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Complementary to Multiple Labels: A
Correlation-Aware Correction Approach
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Abstract—Complementary label learning (CLL) requires annotators to give irrelevant labels instead of relevant labels for instances.
Currently, CLL has shown its promising performance on multi-class data by estimating a transition matrix. However, current multi-class
CLL techniques cannot work well on multi-labeled data since they assume each instance is associated with one label while each
multi-labeled instance is relevant to multiple labels. Here, we show theoretically how the estimated transition matrix in multi-class CLL
could be distorted in multi-labeled cases as they ignore co-existing relevant labels. Moreover, theoretical findings reveal that calculating
a transition matrix from label correlations in multi-labeled CLL (ML-CLL) needs multi-labeled data, while this is unavailable for ML-CLL.
To solve this issue, we propose a two-step method to estimate the transition matrix from candidate labels. Specifically, we first estimate
an initial transition matrix by decomposing the multi-label problem into a series of binary classification problems, then the initial
transition matrix is corrected by label correlations to enforce the addition of relationships among labels. We further show that the
proposal is classifier-consistent, and additionally introduce an MSE-based regularizer to alleviate the tendency of BCE loss overfitting
to noises. Experimental results have demonstrated the effectiveness of the proposed method.

Index Terms—Complementary label learning, multi-label learning, transition matrix, label correlations.
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1 INTRODUCTION

In multi-label learning (MLL), each instance is associated with
a set of relevant labels, where the learned classifier aims to
predict all relevant labels of unseen instances [1], [2], [3].
MLL is widely used in many real-world applications, such
as text categorization [4], [5], image retrieval [6], [7], and
medical domain [8], [9], etc. However, collecting precisely
multi-labeled data is laborious because of the unknown
number of relevant labels per instance and the existence
of complex semantic labels [10]. For the example image
in Fig. 1, besides the label Architecture, there exist other
relevant labels whose accurate annotation needs one-by-one
checking of the whole label space; in addition, annotators
need special geographical and cultural domain knowledge
to accurately label the image as Paris.

To release the laborious of annotating multi-labeled data,
we explore the problem setting of multi-labeled CLL (ML-
CLL), where each instance is associated with a single com-
plementary label (an irrelevant label of the instance) instead
of multiple relevant labels. Providing such weakly super-
vised information will ease the labeling process in large
label space because selecting one complementary label is
low-cost and requires less domain knowledge than selecting
all relevant labels. One example of ML-CLL is given in Fig.
1 when selecting desert as the complementary label. Given
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Fig. 1. An example of ML-CLL. The relevant labels of the image in-
clude people, architecture, sky, plant, and Paris, indicating that these
elements belong to the image. On the other hand, desert serves as the
complementary label for this image, signifying the absence of a desert
in the image. Notably, Paris is considered a complex semantic label, as
it is difficult to be directly identified without domain knowledge.

the complementary label, the goal of ML-CLL is still the
same as fully supervised MLL, i.e., learning a model that
can accurately predict multiple relevant labels for unseen
instances.

The setting of CLL was initially applied in the multi-
class learning task [11], [12], [13], [14], [15], [16], [17]. Previ-
ous multi-class CLL approaches are based on an estimated
transition matrix that summarizes the probability of a label
being selected as a complementary label [11], [12], [13].
Although they have achieved a promising performance
on multi-class data, they are restricted to the case where
an instance is associated with only one relevant label. In
this case, multi-class CLL approaches only consider the
exclusive relationship among labels, while these approaches
ignore that labels can bear other relationships in the multi-
labeled case, especially the co-occurrence of labels. In fact,
relationships among labels are crucial to solving ML-CLL
problems since the selection of a complementary label of
an instance in MLL is the combined result against multiple
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relevant labels rather than against only a single relevant
label. Misusing a technique targeting against a single rel-
evant label to the multiple relevant labels case will result in
a wrongly estimated transition matrix.

In this paper, we first theoretically analyze how the esti-
mation of the transition matrix using the current multi-class
CLL techniques could be distorted in multi-labeled cases.
According to these findings, we observe that estimating the
transition matrix in ML-CLL from label correlations needs to
know relevant labels of instances, while these are unavail-
able. To remove this pain, we propose a two-step method
to estimate the transition matrix in ML-CLL from candidate
labels which are the complement of complementary labels.
Our strategy includes: (1) estimating an initial transition
matrix by decomposing the multi-label problem into binary
classification problems; (2) using label correlations to correct
the initial transition matrix by enforcing the addition of
relationships among labels. The fast convergence of Cross-
Entropy (CE) loss benefits from focusing on instances that are
difficult to classify, which may result in CE loss overfitting
to noisy labeled data. As a type of CE loss, Binary CE (BCE)
loss has the same problem. The study of [18] indicates that
Mean Squared Error (MSE) loss is less sensitive to noisy labels
than CE loss. As Binary CE (BCE) loss is a benchmark of our
approach, an MSE-based regularizer is further introduced to
alleviate the tendency of it overfitting to noises.

In addition, we show that our proposed ML-CLL can be
easily combined with learning from relevant labels, which
significantly extends the application scenario of the pro-
posed algorithm. This combination is particularly useful,
e.g. when labels are collected via crowd-sourcing [19] where
crowd-workers are asked to randomly select a complemen-
tary label and one or more relevant labels for an instance.
Experimental results on various datasets demonstrate the ef-
fectiveness of the proposed approach. Especially in situation
when each instance is only equipped with a complementary
label and a relevant label, our proposal has superior per-
formance, even comparable with the performance on fully
supervised data. Our main contributions are summarized as
follows:

• We theoretically analyze the distortion of the transi-
tion matrix estimated by multi-class CLL in multi-
labeled cases, because multi-class CLL techniques
ignore the co-existence of relevant labels. Theoretical
findings reveal that multi-labeled data is indispens-
able for calculating the transition matrix from label
correlations.

• To solve the problem of unavailable multi-labeled
data, we propose a two-step method to estimate the
transition matrix from candidate labels. Moreover,
we show theoretically that the proposed approach
is classifier-consistent under a mild assumption.

• We introduce a practical strategy – MSE-based reg-
ularization – to alleviate the overfitting tendency of
BCE loss. Our empirical study shows that the pro-
posal obtains comparable performance with state-of-
the-art baselines, which proves the effectiveness of
our approach.

The rest of this paper are organized as follows. Section 2
briefly reviews related work of ML-CLL. Then we formalize

the ML-CLL problem in Section 3, analyze it theoretically
and describe our approach in Section 4. In Section 5, we
introduce an MSE-based regularization and show how to
adapt our method to bear an additional small amount of
relevant labels. The experimental results are given in Section
6 and we conclude in Section 7.

2 RELATED WORK

In this section, we will give a brief review of related work
of ML-CLL, including MLL, partial multi-label learning (PML)
and multi-class CLL.

2.1 Multi-Label Learning
MLL problems aim to train a classifier that can predict a
set of relevant labels for an unseen instance, where each
training instance is associated with multiple relevant labels
simultaneously. With the complexity of label correlation, the
previous studies can be grouped into three categories [20],
[21], [22], [23]: first-order approach [24], [25], [26], second-order
approach [27], [28] and high-order approach [29], [30]. To solve
MLL problems, the first-order approach decomposes MLL
problems into a set of binary classification problems [24],
[25]. However, these approaches ignore label correlations
among labels, which play a crucial role in MLL [20]. Af-
ter realizing the importance of label correlation, more and
more studies attempt to exploit it to improve MLL perfor-
mance. Among them, the second-order approach considers
the pairwise label correlations that refer to the relationship
between two labels. The kind of these approaches generally
transform MLL problems into bipartite ranking problems
by enforcing that relevant labels should be ranked higher
than irrelevant labels [28], [31], [32]. Beyond second-order
relationship, there exists more complex relationship be-
tween labels in many real-world scenarios. Therefore, many
approaches begin to exploit high-order label correlations to
handle the MLL problems recently [29], [33], [34], [35]. For
example, Zhao et al. [35] leverage variational autoencoder
to facilitate the learning process via exploiting high-order
correlations among labels, while Wang et al. and Xun et
al. [36], [37] both design special neural network blocks to
automatically extract label correlations to improve the label
prediction performance. Although high-order approaches
have the ability of stronger label correlation-modeling, they
may suffer from high computational cost comparing to first
and second-orders approaches [38].

2.2 Partial Multi-Label Learning
Due to that the fully supervised data is difficult to collect,
many researchers tend to explore the weakly supervision
data form to alleviate the heavy load of labeled data col-
lection [39]. PML is a recently emerging weakly supervised
approch firstly proposed by Xie et al. [40]. In PML, each
training instance is associated with a set of candidate labels
that consist of relevant labels and irrelevant (noisy) labels
and the goal is to learn a classifier assigning a set of labels
accurately for unseen instances.

