILEN framework to deal
with PLL. VALEN trains the predictive model and updates the
label distributions in a principled end-to-end manner by fusing
the objective Eq. (16) and Eq. (28). Besides, MILEN trains the
predictive model and updates the label distributions in a principled
end-to-end manner by fusing the objective Eq. (27) and Eq. (28).

Let f̂V = minf∈F R̂V (f) be the empirical risk minimizer
and f? = minf∈F RV (f) be the optimal risk minimizer where
RV (f) is the risk estimator. Besides, we define the function space
Hyj for the label yj ∈ Y as

{
h : x 7→ fyj (x) | f ∈ F

}
. Let

Rn

(
Hyj

)
be the expected Rademacher complexity [2] of Hyj

with sample size n, then we have the following theorem.

Theorem 1. Assume the loss function `(f(x), eyj ) is L-Lipschitz
with respect to f(x)(0 < L <∞) for all yj ∈ Y and upper-
bounded by M , i.e., M = supx∈X ,f∈F,yj∈Y `(f(x), eyj ).
Then, for any δ > 0, with probability at least 1− δ,

R
(
f̂V
)
−R (f?) ≤ 4

√
2L

c∑
j=1

Rn

(
Hyj

)
+M

√
log 2

δ

2n
.

The proof of Theorem 1 is provided in Appendix. Theorem 1 shows
that the empirical risk minimizer fV converges to the optimal risk
minimizer f? as n → ∞ and Rn

(
Hyj

)
→ 0 for all parametric

models with a bounded norm. Note that we pre-limit the predictive
model f by clamping their output to [−A,A], and thus the loss
function will be bounded. In practice, with the assistance of Pytorch,
this operation is implemented by the torch.clamp function
applied to the last linear layer of our neural network. Then, we
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TABLE 1
Characteristic of the benchmark datasets.

Dataset #Train #Validation #Test #Features #Class Labels avg. #CLs
MNIST 54,000 6000 10,000 784 10 8.71

Fashion-MNIST 54,000 6000 10,000 784 10 3.46
Kuzushiji-MNIST 54,000 6000 10,000 784 10 3.87

CIFAR-10 45,000 5000 10,000 3,072 10 3.68
CIFAR-100 45,000 5000 10,000 3,072 100 4.64

TABLE 2
Characteristic of the real-world PLL datasets.

Dataset #Train #Validation #Test #Features #Class Labels avg. #CLs Task Domain
Lost 898 112 112 108 16 2.23 automatic face naming [7]

MSRCv2 1,406 176 176 48 23 3.16 object classification [29]
BirdSong 3,998 500 500 38 13 2.18 bird song classification [3]
Mirflickr 2224 278 278 48 23 3.16 web image classification [19]
Malagasy 4250 531 531 38 13 2.18 POS Tagging [13]

Soccer Player 13,978 1747 1747 279 171 2.09 automatic face naming [51]
Yahoo! News 18,393 2299 2299 163 219 1.91 automatic face naming [16]

prove that the loss function ` could be bounded byM = 2A+log c
as follows:

|`(f(xi),e
yj )| = | log

efj(xi)∑c
k=1 e

fk(xi)
|

= |fj(xi) + log
c∑

k=1

efk(xi)|

≤ A+ | log ceA|
= M

(29)

In this way, our theoretical analysis becomes more solid. Fortu-
nately, when we set A to a very large value (such as 1012, which is
larger than maxi,j fj(xi) in each epoch), the clamping operation
does not affect the whole algorithm, and the related experimental
results are unchanged with the same random seeds.