At the first glance, it seems that ML-CLL is an extreme
case of PML, such that all PML methods are also applicable
to ML-CLL. However, existing PML methods assume that
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TABLE 1
Summary of major mathematical notations.

Notations Mathematical meanings

X the feature space of instances
Y the label space with K possible labels {l1, l2, . . . , lK}
x a multi-label instance (x ∈ X )

Y the relevant label set of x (Y ⊂ Y, Y 6= ∅ nor Y)

y the binary vector of Y (y = [y1, y2, . . . , yK ]), where
yk = 1 indicates that lk ∈ Y and 0 otherwise

D multi-label dataset {(xi,yi)}ni=1
i.i.d.∼ p(x, Y )

f(·) real-valued decision function f : X → RK , where
fk(x) predicts label lk being the relevant label of x

L(·, ·) proper MLL loss function
RL(f) the expected risk of MLL
f∗ the minimizer of RL(f) (f∗ = argminf RL(f))
ȳ the complementary label of x (ȳ ∈ Y \ Y )
ȳ K-dimensional vector of ȳ (ȳ = [ȳ1, ȳ2, . . . , ȳK ]),

where ȳj = 1 indicates ȳ = lj and 0 otherwise
Ŷ the candidate label set of x, where Ŷ = Y \ ȳ
ŷ K-dimensional vector of Ŷ , where ŷ = 1− ȳ

D̄ ML-CLL training set {(xi, ȳi)}ni=1
i.i.d.∼ p(x, ȳ)

L̄(·, ·) ML-CLL loss function
RL̄(f) the expected risk of ML-CLL
Y ′ the label space excludes ∅ and Y , where Y ′ = {2Y −

∅ − Y}
C a subset of Y ′ (C ∈ Y ′), where Ck is the k-th label

subset in Y ′

T̃ high-dimension transition matrix, T̃ ∈ R(2K−2)×K

T low-dimension transition matrix T ∈ [0, 1]K×K used
to replace T̃

Q the transition matrix estimated in multi-class CLL,
where Q ∈ [0, 1]K×K

`j the difference between T and Q on label lj being the
complementary label of x

S initial transition matrix, where S ∈ [0, 1]K×K

Ak the subset of x in D̄ with ŷk = 1

C the label correlation matrix (C ∈ [0, 1]K×K ), which
presents the relationship among labels

T̂ the estimation of T, where T̂ is calculated by the
proposed method in the paper

f∗CL the minimizer of RL̄(f) (f∗CL = argminf RL̄(f))
L̄mse(·, ·) the MSE-based regularizer
L̄(·, ·) the target loss function in this paper
Ỹ the subset of Y , where Ỹ ⊆ Y and Ỹ 6= ∅
ỹ binary vector of Ỹ , where ỹ1 = 1 when label lk ∈ Ỹ

and 0 otherwise

noisy labels only compose a small portion in the candidate
labels [38], [41], [42], [43], such that many approaches [38],
[42], [43] adopt matrix factorization to tackle PML problems,
which decompose the candidate label matrix into the low-
rank multi-label matrix and the sparse noisy label matrix.
Compared to PML, the studied ML-CLL problem in this
paper are targeted at the problem with only one comple-
mentary label, resulting in a high-noise PML problem on
which the existing approaches can not be applicable. We will
demonstrate the performance difference in the experimental
part.

2.3 Multi-Class Complementary Label Learning

Currently, CLL problem is only considered in multi-class
learning, whose goal is to predict a single relevant label

per instance precisely from complementary labeled data.
Previous approaches can be roughly grouped into two cate-
gories: (1) modeling the generative relationship between the
complementary label and the relevant label [11], [12], [13],
[17], [44]; (2) modeling the probability of complementary
labels from the learned discriminative classifier directly [14],
[15], [16].

The first multi-class CLL method belongs to category
one. It models the generative relationship between comple-
mentary labels and relevant labels, and uses a such genera-
tive process to rewrite one-versus-all and pairwise compar-
ison loss functions to derive an unbiased risk estimator [11].
Ishida et al. [12] realize that the method of [11] is restricted
to loss functions and propose a new method which can use
arbitrary losses and models. A typical way to make use
of the modeled generative process is through a transition
matrix, which summarizes the probabilities of a label being
complementary labels when relevant labels are given. Then,
approaches apply a transition matrix to recover relevant
labels from complementary labels [12], [13], [44]. Compared
with [11], [12], transition matrix-based methods can map
more complex generative relationship rather than uniform
one only. Therefore, we tend to design a transition matrix-
based method to solve ML-CLL problem with a different
estimating way.

Differ from category one, approaches residing in cate-
gory two directly model the probabilities of complementary
labels from the learned classifier without the generative
relationship [14], [15], [16]. Chou et al. propose a surrogate
complementary loss framework based on complementary
labels providing negative feedback during the training pro-
cess [14]. Although its losses fail to derive an unbiased
risk estimator, it achieves good performance on the multi-
class CLL. In light of the property of the complementary
label that the predictive probability of the complementary
label is expected to approach zero, [15] and [16] propose
a discriminative solution by directly modeling the proba-
bilities of complementary labels from learned classifier to
avoid the generative assumption. Due to that multi-class
CLL approaches are designed for a single relevant label case,
which are not suitable for the ML-CLL case that an instance
is associated with multiple labels simultaneously. We will
demonstrate that in the experimental part.

3 PROBLEM SETUP

In MLL, let X be the feature space and Y = {l1, l2, . . . , lK}
be the finite label space withK possible class labels (K > 2).
A multi-label instance x ∈ X is equipped with a set of rele-
vant labels Y ⊂ Y . (x, Y ) is independently sampled from an
unknown joint probability distribution p(x, Y ). Here we ex-
clude the special cases of Y = ∅ nor Y to ensure relevant la-
bels and complementary labels both exist. For convenience,
we use a binary vector y = [y1, y2, . . . , yK ] ∈ {0, 1}K to
denote Y , where yk = 1 indicates that lk ∈ Y is relevant to
x and 0 otherwise. Suppose D = {(xi,yi)}ni=1

i.i.d.∼ p(x, Y )
is the training set with n instances. The goal of MLL is to
learn a multi-label classifier h : X → 2Y , which can predict
a set of relevant labels for any unseen instance. Instead of
learning h directly, most MLL methods tend to learn a real-
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valued decision function f : X → RK via minimizing the
expected risk

RL(f) = Ep(x,Y )[L(f(x),y)], (1)

whereL is a proper MLL loss function [35], such as BCE loss.
f(x) is usually interpreted as a probability vector: fk(x) is
the k-th entry of f(x) and predicts the confidence score that
label lk is relevant to x, i.e., if properly normalized then
p(yk = 1|x). Denoting the optimal classifier learned from
the expected risk as f∗, i.e., f∗ = argminf RL(f).

In ML-CLL studied in this paper, each training instance
is equipped with a single complementary label. The com-
plementary labeled instance (x, ȳ) ∈ (X ,Y) is drawn from
an unknown joint probability distribution p(x, ȳ), where
ȳ ∈ Y \Y is a complementary label of x. ȳ can be presented
as a K-dimensional vector ȳ = [ȳ1, ȳ2, . . . , ȳK ]. If label lj is
selected as the complementary label to x (ȳ = lj), then ȳj is
one and all other elements are zero in ȳ. We utilize Ŷ = Y\ȳ
to denote the candidate label set of x. Let ŷ = [ŷ1, ŷ2, . . . , ŷK ]
to be the corresponding vector representation of subset Ŷ ,
where all elements are one except for the one corresponding
to the complementary label, which is set to zero (ŷ = 1− ȳ).

Let D̄ = {(xi, ȳi)}ni=1
i.i.d.∼ p(x, ȳ) be the ML-CLL

training set with n instances. The expected risk of multi-
labeled CLL is defined over p(x, ȳ):

RL̄(f) = Ep(x,ȳ)[L̄(f(x), ȳ)], (2)

where L̄ denotes a ML-CLL loss, which will be proposed
later this paper. For convenient reference, Table 1 provides
a summary of the main notations used in this paper, along
with their corresponding mathematical interpretations.

4 THE PROPOSED APPROACH

In this section, we first introduce the definition of the
transition matrix in MLL and analyze why the estimated
transition matrix using multi-class techniques is unsuitable
for ML-CLL. Then, we describe an advanced two-step way
to estimate the transition matrix in the MLL case. Finally,
we prove our approach is classifier-consistent with a mild
assumption.

4.1 Transition Matrix for ML-CLL

In ML-CLL, we start by introducing a transition matrix T̃
that summarizes the probabilities for a complementary label
given a set of relevant labels. More specifically, the transition
matrix T̃ is defined as T̃kj = p(ȳj = 1|Y = Ck) where
Ck ∈ Y ′ = {2Y − ∅ − Y} (k ∈ [2K − 2]) is the k-th label
subset. If lj ∈ Ck, then T̃kj = 0 because the label lj has
no chance to be selected as the complementary label. In this
paper, we employ the same class-dependent assumption as
the multi-class CLL approach [13]: p(ȳ|Y,x) = p(ȳ|Y ) as ȳ
and x are conditionally independent given Y . Then we can
obtain the following equation:

p(ȳj = 1|x) =
∑

C∈Y′,lj /∈C

p(ȳj = 1|Y = C)p(Y = C|x),

(3)

where we assume the label lj is a complementary label
of x. Then, according to Eq. (3), p(ȳ|x) can be approxi-
mated by p(Y |x) when the transition matrix T̃ is known.
If considering all possible label subsets of Y ′ as C , we have
T̃ ∈ R(2K−2)×K , i.e., the size of T̃ depends on the size of
the power set of Y ′. computing and storing the power set
of Y ′ would be infeasible due to its exponential growth,
especially when K is large. For example, with a large
number of possible labels, 2K−2 becomes excessively large.
To solve this combinatorial explosion problem, we explore a
more practical way to use an alternative lower-dimensional
transition matrix to replace the higher-dimensional one. We
start investigating the feasibility of the alternative lower-
dimensional matrix from Theorem 1.

Theorem 1. Given an instance x, suppose Y is the relevant label
set and the label lj is the complementary label which is randomly
selected. Then the following equality holds:

p(ȳj = 1|x) =
∑

C∈Y′,lj /∈C

p(ȳj = 1|Y = C)p(Y = C|x)

≥
K∑

k=1,k 6=j
p(ȳj = 1|yk = 1)p(yk = 1|x).

The second inequality holds because of addition rule of
probability. The detailed proof is in Appendix A. Theorem 1
shows that using T to approximate p(ȳ|x) is a lower bound
of using T̃ to approximate p(ȳ|x). Observed by Eq. (3), we
find that our main goal transforms from precisely predicting
the relevant label set Y of x to precisely predicting its
complementary label ȳ via the transition matrix T̃. This
means that we need to maximize the predictive probability
of the complementary label of x, i.e., maximizing p(ȳ|x).
From this point of view, Theorem 1 theoretically shows
the feasibility of using a low-dimension transition matrix
to replace the high-dimension T̃, because we optimize by
maximizing the lower bound of Eq. (3). Let T ∈ [0, 1]K×K

denote the lower-dimensional transition matrix, where the
(k, j)-th element of T is Tkj = p(ȳj = 1|yk = 1), and
Tkj = 0 when k = j. Thus, we adopt the K × K matrix
T as the transition matrix in the following of the paper to
avoid the pain in computation and storage brought up by
the (2K − 2)×K matrix T̃.

4.2 Distortion in Estimating the Transition Matrix

Before exploring how the transition matrix estimated by
multi-class CLL is distorted from that of ML-CLL, we first
introduce the transition matrix estimated by multi-class CLL
techniques. Suppose Q ∈ [0, 1]K×K be the transition matrix
estimated in multi-class CLL. Recalling the approach [13], it
estimates the transition matrix under a special assumption:
for each label lk, existing an anchor set Sx|lk ⊂ X such that
p(yk = 1|x) = 1 and p(yk

′
= 1|x) = 0 (lk′ ∈ Y \ {lk}).

With this assumption and regardless of label correlations,
the estimation of Qkj is p(ȳj = 1|yk = 1) = p(ȳj = 1|x) iff
x is sampled from Sx|lk , where Qkj is the k-th row and j-th
column element of Q.



5

To measure the distortion between T calculated in ML-
CLL and the estimated Q, we define their difference on the
complementary label lj of x as follows

`j =
K∑
k=1

|Tkj −Qkj |. (4)

The larger value of
∑K
j=1 `j indicates that T deviates further

from Q. As we know, label correlations and co-occurred
multiple labels are key properties of MLL. Due to that the
correlations among labels are intricate, directly calculating
T from all label correlations will bring high computational
cost. For convenience, we give a simple case of MLL includ-
ing label correlations – at most two labels can co-occur for
an instance, and the rest of labels are mutually exclusive
– to facilitate us calculating T from label correlations and
explore the distortion of T and Q. We start to study the
above contents from the definition of mutually exclusive.

Definition 2. A label set Y is mutually exclusive if, for every
x ∈ X , only one element of Y is relevant to x. In other words, if
y1 ∈ Y is the relevant label for x, then no other label in Y \ {y1}
is relevant to x.

Under the simple case in MLL, in Theorem 3, we state
how to estimate T directly from label correlations, and the
distortion of T and Q.

Theorem 3. Under a MLL scenario: suppose the labels lz1 , lz2 ∈
Y (z1, z2 ∈ [K], z1 6= z2) are dependent, and the labels belonging
to Y \ {lz1 , lz2} are mutually exclusive. For any x, its label set
Y ⊆ {lz1 , lz2} and Y 6= ∅. Let the label lj (j ∈ [K], j 6= z1, z2)
be the complementary label of x ∈ X . Tz1j and Tz2j calculated
from label correlations satisfy

Tz1j =
p(ȳj = 1|x)

p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)
,

Tz2j =
p(ȳj = 1|x)

p(yz1 = 1|ȳj = 1, yz2 = 1,x)p(yz2 = 1|x)
,

where [K] denotes the integer set {1, 2, . . . ,K}. The difference of
T and Q on the complementary label lj is

`j ≥ 2(
1

ξ2
− 1)p(ȳj = 1|x),

where ξ = max{p(yz2 = 1|ȳj = 1, yz1 = 1,x), p(yz1 =
1|ȳj = 1, yz2 = 1,x)}.

The proof is provided in Appendix B. From Theorem 3,
we can see that calculating the transition matrix from label
correlations is more complex than estimating one without
label correlations, and the relevant label sets of instances
need to be known. Moreover, Theorem 3 shows that there is
a distortion between T and Q, which widely exists in multi-
labeled cases since each multi-label instance is relevant to
multiple labels. The above learning scenario only considers
the pairwise label correlations, while there exists a more
complex relationship among labels. Similarly, under a realiz-
able computational cost, we construct another simple MLL
scenario with more complex label relationships to explore
factors that affect `j in Corollary 4.

Corollary 4. Under a MLL scenario: there are m (m ≥ 2) labels
lz1 , lz2 , . . . , lzm ∈ Y (z1, . . . , zm ∈ [K]) that are dependent,

while the labels belong to Y \ {lz1 , lz2 , . . . , lzm} are mutually
exclusive. For any x ∈ X , its relevant set Y ⊆ {lz1 , lz2 . . . , lzm}
and Y 6= ∅. Suppose the label lj is the complementary label of x.
The difference `j between T and Q has

`j ≥ m(
1

ξm
− 1)p(ȳj = 1|x),

where ξ = max{p(yzm = 1|ȳj = 1, yz1 = 1, . . . , yzm−1 =
1,x), p(yzm−1 = 1|ȳj = 1, yz1 = 1, . . . , yzm−2 = 1, yzm =
1,x), . . . , p(yz1 = 1|ȳj = 1, yz2 = 1, . . . , yzm = 1,x)} (ξ ∈
(0, 1]).

The proof is shown in Appendix C. According to Corollary
4, when label correlations are more complex, the distortion
of the transition matrix estimated by the multi-class CLL
approach is more serious as m increases. Meanwhile, it
demonstrates that the ML-CLL problem cannot be solved
by current techniques in multi-class CLL.

4.3 Estimation T with Label Correlations

As discussed above, calculating the transition matrix T
from label correlations needs instances whose relevant la-
bel sets are known. Moreover, calculating T is more and
more difficult as relationships among labels become more
complex by observing the results of T in Theorem 3 and
Corollary 4. Due to that multi-labeled data are unavailable
for our setting, we propose a two-step method to estimate
T from candidate labels, and it can reduce the complexi-
ties in calculating T from label correlations. This two-step
method includes: (1) computing an initial transition matrix
S ∈ [0, 1]K×K from candidate labels by decomposing the
multi-label problem into a series of binary classification
problem; (2) obtaining the final estimation of T by using
label correlations to correct S.