According to [32], we let the empirical risk with the Bayes class-
probability distribution p = [P (y1|x), P (y2|x), . . . , P (yc|x)]
be denoted by

R̂?V (f) =
1

n

n∑
i=1

c∑
j=1

P (yj |x)`(f(x, eyj )). (30)

Then, we have the following theorem:
Theorem 2. Suppose the loss function ` is bounded by M , i.e.,

M = supx∈X ,f∈F,yj∈Y `(f(x), y). Fix a hypothesis class F
of predictors f : X 7→ Rc, with induced class H ⊂ [0, 1]X of

functions h(x) =
∑
yj∈Si

d
yj
i∑

yj∈Si
d
yj
i

`(f(xi), e
yj ). Suppose

H has uniform covering numberNinf . Then for any δ ∈ (0, 1),
with probability at least 1− δ,

RV (f)− R̂V (f) ≤M
√
c · (E[||q − p||2])

+O

√V(f) ·
log Mn

δ

N
+

log Mn

δ

N

 ,
where MN = Ninf(

1
N ,H, 2n), V(f) is the empirical vari-

ance of the loss values, and q = d·l
d>l

is the estimated label
distribution normalized over candidate labels.

The proof of Theorem 2 is provided in Appendix. Theorem 2 shows
that the expected risk will decrease as the normalized estimated
label distribution q is approximate to the Bayes class-probability
distribution p.

4 EXPERIMENTS

4.1 Datasets
In our study, we evaluate the proposed method using five
well-established benchmark datasets including MNIST [26],
Kuzushiji-MNIST [6], Fashion-MNIST [42], CIFAR-10,
and CIFAR-100 [25].

We create partially labeled versions of the benchmark datasets
by manually corrupting the original clean labels. Firstly, the ground-
truth label of each example is selected into the corresponding
candidate label set. Then we introduce a flipping probability ξyji
for each incorrect label lyji corresponding to an example xi. The
flipping probability ξyji represents the probability that the incorrect
label lyji will be flipped to the candidate label during the corruption
process.

To synthesize the instance-dependent candidate labels, we
utilize the confidence predictions of a clean neural network θ̂,
which has been trained using the original clean labels [56].
Specifically, we calculate the flipping probability ξ

yj
i for each

incorrect label lyji as ξyji =
fj(xi;θ̂)

maxyj∈Ȳi
fj(xi;θ̂)

, where fj(xi; θ̂) is

the confidence prediction score of the clean neural network θ̂ for the
incorrect label lyji , and Ȳi represents the set of all incorrect labels
for the example xi. The detailed descriptions of these corrupted
benchmark datasets are provided in Table 1.

Additionally, we include seven real-world PLL datasets that
have been collected from various application domains. These
datasets cover a range of tasks, including Lost [7], Soccer
Player [51], and Yahoo!News [16] for automatic face naming
from images or videos, MSRCv2 [29] for object classification,
BirdSong [3] for bird song classification, Malagasy [13] for
POS tagging, and Mirflickr [19] for web image classification.
The detailed descriptions of these datasets are provided in Table 2.
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TABLE 3
Classification accuracy (mean±std) of each comparing approach on benchmark datasets.

MNIST Fashion-MNIST Kuzushiji-MNIST CIFAR-10 CIFAR-100

MILEN 98.96± 0.07% 90.96± 0.11% 96.32± 0.54% 86.92± 0.34% 64.97± 0.39%
VALEN 98.72± 0.05%• 90.63± 0.30% 96.19± 0.75% 85.48± 0.62%• 62.96± 0.96%•

PLCR 98.56± 0.08%• 90.10± 0.21%• 95.29± 0.21%• 86.37± 0.38%• 64.12± 0.23%•
PICO 98.61± 0.12%• 88.41± 0.20%• 94.78± 0.19%• 86.16± 0.21%• 62.98± 0.38%•
CAVL 98.84± 0.05%• 87.94± 0.19%• 93.69± 0.28%• 59.67± 3.30%• 52.59± 1.01%•
LWS 98.56± 0.06%• 88.99± 0.26%• 92.27± 1.03%• 37.49± 2.82%• 53.98± 0.99%•
RC 98.41± 0.09%• 89.60± 0.19%• 93.78± 0.17%• 85.95± 0.40%• 63.41± 0.56%•
CC 98.16± 0.14%• 89.86± 0.11%• 94.08± 0.35%• 79.96± 0.99%• 62.40± 0.84%•

PRODEN 98.39± 0.10%• 89.79± 0.24%• 93.79± 0.24%• 86.04± 0.21%• 62.56± 1.49%•
D2CNN 97.76± 0.14%• 87.81± 0.20%• 91.24± 0.24%• 69.22± 1.56%• 32.42± 0.61%•

TABLE 4
Classification accuracy (mean±std) of each comparing approach on the real-world datasets.