Computing an initial transition matrix S. Let Skj =
p(ȳj = 1|ŷk = 1) be an initial transition probability, which
is a (k, j)-th element of S. We calculate S from candidate
labels of instances. Multiplication theorem of probability 1

is applied to calculate Skj and ensure that the following
equation holds:

Skj = p(ȳj = 1|ŷk = 1) (5)

= p(ȳj = 1|ŷk = 1)

∫
p(x|ȳj = 1, ŷk = 1)dx

=

∫
p(ȳj = 1|ŷk = 1,x)p(x|ŷk = 1)dx

= Ep(x|ŷk=1)[p(ȳ
j = 1|ŷk = 1,x)],

where j, k ∈ [K] and j 6= k. In practice, Ep(x|ŷk=1)[p(ȳ
j =

1|ŷk = 1,x)] can be approximated by the expectation of
p(ȳj = 1|ŷk = 1,x) over the conditional distribution
p(x|ŷk = 1). Assuming ȳ and Ŷ are conditionally inde-
pendent given x, so p(ȳj = 1|ŷk = 1,x) = p(ȳj = 1|x). In-
tuitively, p(ȳj = 1|x) can be approximated by the classifier
learned from D̄ to predict the probability of complementary
labels. Let Ak denote the subset of x in D̄ with ŷk = 1,

1. p(x, ȳj = 1, ŷk = 1) = p(ȳj = 1|ŷk = 1,x)p(x|ŷk = 1)p(ŷk =
1) = p(ȳj = 1|ŷk = 1)p(x|ȳj = 1, ŷk = 1)p(ŷk = 1)⇒ p(ȳj = 1|ŷk =
1,x)p(x|ŷk = 1) = p(ȳj = 1|ŷk = 1)p(x|ȳj = 1, ŷk = 1)
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Fig. 2. An example of correcting S with label correlations.

which satisfies the conditional distribution p(x|ŷk = 1).
Thus, Skj can be estimated by

Skj =
1

|Ak|
∑

x∈Ak

p(ȳj = 1|ŷk = 1,x) (6)

=
1

|Ak|
∑

x∈Ak

p(ȳj = 1|x).

Estimating T with label correlations. The calculating
procedure of S lacks exactly supervised data. Observed
by the transition probabilities of T calculated from label
correlations in subsection 4.2, we can find that they are
affected by label correlations. Moreover, a label that is low-
co-occurred to the relevant labels could be preferentially
selected as the complementary label from the view of label
correlations. For example, considering water as the rele-
vant label; in this case, desert (low-co-occurred label) will
have a larger chance to be selected as the complementary
label compared to fish (high-co-occurred label). Motivated
by these findings, we use label correlations to correct the
initial matrix S to estimate T by enforcing the addition of
relationships among labels.

Suppose C ∈ [0, 1]K×K be a label correlation matrix,
where the element Ckj represents the correlation between
labels lk and lj . The value of Ckj is larger when the
correlation of labels lk and lj is stronger. Following [40],
[45], we adopt the co-occurrence rate of two candidate labels
as their correlations. Finally, the transition matrix T can be
estimated by T̂ = SCT , where T̂kj = 0 if k = j, and
normalizing T by row.

Fig. 2 is an example of refining procedure. As can be
seen from the Fig. 2, though the estimated initial probability
of p(ȳ2 = 1|ŷ1 = 1) is higher than p(ȳ3 = 1|ŷ1 = 1) in
S, the value of p(ȳ2 = 1|y1 = 1) is lower than p(ȳ3 =
1|y1 = 1) in T̂. This is because the labels l1 and l2 have a
strong correlation as shown in C, so the label l2 has a lower
chance to be selected as the complementary label for the
label l1. The corrected initial transition matrix S agrees with
our expectation on the low-co-occurred labels that tend to be
selected as complementary labels preferentially. In practice,
the estimation of T depends on p(ȳ|x), where the classifier
should perfectly model the probability of complementary
labels. When data equipped with complementary labels is
sufficiently, the perfect model is capable of modeling p(ȳ|x).

4.4 A Classifier-Consistent Approach
According to the transition matrix T, we can derive the
probability of complementary labels from multi-label clas-
sifier. Let f̄(x) ∈ RK be a complementary label classifier,
which is defined as

f̄(x) = TTf(x), (7)

Algorithm 1: MLCL Algorithm
Input:
D̄: the complementary-label training set
{(xi, ȳi)}ni=1;
E: the number of epochs;
A: an external stochastic optimization algorithm;
Output:
θ: model parameter for f(x; θ);

1 if T is unknown then
2 Train a classifier f̄(x) with the softmax output

layer and Cross-Entropy loss on D̄;
3 Fill S ∈ [0, 1]K×K with zeros;
4 for k = 1 to K do
5 num = 0;
6 for (xi, ȳi) ∈ D̄ such that ȳki = 0 do
7 num += 1;
8 Sk·+ = f̄(xi); //add f̄(xi) to k-th row of

S
9 end

10 Sk·/ = num;
11 end
12 T̂ = SCT ;
13 end
14 for t = 1 to E do
15 Let L be the risk, L = 1

n

∑n
i=1 L̄(f(xi), ȳi) =

1
n

∑n
i=1(L(T̂Tf(xi), ȳi) +

∥∥∥ȳi − T̂Tf(xi)
∥∥∥2

F
);

16 Set gradient −∇θL;
17 Update θ by A;
18 end

where f̄(x) is applied to approximate p(ȳ|x), f̄ j(x) refers
to the j-th element of f̄(x). ML-CLL problems aim to
recover a set of relevant labels per instance from a com-
plementary label. Since training instances are associated
with complementary labels, the common loss functions of
MLL are unsuitable for ML-CLL. Therefore, we define a
complementary loss function L̄ as

L̄(f(x), ȳ) = L(f̄(x), ȳ) = L(TTf(x), ȳ). (8)

Denote by f∗CL the minimizer of RL̄(f). Recalling the
definition of classifier-consistent, if a classifier learned by
an approach finally converges to the optimal classifier f∗

learned in MLL as the number of instances increases, then
this approach is classifier-consistent [46], [47], [48]. We de-
rive that our proposal is classifier-consistent based on a mild
assumption:

Assumption 5. Suppose the transition matrix T is invertible
and can perfectly recover the relationship between relevant labels
of x and its complementary label. Then, we have ȳ = TTy.

With Assumption 5, our approach trained on L̄ can be in-
ferred to be classifier-consistent, which is stated in Theorem
6. Naturally, Theorem 6 guarantees that the optimal classi-
fier learned from complementary labeled data converges to
the optimal one learned from fully supervised MLL.

Theorem 6. With Assumption 5, suppose the transition matrix
T is invertible, then the ML-CLL optimal classifier f∗CL converges
to the MLL optimal classifier f∗.
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The proof is represented in Appendix D. Thanks to BCE loss
is a popular loss function in MLL, we adopt BCE loss as the
base in this paper, then L̄ is expressed as

L̄(f(x), ȳ) =− ȳlog(TTf(x))− (1− ȳ)log(1−TTf(x))),
(9)

where 1 denotes a K-dimensional vector with 1 for all
elements.

5 REGULARIZATION-BASED ENHANCEMENT

In this section, an MSE-based regularization of our approach
is described. And we attempt to combine a small amount of
relevant labels to explore more possibilities of our proposal.

5.1 An MSE-Based Regularization

Previous works indicate that CE loss always makes the
model focus on hard instances that are difficult to be clas-
sified precisely, while MSE loss and Mean Absolute Error
(MAE) loss are less sensitive to hard instances since they
treat per instance coequally [18], [49]. As this property,
the convergence rate of CE loss is superior to MSE loss
and MAE loss, whereas this property makes CE loss more
prone to the overfitting problem than MSE loss and MAE
loss when noisy labels present at training data [18], [49].
Actually, an excellent approach can converge quickly during
the training process, and shows good generalization ability
and robustness for unseen instances [16].

Obviously, BCE loss has a similar property to CE loss,
which results in an excellent convergence rate of ap-
proaches. Meanwhile, approaches based on BCE loss are
easy to suffer from the overfitting problem when using
noisy labeled data to learn. In fact, ML-CLL is a problem
setting with dense noisy labels, BCE loss may cause the
overfitting problem of a model in ML-CLL. To cope with
this problem, we introduce an MSE-based regularizer based
on MSE loss (i.e. `2-norm regularization) to balance the
robustness and convergence requirement of the proposed
approach. Hence, the MSE-based regularizer is defined as:

L̄mse(f(x), ȳ) =
∥∥∥ȳ −TTf(x)

∥∥∥2

F
. (10)

Finally, we combine the complementary loss and the
MSE-based regularizer term, which leads to our target loss:

L̄(f(x), ȳ) = L̄(f(x), ȳ) + βL̄mse(f(x), ȳ), (11)

where β is the trade-off parameter and set as 1 (the selection
shown in Section 6). The all procedure of the proposed
approach (called MLCL) is shown in Algorithm 1.

5.2 Incorporation of Relevant Labels

In many practical situations, we can use complementary
labels and relevant labels to learn more accurate classifiers,
which is highly practical implementation. To this end, mo-
tivated by [11], [50], let us design a reasonable combination
of the loss derived from complementary labeled data and
relevant labeled data:

L̃(f(x), ȳ, ỹ) = L̄(f(x), ȳ) + ‖ỹ − f(x)‖2F , (12)

TABLE 2
Statistics of datasets.

Datasets |S| dim(S) L(S) LCard(S)
scene 2407 294 6 1.07
yeast 2417 103 14 4.23
eurlex dc 8636 5000 15 1.02
eurlex sm 13270 5000 15 1.74
corel5k 4194 499 15 1.70
corel16k 11103 120 15 1.77
bookmark 38912 2150 15 1.25
delicious 14784 500 15 4.32

where ỹ = [ỹ1, . . . , ỹ1] ∈ {0, 1}K denotes a binary vector
of relevant labels Ỹ of x, in which ỹ1 = 1 when the label
lk ∈ Ỹ . To provide more practicability, we do not restrict
given relevant labels Ỹ to must be equal to the set of relevant
labels Y , which means Ỹ ⊆ Y and Ỹ 6= ∅.

As explained in the instruction, we can naturally collect
data associated with complementary labels and relevant
labels via crowdsourcing [19]. Our loss function Eq. (12)
can leverage both kinds of labeled data to learn better
classifiers. We will experimentally show the usefulness of
this combination method in Section 6.

6 EXPERIMENTS

In this section, we will evaluate the effectiveness of MLCL,
where five common MLL criteria, including ranking loss,
hamming loss, one error, coverage and average precision, are
employed in this paper. Smaller values for the first four
criteria indicate better performance, while a higher value of
average precision indicates better performance. The label set
of x is predicted by Y = {lk|fk(x) > 0.5, 1 ≤ k ≤ K}.
All experiments were conducted using PyTorch [51] and
NVIDIA TESLA K80 GPU to implement. The code is avail-
able at https://github.com/GaoYi439/MLCL.

6.1 Experimental Settings
Datasets. We use eight widely-used MLL datasets, namely
corel5k, corel16k, delicious, eurlex dc, eurlex sm, yeast, book-
marks and scene, to our experiments2. Following [40], [41],
we adopt the same pre-processing to deal with the datasets.
More specifically, rare class labels are filtered out for
datasets with more than 15 class labels, whose class labels
are kept under 15. Accordingly, instances that are relevant
with removed class labels are filtered out as well. Detailed
characteristics of these datasets are shown in Table 2.

Base models. The linear model is used as the base model.
Baselines. Two typical MLL approaches, ML-KNN [26]

and LIFT [52], are utilized as baselines, which deal with
ML-CLL via regarding all possible labels in the candidate
label set as relevant labels for a training instance. Similarly,
three recent PML approaches are employed as comparing
approaches, including PML-lc [40], fpml [43] and PML-LRS
[42], which learn from training instances associated with
candidate labels. In addition, we employ a multi-class CLL
approach, called L-UW [15], as a baseline, which uses BEC
loss and sigmoid output layer instead of CE loss and softmax
output layer respectively to make L-UW suit for multi-
labeled data.

2. Publicly available at http://mulan.sourceforge.net/datasets.
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TABLE 3
Experimental results (mean ± std) on training data with uniform complementary labels. The best performance of each dataset is presented in

boldface, where •/◦ indicates whether MLCL is superior/inferior to baselines (with 5% t-test).

Methods ML-KNN LIFT fpml PML-lc PML-LRS L-UW MLCL
Ranking loss ↓

scene .340±.032• .289±.020• .504±.025• .490±.025• .258±.007◦ .372±.028• .259±.030
yeast .247±.012• .298±.012• .233±.013• .251±.015• .464±.019• .214±.011 .211±.013
eurlex dc .303±.016• .286±.016• .488±.033• .347±.025• .316±.011• .598±.024• .229±.026
eurlex sm .336±.010• .346±.012• .488±.006• .436±.011• .332±.009• .646±.015• .312±.014
corel5k .379±.034 .433±.037• .444±.026• .406±.075• .334±.009◦ .367±.031 .349±.035
corel16k .328±.047 .392±.027• .420±.033• .457±.046• .303±.005 .303±.035 .289±.042
bookmark .384±.006• .310±.007• .469±.019• .454±.036• .260±.004 .303±.010• .252±.013
delicious .398±.004• .383±.003• .438±.008• .445±.015• .305±.002 .302±.006 .310±.003

One Error ↓
scene .692±.030• .605±.023• .815±.027• .717±.021• .540±.023• .609±.041• .427±.018
yeast .297±.029• .284±.028• .251±.025 .583±.026• .738±.102• .251±.025 .251±.023
eurlex dc .776±.031• .670±.013• .925±.016• .774±.015• .847±.010• .837±.034• .594±.035
eurlex sm .689±.012• .679±.009• .872±.011• .662±.012 .731±.005• .696±.008• .656±.029
corel5k .815±.048• .842±.056• .854±.035• .811±.062• .756±.010 .769±.034 .736±.065
corel16k .736±.056 .789±.046• .816±.025• .946±.028• .730±.000• .693±.057 .690±.056
bookmark .801±.006• .649±.016• .885±.020• .798±.005• .584±.005• .590±.022• .509±.012
delicious .592±.018• .533±.015• .618±.017• .679±.011• .452±.007 .467±.023• .448±.016

Hamming loss ↓
scene .820±.002• .820±.003• .819±.002• .251±.007 .814±.000• .518±.042• .264±.027
yeast .697±.012• .697±.013• .697±.013• .268±.010• .316±.000• .243±.010 .235±.008
eurlex dc .932±.000• .932±.000• .118±.006• .104±.002• .890±.039• .806±.015• .092±.005
eurlex sm .883±.001• .883±.001• .148±.005• .138±.002 .825±.027• .773±.008• .139±.005
corel5k .886±.007• .887±.007• .887±.007• .155±.004 .869±.002• .463±.018• .229±.068
corel16k .882±.009• .882±.009• .882±.009• .177±.011◦ .862±.001• .423±.033• .202±.067
bookmark .917±.001• .916±.001• .420±.009• .123±.001◦ .813±.001• .409±.014• .140±.004
delicious .711±.003• .711±.003• .711±.003• .394±.011• .459±.002• .369±.027• .289±.004

Coverage ↓
scene .299±.026• .256±.017• .434±.021• .420±.021• .230±.006 .328±.022• .234±.025
yeast .579±.018• .649±.020• .553±.033• .506±.023 .742±.027• .525±.017 .525±.021
eurlex dc .285±.014• .269±.015• .458±.031• .326±.023• .298±.010• .334±.017• .204±.023
eurlex sm .416±.010• .427±.013• .569±.010• .509±.013• .419±.010• .519±.008• .365±.014
corel5k .473±.034 .516±.035• .529±.028• .492±.072 .429±.008 .457±.038 .445±.048
corel16k .430±.044 .488±.027• .513±.035• .537±.051• .405±.008 .407±.033 .393±.042
bookmark .359±.007• .328±.008• .475±.019• .458±.035• .280±.004 .292±.011• .279±.011
delicious .712±.006• .703±.004• .726±.009• .695±.009• .609±.003◦ .613±.006◦ .632±.007

Average Precision ↑
scene .543±.024• .600±.017• .417±.021• .465±.018• .637±.011• .568±.026• .699±.017
yeast .677±.019• .636±.017• .688±.017• .610±.016• .459±.032• .712±.020 .718±.019
eurlex dc .412±.018• .471±.012• .232±.022• .373±.015• .346±.009• .250±.031• .549±.025
eurlex sm .419±.010• .421±.010• .273±.006• .367±.009• .402±.005• .285±.009• .474±.017
corel5k .355±.035• .307±.038• .297±.023• .330±.044• .397±.010 .371±.028 .391±.037
corel16k .405±.050 .350±.035• .325±.022• .248±.026• .424±.006 .437±.044 .449±.049
bookmark .383±.007• .480±.010• .267±.019• .329±.016• .534±.004• .506±.014• .584±.013
delicious .487±.006• .511±.004• .457±.006• .446±.010• .580±.002 .570±.009 .572±.005

6.2 Comparison on Uniform Complementary Labels

Setup. Weight-decay is set as 1e − 4 and learning rate is
selected from {1e − 1, 1e − 2, 1e − 3} for all data sets.
We employ Adam [53] optimization method, and set the
number of batch-size and epoch as 256 and 200 respectively.
L-UW applies the same model and hyper-parameters as
ours. Here, we estimate T with a linear model. We use
Ten-fold cross-validation to evaluate experiments, where
training data is associated with complementary labels that
are generated by randomly selecting one of possible labels
excepting relevant labels (uniform complementary labels),
and test data is equipped with the set of relevant labels.

The mean metrics value and standard deviation (std) will be
reported as final experimental results for all approaches.

Results. Table 3 is utilized to report experimental re-
sults of various approaches on eight data sets equipped
with uniform complementary labels. ↑ / ↓ indicates the
larger/smaller the value, the better the performance.