Lost MSRCv2 BirdSong Mirflickr Malagasy Soccer Player Yahoo!News

VALEN 76.87 ± 0.86% 49.97± 0.43% 73.75 ± 0.39% 60.39 ± 0.55% 71.28 ± 0.45% 55.81 ± 0.10% 66.53 ± 0.20%

CAVL 73.96± 0.51%• 46.62± 1.29%• 69.63± 0.93%• 57.13± 0.10%• 65.82± 0.06%• 52.92± 0.40%• 60.97± 0.13%•
LWS 73.13± 0.32%• 49.85± 0.49% 51.45± 0.26%• 54.50± 0.81%• 59.34± 0.25%• 50.24± 0.45%• 48.21± 0.29%•
RC 76.26± 0.46% 49.47± 0.43% 69.33± 0.32%• 58.93± 0.10%• 70.69± 0.14%• 56.02± 0.59%• 63.51± 0.20%•
CC 63.54± 0.25%• 41.50± 0.44%• 69.90± 0.58%• 58.81± 0.54%• 69.53± 0.34%• 49.07± 0.36%• 54.86± 0.48%•

PRODEN 76.47± 0.25% 45.10± 0.16%• 73.44± 0.12%• 59.59± 0.52%• 69.34± 0.09%• 54.05± 0.15%• 66.14± 0.10%•
D2CNN 49.91± 2.33%• 38.58± 2.76%• 63.56± 2.81%• 58.45± 1.65%• 54.55± 4.85%• 49.26± 0.21%• 49.62± 0.64%•

CLPL 63.39± 0.12%• 37.80± 0.71%• 62.90± 3.33%• 58.87± 0.10%• 64.25± 0.29%• 48.23± 0.03%• 49.42± 0.13%•
PL-SVM 61.51± 4.00%• 34.62± 3.77%• 47.51± 3.94%• 43.73± 8.88%• 55.07± 6.75%• 40.37± 2.92%• 50.58± 0.74%•
PL-KNN 38.76± 2.32%• 39.55± 3.50%• 54.01± 1.48%• 50.31± 1.83%• 58.04± 1.69%• 48.61± 0.67%• 46.22± 0.76%•

IPAL 64.53± 4.19%• 50.03 ± 1.93% 58.60± 1.26%• 56.27± 3.00%• 62.54± 0.37%• 53.60± 0.91%• 57.64± 0.68%•
PLLE 69.07± 2.08%• 48.73± 2.13% 70.65± 1.09%• 49.91± 2.65%• 60.89± 2.50%• 49.10± 1.20%• 54.28± 0.44%•

For benchmark datasets, we split 10% samples from the training
datasets for validation. For each real-world dataset, we run the
methods with 80%/10%/10% train/validation/test split. Then we
run five trials on each dataset with different random seeds and
report the mean accuracy and standard deviation of all comparing
algorithms.

4.2 Baselines
The performance of VALEN and MILEN is compared against eight
DNN-based approaches:
• PLCR [41], a regularized training framework which is based

on data augmentation and utilizes the manifold consistency
regularization term to preserve the manifold structure both in
feature space and label space.

• PICO [39], a contrastive learning framework which is based on
data augmentation and performs label disambiguation based
on the contrastive prototypes.

• CAVL [52], a discriminative approach which identifies correct
labels from candidate labels by class activation value.

• LWS [40], an identification-based method which introduces a
leverage parameter to consider the trade-off between losses
on candidate and non-candidate labels.

• RC [11]: A risk-consistent partial label learning approach
which employs the importance reweighting strategy to con-
verge the true risk minimizer.

• CC [11]: A classifier-consistent partial label learning approach
which uses a transition matrix to form an empirical risk
estimator.

• PRODEN [31]: A progressive identification partial label
learning approach which approximately minimizes a risk
estimator and identifies the true labels in a seamless manner.

• D2CNN [49]: A deep partial label learning approach which
designs an entropy-based regularizer to maximize the margin
between the potentially correct label and the unlikely ones.

For the benchmark datasets, we use the same data augmentation
strategy for the data-augmentation-free methods (VALEN, PRODEN,
RC, CC, LWS and CAVL) to make fair comparisons with the data-
augmentation-based methods (MILEN, PICO and PLCR). We use
three augmentations (K = 3) including one weak and two strong
augmentations. However, data augmentation cannot be employed
on the real-world datasets that only contain extracted features
from audio and video data. Therefore, we just compare the data-
augmentation-free methods on the real-world datasets.

For all the DNN-based approaches, we adopt the same
predictive model for fair comparisons. Specifically, a five-
layer LeNet is trained on MNIST, Fashion-MNIST, and
Kuzushiji-MNIST. The 32-layer ResNet is trained on
CIFAR-10 and CIFAR-100. For real-world datasets, we adopt
the linear model. The hyperparameters are selected to maximize
the accuracy of a validation dataset. With the batch size set to
256, the number of epochs is set to 250, during which the first
10 epochs are dedicated to warm-up training. The model training
will be stopped early if its performance on the validation dataset
does not improve in 50 epochs. All the DNN-based approaches are
implemented with PyTorch.

In addition, we also compare five classical partial label
learning approaches, each configured with parameters suggested in
respective literature:

• CLPL [7]: A convex partial label learning approach which
uses averaging-based disambiguation, where the proposed
loss function is asymptotically consistent, as well as its
generalization and transductive performance.
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Fig. 3. Active learning performance of VALEN on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100.
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Fig. 4. Active learning performance of MILEN on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100.
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Fig. 5. Ablation studies of VALEN on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100.

• PL-KNN [20]: An instance-based partial label learning ap-
proach which works by k-nearest neighbor weighted voting.

• PL-SVM [33]: A maximum margin partial label learning
approach by incorporating partial label information into the
conventional margin-based learning framework.

• IPAL [54]: A non-parametric method that applies the label
propagation strategy to iteratively update the confidence of
each candidate label.

• PLLE [44]: A two-stage partial label learning approach which
estimates the generalized description degree of each class
label values via graph Laplacian and induces a multi-label
predictive model with the generalized description degree in
separate stages.

4.3 Experimental Results
Table 3 reports the classification accuracy of each DNN-based
method on benchmark datasets corrupted by the instance-dependent
generating procedure. The best results are highlighted in bold.
In addition, • / ◦ indicates whether MILEN is statistically supe-
rior/inferior to the comparing approach on each dataset (pairwise

t-test at 0.05 significance level). From the table, we can observe
that MILEN always achieves the best performance and significantly
outperforms other compared methods in most cases.

Table 4 reports the experimental results on the real-world PLL
datasets. Note that data augmentation (the foundation in MILEN,
PICO and PLCR) cannot be employed on the real-world datasets
that contain extracted features from audio and video data, we just
compared VALEN with the data-augmentation-free methods on the
real-world datasets. We can find that VALEN achieves the best
performance against other DNN-based methods on the real-world
PLL datasets. Note that VALEN achieves the best performance
against classical methods on all datasets except MSRCv2 as these
datasets are small-scale and the average number of candidate labels
in each dataset is low (can be seen in Table 2), which leads to the
result that DNN-based methods cannot take full advantage.

The performance of MILEN surpasses that of VALEN, primarily
because MILEN capitalizes on the mutual information inherent in
augmented data. However, the efficacy of MILEN is contingent
upon the applicability of data augmentation techniques, which
are not universally applicable across all data types. For instance,
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Fig. 6. Ablation studies of MILEN on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10 and CIFAR-100.

tabular data often cannot be enhanced through data augmentation
techniques, limiting the versatility of MILEN. In contrast, VALEN

exhibits greater adaptability and can be applied to a broader
spectrum of data types. Consequently, when dealing with datasets
amenable to augmentation, such as images, MILEN emerges as the
preferred choice for training predictive models. In scenarios where
data augmentation is not feasible, VALEN stands out as the more
appropriate option for model training.