According to reported results in Table 3, we can observe
that results of MLCL are superior or comparable perfor-
mance against baselines out of different data sets on five
criteria. Our approach achieves the best performance in
most cases. Specifically, the proposed approach outperforms
LIFT on eight datasets across all metrics. This is because
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TABLE 4
Experimental results (mean ± std) on training data with biased complementary labels. The best performance of each dataset is presented in

boldface, where •/◦ represents whether MLCL is superior/inferior to baselines (with 5% t-test).

Methods ML-KNN LIFT fpml PML-lc PML-LRS L-UW MLCL
Ranking loss↓

scene .086±.015◦ .319±.025 .486±.027• .492±.019• .258±.013◦ .368±.025• .326±.050
yeast .240±.014• .297±.016• .227±.013• .248±.012• .454±.024• .202±.012 .199±.012
eurlex dc .668±.009• .636±.021• .537±.015• .349±.028• .326±.009 .586±.036• .308±.034
eurlex sm .364±.020• .392±.014• .499±.019• .447±.012• .333±.009• .641±.015• .316±.016
corel5k .324±.038◦ .431±.030• .474±.028• .386±.047 .357±.012 .382±.033 .358±.039
corel16k .413±.063• .431±.041• .454±.033• .471±.068• .375±.015 .373±.029 .357±.040
bookmark .567±.007• .449±.042• .552±.018• .491±.016• .244±.003• .326±.008• .211±.011
delicious .430±.005• .413±.005• .452±.008• .433±.011• .314±.003◦ .349±.012◦ .360±.008

One Error↓
scene .228±.032◦ .669±.043• .803±.038• .720±.018• .613±.017• .696±.025• .553±.054
yeast .330±.032• .280±.025• .254±.028 .583±.027• .546±.097• .256±.025 .254±.024
eurlex dc .977±.005• .959±.014• .947±.008• .774±.015• .822±.004• .822±.038• .695±.074
eurlex sm .699±.016• .753±.036• .886±.024• .664±.014 .737±.011• .704±.012• .650±.045
corel5k .738±.067 .851±.038• .861±.034• .828±.059• .747±.016 .792±.039• .752±.037
corel16k .780±.061• .827±.049• .837±.025• .952±.021• .730±.000 .731±.053 .707±.063
bookmark .906±.007• .804±.037• .925±.008• .792±.004• .576±.003• .635±.022• .502±.008
delicious .585±.012• .557±.013• .617±.025• .681±.012• .434±.006◦ .485±.016• .463±.017

Hamming loss ↓
scene .088±.009◦ .819±.002• .820±.002• .252±.006 .814±.000• .523±.048• .290±.029
yeast .697±.012• .697±.013• .697±.013• .268±.010• .316±.000• .253±.017• .239±.008
eurlex dc .932±.000• .932±.000• .118±.007• .104±.002 .889±.039• .799±.035• .109±.011
eurlex sm .883±.001• .883±.001• .148±.005• .139±.002 .825±.027• .772±.009• .138±.007
corel5k .114±.008◦ .887±.007• .887±.007• .157±.003• .869±.002• .498±.012• .208±.033
corel16k .882±.009• .882±.009• .882±.009• .178±.010 .862±.001• .481±.028• .207±.086
bookmark .917±.001• .916±.001• .419±.009• .122±.001◦ .813±.003• .549±.046• .146±.003
delicious .711±.003• .711±.003• .711±.003• .388±.013• .459±.002• .453±.015• .304±.005

Coverage↓
scene .086±.013◦ .280±.020 .420±.023• .420±.016• .229±.011◦ .321±.021• .286±.041
yeast .551±.017• .638±.028• .533±.012• .493±.025 .723±.040• .500±.018 .498±.021
eurlex dc .626±.008• .596±.019• .504±.014• .328±.026• .306±.009• .333±.018• .274±.030
eurlex sm .432±.018• .456±.014• .579±.015• .520±.015• .418±.009• .512±.009• .362±.016
corel5k .419±.055 .515±.024• .555±.031• .480±.041 .451±.013 .470±.036 .449±.038
corel16k .498±.052• .521±.038• .542±.035• .533±.066• .454±.018 .468±.030 .453±.039
bookmark .565±.006• .455±.039• .553±.017• .492±.014• .265±.003• .308±.013• .231±.011
delicious .736±.004• .723±.005• .737±.008• .691±.009 .625±.003◦ .671±.012◦ .688±.006

Average Precision ↑
scene .860±.020◦ .559±.028• .428±.026• .462±.014• .608±.013 .529±.020• .618±.046
yeast .670±.023• .634±.016• .691±.022• .614±.015• .500±.026• .719±.020 .726±.018
eurlex dc .145±.005• .166±.016• .201±.009• .371±.020• .357±.005• .266±.031• .456±.061
eurlex sm .405±.013• .373±.016• .262±.016• .366±.010• .400±.007• .282±.011• .482±.025
corel5k .409±.040 .300±.030• .282±.017• .325±.048• .392±.017 .352±.032 .380±.037
corel16k .355±.054• .318±.033• .301±.024• .240±.030• .393±.054 .384±.036 .407±.047
bookmark .219±.004• .320±.037• .212±.007• .320±.004• .544±.003• .469±.014• .599±.008
delicious .473±.006• .490±.006• .450±.008• .449±.010• .581±.002◦ .544±.010 .544±.009

our approach is better at tackling the issue that training
data is associated with relevant labels and irrelevant la-
bels simultaneously than fully supervised MLL algorithms.
Furthermore, experimental results of PML-lc and PML-LRS
are inferior to ours in most cases, which demonstrates that
PML approaches are indeed inferior to our approach in
cases of dense noisy labels. Similarly, based on the results
of L-UW shown in Table 3, we observe that our approach
outperforms L-UW on almost all datasets and metrics other
than ranking loss and coverage on the delicious dataset. This
reflects that label correlations are important to solve ML-
CLL problems, which leads to the proposed approach taking

label correlations into account surpasses L-UW that ignores
label correlations.

6.3 Comparison on Biased Complementary Labels
Setup. To evaluate the effectiveness of our approach in dif-
ferent situations, we utilize training data with biased com-
plementary labels that are generated via the co-occurrence
rate of relevant labels. Specifically, we select a complemen-
tary label of an instance x from Y \Y , and the selecting rule
follows: the class label with a lower co-occurrence rate has a
higher probability to be selected as a complementary label.
We adopt training data with biased complementary labels
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TABLE 5
Ablation experimental results (mean ± std) on training data with uniform complementary labels. The best performance is in boldface.

Methods
Uniform complementary labels Biased complementary labels

scene yeast eurlex dc corel5k scene yeast eurlex dc corel5k
Hamming loss↓

MLCL .264±.027 .235±.008 .092±.005 .229±.068 .290±.029 .239±.008 .109±.011 .208±.033
Without C .290±.039 .421±.011 .109±.018 .466±.025 .294±.029 .409±.012 .088±.004 .444±.031
Without L̄mse .510±.044 .229±.007 .509±.043 .461±.053 .481±.047 .230±.009 .512±.046 .489±.036

Ranking loss↓
MLCL .259±.030 .211±.013 .229±.026 .349±.035 .326±.050 .199±.012 .308±.034 .358±.039
Without C .282±.063 .419±.018 .277±.041 .487±.021 .348±.046 .406±.016 .268±.024 .467±.026
Without L̄mse .379±.024 .216±.010 .303±.028 .362±.030 .353±.018 .204±.011 .320±.025 .387±.027

One error↓
MLCL .427±.018 .251±.023 .594±.035 .736±.065 .553±.054 .254±.024 .695±.074 .752±.037
Without C .474±.047 .633±.043 .708±.106 .866±.019 .560±.042 .612±.051 .564±.029 .855±.027
Without L̄mse .607±.037 .250±.025 .740±.048 .734±.058 .686±.013 .256±.025 .753±.044 .773±.068

Coverage↓
MLCL .234±.025 .525±.021 .204±.023 .445±.048 .286±.041 .498±.021 .274±.030 .449±.038
Without C .255±.055 .683±.029 .247±.035 .565±.032 .306±.039 .660±.023 .240±.023 .547±.031
Without L̄mse .334±.020 .527±.011 .249±.024 .451±.035 .310±.015 .501±.015 .265±.022 .473±.023

Average precision↑
MLCL .699±.017 .718±.019 .549±.025 .391±.037 .618±.046 .726±.018 .456±.061 .380±.037
Without C .671±.045 .472±.018 .469±.085 .274±.014 .611±.038 .489±.015 .447±.021 .289±.022
Without L̄mse .566±.023 .711±.019 .426±.040 .389±.041 .541±.013 .717±.020 .411±.034 .359±.050

TABLE 6
Parameter sensitivity analysis on uniform complementary-label data, where metric is average precision. The best performance is in boldface.

β scene yeast eurlex dc eurlex sm corel5k corel16k bookmark delicious
0.1 .678±.017 .714±.019 .545±.019 .451±.025 .374±.033 .444±.046 .565±.007 .554±.005
0.3 .683±.015 .716±.018 .549±.021 .460±.021 .378±.032 .447±.047 .579±.011 .565±.005
0.5 .687±.016 .718±.018 .547±.022 .463±.016 .385±.031 .447±.048 .583±.008 .575±.005
0.8 .693±.016 .718±.018 .541±.022 .469±.018 .387±.037 .448±.048 .582±.007 .572±.006
1 .699±.017 .718±.019 .549±.025 .474±.017 .391±.037 .449±.049 .584±.013 .572±.005

to train the model, while test data is equipped with relevant
label sets to evaluate the effectiveness of our approach. For
other experimental settings, we apply same settings with
Subsection 5.2.

Results. The mean and std of results on test data are
shown in Table 4. According to results shown in Table 4,
we can summarize the following impressive observations:
(1) MLCL achieves superior or comparable performance
to LIFT, fpml, PML-lc, PML-LRS and L-UW on different
data sets, which proves that the proposed approach can
predict the set of proper labels for unseen instances from
complementary labeled data; (2) Although MLCL fails to
achieve the best result on the scene dataset, our approach
is better than other baselines in the rest of datasets, which
indicates that our approach can effectively deal with ML-
CLL problems than others. These observations demonstrate
that the proposed method can both hold for the situation of
data with uniform and biased complementary labels.

6.4 Additional Experiments
Ablation experiments. We then explore the effect of dif-
ferent learning components on MLCL performance. Table
5 summarizes results of MLCL without the different com-
ponents, which are trained on the data with uniform com-
plementary labels. In Table 5, without C refers to MLCL
directly using the estimated initial transition matrix S for

training, and without L̄mse indicates that MLCL only uti-
lizes Eq. (9) for optimization.

From results reported in Table 5, the performance of
MLCL surpasses that without different components in most
cases, which shows that two components, including using
label correlations to correct and an MSE-based regularizer,
are beneficial for our approach to improve the performance.
Especially, estimating T based on label correlations pushes
the proposed approach performance forward significantly
compared with that without C on most cases. Similarly,
an MSE-based regularizer brings significant benefits for our
approach, which demonstrates that an MSE-based regular-
izer balances the robustness and convergence rate of BCE
loss. These indicate that using label correlations to estimate
the transition matrix T and an MSE-based regularizer are
effective strategies to alleviate ML-CLL problems.

Trade-off parameter β. Table 6 reports the performance
of MLCL with varying β values that trade-off the comple-
mentary loss function L̄ and an MSE-based regularization
L̄mse. Here, average precision is regarded as the criterion, and
the training data is with uniform complementary labels. β
is selected from the candidate value list {0.1, 0.3, 0.5, 0.8, 1}.
We can observe the best results of most datasets is achieved
at β = 1 and the performance drops when β takes a smaller
value. In general, a relatively large β (β ≤ 1) usually leads
to better performance than a small value. Therefore, we set
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TABLE 7
Experimental results (mean ± std) of five criteria.“Fully supervised” is the linear model training with the fully supervised data (fully supervised
MLL). “CL” denotes that each instance is associated with a complementary label sampled uniformly. “RL” presents that the model only using

relevant labels Ỹ to train. “CL & RL” uses the linear model with the loss function Eq. (12) to train, where each instance is equipped with a
complementary label and a relevant label.

Datasets scene yeast eurlex dc eurlex sm corel5k corel16k bookmark delicious
Hamming loss↓

Fully supervised .120±.013 .208±.009 .004±.000 .033±.001 .198±.012 .196±.012 .098±.004 .276±.006
CL .264±.027 .235±.008 .092±.005 .139±.005 .229±.068 .202±.067 .140±.004 .289±.004
RL .128±.012 .241±.011 .005±.001 .055±.005 .184±.014 .152±.010 .076±.002 .285±.004
CL & RL .124±.008 .225±.010 .005±.001 .053±.002 .178±.012 .172±.010 .085±.002 .285±.004

Ranking loss↓
Fully supervised .075±.009 .169±.009 .003±.001 .019±.001 .258±.029 .222±.029 .090±.005 .226±.004
CL .259±.030 .211±.013 .229±.026 .312±.014 .349±.035 .289±.042 .252±.013 .310±.003
RL .081±.009 .23±.013 .005±.001 .052±.027 .269±.031 .250±.025 .116±.006 .295±.008
CL & RL .082±.011 .191±.011 .005±.001 .044±.002 .268±.031 .227±.021 .102±.004 .267±.004

One Error↓
Fully supervised .222±.032 .223±.023 .019±.004 .069±.005 .627±.038 .588±.056 .313±.009 .340±.012
CL .427±.018 .251±.023 .594±.035 .656±.029 .736±.065 .690±.056 .509±.012 .448±.016
RL .231±.032 .280±.024 .022±.005 .106±.02 .641±.042 .616±.042 .338±.007 .438±.019
CL & RL .229±.033 .255±.032 .022±.005 .098±.007 .639±.040 .600±.044 .324±.007 .398±.017

Coverage↓
Fully supervised .077±.009 .451±.019 .004±.000 .074±.002 .347±.044 .315±.024 .112±.005 .527±.007
CL .234±.025 .525±.021 .204±.023 .365±.014 .445±.048 .393±.042 .279±.011 .632±.007
RL .083±.008 .561±.024 .007±.002 .123±.035 .364±.048 .353±.025 .142±.006 .582±.008
CL & RL .084±.010 .474±.021 .006±.001 .113±.004 .363±.048 .326±.020 .125±.004 .564±.006

Average Precision↑
Fully supervised .868±.018 .760±.015 .988±.003 .943±.004 .494±.024 .530±.038 .766±.007 .662±.005
CL .699±.017 .718±.019 .549±.025 .474±.017 .391±.037 .449±.049 .584±.013 .572±.005
RL .860±.018 .704±.013 .984±.003 .888±.032 .484±.028 .505±.028 .737±.006 .590±.009
CL & RL .860±.019 .734±.018 .985±.004 .899±.004 .485±.028 .523±.030 .753±.006 .618±.005

β = 1 for MLCL.

6.5 Combination of Complementary Labels and Rele-
vant Labels

Setup. Finally, we demonstrate the effectiveness of combin-
ing relevant labeled data and complementary labeled one.
The training data is associated with uniform complementary
labels and relevant labels simultaneously. More specifically,
an instance x is associated with a complementary label ȳ
and relevant labels Ỹ , where ȳ is uniformly selected and Ỹ
is randomly selected from the relevant label set Y of x (i.e.,
Ỹ ⊆ Y ). Here, we set |Ỹ | = 1 that means each instance
only associated with a complementary label and a relevant
label. The other experimental settings are the same with
Subsection 5.2.

Results. We compare three methods: (1) the “Fully su-
pervised” method uses the linear model to train with the
fully supervised data, which is fully supervised MLL; (2)
the “CL” method refers to MLCL training with the uni-
form complementary-label data; (3) the “RL” method uses
the linear model to train with relevant labels Ỹ ; (4) the
combination (“CL & RL”) method adopts the linear model
with the loss function Eq. (12) to train, where the training
data is equipped with a combination of complementary
labels and relevant labels. Table 7 reports the experimental
results on five criteria. We can see that the performance
of “CL& RL” method is much superior to “CL” method
on all datasets over hamming loss, ranking loss, one error,
coverage and average precision, such as “CL& RL” method

outperforms “CL” method by a large margin over average
precision (+0.436 on eurlex dc and +0.425 on eurlex sm).
This demonstrates that the ML-CLL is easily applied to fully
supervised MLL scenarios, MLL with missing labels [54],
[55] or other MLL scenarios. Moreover, the results in “CL
& RL” achieve comparable performance to “RL” method,
which illustrates that using complementary labels improves
performance and the information encompassed by relevant
labels does not overshadow or encompass the information
from complementary labels. Finally, the results of “CL &
RL” method close to “Fully supervised” method, which
illustrates that ML-CLL can get excellent results with just
a small amount of additional information. This is useful for
application in the real world because ML-CLL can obtain
good performance through less expensive labeled data.

7 CONCLUSION

In this paper, we theoretically analyze the reason why the
estimated transition matrix in multi-class CLL is distorted
in ML-CLL. To alleviate the difficulty in directly calculating
the transition matrix from complex label correlations under
multi-labeled data, we propose a two-step method to esti-
mate the transition matrix T in ML-CLL, which uses label
correlations to correct an initial transition matrix. Further-
more, we theoretically show that the proposed approach
is classifier-consistent. Additionally, due to the robustness
of MSE loss, an MSE-based regularizer is introduced to
alleviate the tendency of the fast convergent BCE loss over-
fitting to noises. Finally, we show that our proposed ML-
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CLL can be easily combined with relevant labels and the
proposed method can achieve performance comparable to
fully supervised MLL with just a small amount of additional
information.
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APPENDIX A
THE PROOF OF THEOREM 1
Theorem 1. Given an instance x, suppose Y is the relevant label set and the label lj is the complementary label which is randomly
selected. Then the following equality holds:

p(ȳj = 1|x) =
∑

C∈Y′,lj /∈C

p(ȳj = 1|Y = C)p(Y = C|x) ≥
K∑

k=1,k 6=j
p(ȳj = 1|yk = 1)p(yk = 1|x).