4.4 Active Learning Performance
Compared to the typical PLL problem, instance-dependent PLL is
more challenging to disambiguate the candidate labels. Therefore,
motivated by Wang [38], we consider the particular case in which
the classifier is allowed to selectively query examples in the training
dataset for manual disambiguation. In practice, the performance of
the classifier could be improved through active interaction between
humans and the classifier via adopting the paradigm of active
learning [18], [47]. Specifically, the classifier is first trained with the
original instance-dependent partial labels. Then a selector chooses
the examples with high uncertainty in the training datasets and asks
an oracle (human expert) to annotate them. Finally, the examples
with high uncertainty from the selector with the annotation from
experts are re-applied to the training to improve the performance
of the classifier. In this way, the classifier finishes one active
interaction with the oracle.

Furthermore, effective criteria should be set on the selector
to actively mine the examples with high uncertainty for more
precise annotation. Given the training sample (xi, Si), we employ
three frequently-used ways [38] to achieve its uncertainty score
U(xi, Si) using the recovered distributions:
• Entropy-based:
UET (xi, Si) = −

∑c
j=1 d

j
i log dji ;

• Margin-based:
UMG(xi, Si) = doi − dmi , where m = arg maxj∈Si

dji and
o = arg maxj∈Si,j 6=m d

j
i ;

• Maximum-based:
UMM (xi, Si) = 1−maxj∈Si d

j
i .

VALEN and MILEN are evaluated in the following setting
of active learning mentioned above. We set the number of
training epochs T = 500, and fix the times of active interaction
s = 10, which means the interaction is performed every 50
epochs. The selector mines a the example set with high uncertainty
{xa1 ,xa1 , . . . ,xav} (v = 3n/100) each interaction, which
means at most 30% of training examples are queried during the
training process. The candidate label set Sai of each selected
example is replaced by the oracle with the correct label yxai

, i.e.,

the logical label vector lai will be one-hot with l
yxai
ai = 1 after

interaction. VALEN and MILEN are equipped with entropy-based,
margin-based, maximum-based and random-based selectors to form
VALEN-ET, VALEN-MG, VALEN-MM, VALEN-RD and MILEN-ET,
MILEN-MG, MILEN-MM, MILEN-RD, respectively.

Figure 3 and Figure 4 illustrate the respective perfor-
mance of VALEN on and MILEN on Fashion-MNIST,
Kuzushiji-MNIST, CIFAR-10 and CIFAR-100 by plotting
the accuracy curves of VALEN and MILEN at each interaction time
equipped with different selectors. We can observe that on all these
datasets VALEN and MILEN with active learning perform better
than VALEN and MILEN without active learning, which is a nice
property for those that require human interaction to improve the
designed algorithm.

4.5 Further Analysis
4.5.1 Ablation Studies
Figure 5(a) - 5(d) illustrate the performance of VALEN on
Fashion-MNIST, CIFAR-10 and CIFAR-100 corrupted by
the instance-dependent generating procedure under different flip-
ping probability, while Figure 6(a) - 6(d) illustrate the performance
of MILEN on Fashion-MNIST, CIFAR-10 and CIFAR-100
corrupted by the instance-dependent generating procedure under
different flipping probability. Besides, the performance of the
ablation version that removes the label enhancement and trains the
predictive model with PLL minimal loss (denoted by VALEN-NON

and MILEN-NON) is recorded. These results clearly validate the
usefulness of recovered label distributions for improving predictive
performance.

4.5.2 The Impact of Warm-Up
Table 5 illustrates the performance of VALEN and MILEN on
CIFAR-10 corrupted by the instance-dependent PLL generating
procedure under different epochs of warm-up. Besides, the perfor-
mance of VALEN and MILEN with the warm-up process adopted
by multi-label loss (denoted by VALEN-ML and MILEN-ML) and
consistent loss PLL (denoted by VALEN-CL and MILEN-CL) is
recorded.

When using multi-label loss or consistency loss to replace
PRODEN loss [31] in the warm-up training, VALEN and MILEN

seem to have little improvement. This is because PRODEN loss
could enable the model to have a good discrimination ability to
progressively identify correct labels thanks to the memorization
effects of neural networks. However, multi-label loss treats all
candidate labels equally, leading to interference from incorrect
candidate labels and weakening the model’s discrimination ability
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Fig. 7. Performance of VALEN and MILEN changes as their hyper-parameters vary on Fashion-MNIST, Kuzushiji-MNIST, CIFAR-10.
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Fig. 8. Convergence curves of the recovered label distribution D in VALEN and MILEN on Fashion-MNIST and Kuzushiji-MNIST.

TABLE 5
Classification accuracy (mean± std) of VALEN and MILEN on different warm-up loss functions and epochs, where ‘w/o warm-up’ denotes the

performance of VALEN and MILEN trained without warm-up.

Warm-up Epochs 1 5 10 20 30 w/o warm-up

VALEN 85.50± 0.58% 85.85± 0.49% 85.48± 0.48% 85.79± 0.30% 85.88± 0.20%
85.45± 0.48%VALEN-ML 85.74± 0.47% 85.83± 0.39% 85.43± 0.51% 85.51± 0.60% 85.12± 0.44%

VALEN-CL 85.47± 0.51% 85.26± 0.32% 85.39± 0.61% 85.58± 0.50% 85.67± 0.35%

MILEN 86.89± 0.49% 86.58± 0.34% 86.92± 0.34% 87.33± 0.34% 87.19± 0.16%
83.22± 0.76%MILEN-ML 86.52± 0.63% 86.76± 0.48% 87.27± 0.23% 87.04± 0.35% 87.12± 0.45%

MILEN-CL 85.40± 1.56% 85.93± 0.31% 86.81± 0.46% 86.62± 0.65% 86.54± 0.49%

TABLE 6
Quality of label distributions (mean± std) estimated by our proposed algorithms and compared baselines on the label distribution datasets,

measured by E[||q − p||2]. The best and second best performance among all the approaches are denoted by boldface and underline.

Datasets RAF-ML Twitter_LDL Flickr_LDL

MILEN 0.0226± 0.0003 0.0175± 0.0002 0.0212± 0.0003
VALEN 0.0270± 0.0003 0.0191± 0.0002 0.0229± 0.0003

PLCR 0.0434± 0.0068 0.0553± 0.0003 0.0437± 0.0004
LALO 0.0451± 0.0061 0.0238± 0.0001 0.0313± 0.0003

[31]. Additionally, consistent loss aligns the model outputs of k
augmented images with the inferred conformal label distribution,
which may degrade the performance due to the low quality of
inferred conformal label distribution in the beginning stage [41].

Note that MILEN is more reliant on the warm-up process than
VALEN. MILEN considers estimating label distributions from k
augmented instance matrices and further capture the relationship
between them via mutual information according to the optimization
objective in Eq. (17), which is more complicated and demands
a better model to launch the optimization process. Therefore,
through appropriate warm-up training, MILEN can fully leverage
its advantages of utilizing multiple augmented views and capturing

mutual information, reflecting that it more effectively utilizes data
augmentation and mutual information estimation to improve the
model’s performance.

4.5.3 Sensitivity Analysis
The sensitivity of VALEN with respect to its parameter λ and
MILEN with respect to its parameters λ, β1 and β2 is stud-
ied. Fig. 7 illustrates the performance of VALEN and MILEN

under different parameter configurations on Fashion-MNIST,
Kuzushiji-MNIST and CIFAR-10. As is shown in Fig.7, the
performance of VALEN and MILEN is relatively stable as the value
of the parameter λ changes within a reasonable even broad range.
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TABLE 7
Classification accuracy (mean±std) with different choices of K strong

augmentations on Fashion-MNIST, Kuzushiji-MNIST and
CIFAR-10.

Fashion-MNIST Kuzushiji-MNIST CIFAR-10

K = 1 89.94± 0.08 93.71± 0.32 84.67± 0.08
K = 2 90.66± 0.11 94.85± 0.10 86.32± 0.49
K = 3 90.83± 0.22 95.59± 0.15 86.87± 0.53
K = 4 90.87± 0.33 96.33± 0.23 87.07± 1.56
K = 5 90.96± 0.17 96.42± 0.14 87.13± 0.52
K = 6 91.17± 0.04 96.50± 0.15 87.19± 0.53

TABLE 8
Classification accuracy (mean±std) with different augmentations when
K = 3 on Fashion-MNIST, Kuzushiji-MNIST and CIFAR-10.

Fashion-MNIST Kuzushiji-MNIST CIFAR-10

3W 90.48± 0.22 94.47± 0.73 82.55± 0.41
2W+1S 90.75± 0.17 95.66± 0.12 86.32± 0.49
1W + 2S 90.96± 0.11 96.32± 0.54 86.92± 0.34

3S 90.83± 0.22 95.59± 0.15 86.87± 0.53

For example, VALEN is quite insensitive when λ varying between
[1e − 4, 1e − 1] in Fashion-MNIST. So does β1 and β2 of
MILEN varying between [1e− 4, 1e− 1]. This stability indicates
VALEN and MILEN could be robustness, which is desirable for
algorithm design.

4.5.4 Quality of the Recovered Label Distribution
Three label distribution datasets REF-ML [28], Twitter_LDL
[48] and Flickr_LDL [48] are adopted in the experiment,
where the ground-truth label distribution could be regarded as
the Bayes class-probability distribution p. The instance-dependent
candidate labels are generated as in Section 4.1, where we replace
fj(xi; θ̂) with pji to calculate the flipping probability. A DNN-
based PLL baseline PLCR [41] and a classical PLL baseline LALO

[10] are adopted as comparing methods, both of which could
estimate label distributions on PLL data during training. For the
classic PLL baseline LALO, we extract features by employing pre-
trained Resnet-18 provided by Pytorch. The normalized label
distribution q is recovered from the datasets with candidate labels
by VALEN, MILEN and other comparing algorithms, and then the
term E[||q − p||2] could be calculated with the ground-truth label
distributions. Table 6 illustrates that E[||q − p||2] of our proposed
algorithms MILEN and VALEN in Theorem 2 is relatively small.

4.5.5 Convergence of the Recovered Label Distribution
Figure 8 demonstrates the convergence of the recovered label dis-
tribution matrix over all training examples as the number of epochs
increases (after warm-up training) on the Fashion-MNIST and
Kuzushiji-MNIST datasets. It is evident from the plots that the
recovered label distributions converge rapidly with the increasing
number of epochs.

4.5.6 The Impact of Data Augmentation
In this study, we investigate the impact of data augmentation on
MILEN, considering both the number of augmented images and
different augmentation strategies. The results presented in Table
7 demonstrate that MILEN performs consistently well when the
number of strongly augmented augmentations K varies. Based on

accuracy and efficiency considerations, we choose a configuration
with K = 3 for our experiments.

Furthermore, Table 8 provides insights into the performance
of MILEN under different augmentation strategies. Here, "W"
represents weak augmentation, and "S" represents strong aug-
mentation. The results indicate that MILEN achieves the best
performance when utilizing one weak augmentation and two strong
augmentations in the data augmentation process.

5 CONCLUSION

This paper focuses on addressing the problem of partial label
learning and introduces two novel approaches, namely VALEN

and MILEN. In this work, we specifically consider the instance-
dependent PLL scenario, where each partially labeled example is
associated with a latent label distribution. Recovering this latent
label distribution is crucial for effective predictive model training.
The proposed methods VALEN and MILEN iteratively recover the
latent label distributions and train the predictive model in every
epoch. The effectiveness of the proposed approaches is validated
via comprehensive experiments on both synthesis datasets and
real-world PLL datasets.

Looking ahead, it would be interesting to explore alternative
methods for recovering latent label distributions in the context
of instance-dependent PLL. Additionally, the incorporation of
pseudo-labels with meta-information could be further investigated
as a means to handle unreliable PLL scenarios. These avenues
of research hold promise for advancing the field of partial label
learning.
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