Proof. Firstly, we should introduce the addition rule of probability: p(AB) = p(A) + p(B) − p(A ∪ B), so we have
p(AB) ≥ p(A) + p(B). We start to prove the above inequlity. According to the assumption: p(ȳ|Y ) = p(ȳ|Y,x), we have

p(ȳj = 1|x) =
∑

C∈Y′,lj /∈C

p(ȳj = 1|Y = C)p(Y = C|x)

=
∑

C∈Y′,lj /∈C

p(ȳj = 1|Y = C,x)p(Y = C|x)

=
∑

C∈Y′,lj /∈C

p(ȳj = 1, Y = C|x)

=
∑

C∈Y′,lj /∈C

p(Y = C|ȳj = 1,x)p(ȳj = 1|x).

According to addition rule of probability, so we have

p(ȳj = 1|x) ≥
∑

C∈Y′,lj /∈C

 K∑
k=1,k 6=j,lk∈C

p(yk = 1|ȳj = 1,x) +
K∑

k=1,lk /∈C

p(yk = 0|ȳj = 1,x)

 p(ȳj = 1|x)

≥
∑

C∈Y′,lj /∈C

K∑
k=1,k 6=j,lk∈C

p(yk = 1|ȳj = 1,x)p(ȳj = 1|x) ∵
K∑

k=1,lk /∈C

p(yk = 0|ȳj = 1,x) ≥ 0

=
∑

C∈Y′,lj /∈C

K∑
k=1,k 6=j,lk∈C

p(ȳj = 1|yk = 1,x)p(yk = 1|x)

=
∑

C∈Y′,lj /∈C

K∑
k=1,k 6=j

p(ȳj = 1|yk = 1,x)p(yk = 1|x) ∵ p(yk = 1|x) = 0 if lk /∈ Y

=
K∑

k=1,k 6=j

∑
C∈Y′,lj /∈C

p(ȳj = 1|yk = 1,x)p(yk = 1|x)

=
K∑

k=1,k 6=j
(2K−1 − 1)p(ȳj = 1|yk = 1,x)p(yk = 1|x)

≥
K∑

k=1,k 6=j
p(ȳj = 1|yk = 1,x)p(yk = 1|x)

=
K∑

k=1,k 6=j
p(ȳj = 1|yk = 1)p(yk = 1|x).

APPENDIX B
THE PROOF OF THEOREM 3
Theorem 3. Under a MLL scenario: suppose the labels lz1 , lz2 ∈ Y (z1, z2 ∈ [K], z1 6= z2) are dependent, and the labels belonging
to Y \ {lz1 , lz2} are mutually exclusive. For any x ∈ X , its label set Y ⊆ {lz1 , lz2} and Y 6= ∅. Let the label lj (j ∈ [K], j 6= z1, z2)
be the complementary label of x. Tz1j and Tz2j calculated from label correlations satisfy

Tz1j =
p(ȳj = 1|x)

p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)
,

Tz2j =
p(ȳj = 1|x)

p(yz1 = 1|ȳj = 1, yz2 = 1,x)p(yz2 = 1|x)
,
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where [K] denotes the integer set {1, 2, . . . ,K}. The difference of T and Q on the complementary label lj is

`j ≥ 2(
1

ξ2
− 1)p(ȳj = 1|x),

where ξ = max{p(yz2 = 1|ȳj = 1, yz1 = 1,x), p(yz1 = 1|ȳj = 1, yz2 = 1,x)}.

Proof. We start calculating the difference `j from estimating the transition probabilities Tz1j and Tz2j . According to
Definition 2 and the description of Theorem 3, we have

p(ȳj = 1|x) =
K∑

k=1,k 6=j,z1,z2

p(ȳj = 1|yk = 1,x)p(yk = 1|x) + p(ȳj = 1|yz1 = 1, yz2 = 1,x)p(yz1 = 1, yz2 = 1|x)

+ p(ȳj = 1|yz1 = 1, yz2 = 0,x)p(yz1 = 1, yz2 = 0|x) + p(ȳj = 1|yz1 = 0, yz2 = 1,x)p(yz1 = 0, yz2 = 1|x)

+ p(ȳj = 1|yz1 = 0, yz2 = 0,x)p(yz1 = 0, yz2 = 0|x)

=
K∑

k=1,k 6=j,z1,z2

p(ȳj = 1|yk = 1,x)p(yk = 1|x) + p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1,x)p(yz1 = 1|x)

+ p(yz1 = 1|ȳj = 1, yz2 = 0,x)p(ȳj = 1|yz2 = 0,x)p(yz2 = 0|x)

+ p(yz2 = 1|ȳj = 1, yz1 = 0,x)p(ȳj = 1|yz1 = 0,x)p(yz1 = 0|x)

+ p(yz2 = 0|ȳj = 1, yz1 = 0,x)p(ȳj = 1|yz1 = 0,x)p(yz1 = 0|x).

Based on the assumption that ȳ and x are conditionally independent given Y , then we can have

p(ȳj = 1|x) =
K∑

k=1,k 6=j,z1,z2

p(ȳj = 1|yk = 1)p(yk = 1|x) + p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1)p(yz1 = 1|x)

+ p(yz1 = 1|ȳj = 1, yz2 = 0,x)p(ȳj = 1|yz2 = 0)p(yz2 = 0|x)

+ p(yz2 = 1|ȳj = 1, yz1 = 0,x)p(ȳj = 1|yz1 = 0)p(yz1 = 0|x)

+ p(yz2 = 0|ȳj = 1, yz1 = 0,x)p(ȳj = 1|yz1 = 0)p(yz1 = 0|x).

Since p(ȳj = 1|yz1 = 0) and p(ȳj = 1|yz2 = 0) do not hold according to the definition of the transition matrix, we can
obtain

p(ȳj = 1|x) =
K∑

k=1,k 6=j,z1,z2

p(ȳj = 1|yk = 1)p(yk = 1|x) + p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1)p(yz1 = 1|x)

= p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1)p(yz1 = 1|x) because p(yk = 1|x) = 0 if lk /∈ Y

⇒ Tz1j = p(ȳj = 1|yz1 = 1) =
p(ȳj = 1|x)

p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)
.

Similarly, we can get

Tz2j = p(ȳj = 1|yz2 = 1) =
p(ȳj = 1|x)

p(yz1 = 1|ȳj = 1, yz2 = 1,x)p(yz2 = 1|x)
.

Next, we calculate the difference `j . The rest of the elements of T·j are same as those estimated by multi-class CLL.
According the definition of `j , we have

`j =
K∑
k=1

|Tkj −Qkj |

=
∣∣Tz1j + Tz2j − 2p(ȳj = 1|x)

∣∣
=

∣∣∣∣ p(ȳj = 1|x)

p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)
+

p(ȳj = 1|x)

p(yz1 = 1|ȳj = 1, yz2 = 1,x)p(yz2 = 1|x)
− 2p(ȳj = 1|x)

∣∣∣∣
≥
∣∣∣∣2(

1

ξ2
− 1)p(ȳj = 1|x)

∣∣∣∣
= 2(

1

ξ2
− 1)p(ȳj = 1|x). ∵

1

ξ2
≥ 1

Because 0 ≤ p(yz1 = 1|x) ≤ p(yz1 = 1|ȳj = 1, yz2 = 1,x) ≤ 1 and 0 ≤ p(yz2 = 1|x) ≤ p(yz2 = 1|ȳj = 1, yz1 = 1,x) ≤
1, ξ is defined as ξ = max{p(yz2 = 1|ȳj = 1, yz1 = 1,x), p(yz1 = 1|ȳj = 1, yz2 = 1,x)}, the above inequation holds.
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APPENDIX C
THE PROOF OF COROLLARY 4

Corollary 4. Under a MLL scenario: there are m (m ≥ 2) labels lz1 , lz2 , . . . , lzm ∈ Y (z1, . . . , zm ∈ [K]) that are dependent,
while the labels belong to Y \ {lz1 , lz2 , . . . , lzm} are mutually exclusive. For any x ∈ X , its relevant set Y ⊆ {lz1 , lz2 . . . , lzm} and
Y 6= ∅. Suppose the label lj is the complementary label of x. The difference `j between T and Q has

`j ≥ m(
1

ξm
− 1)p(ȳj = 1|x),

where ξ = max{p(yzm = 1|ȳj = 1, yz1 = 1, . . . , yzm−1 = 1,x), p(yzm−1 = 1|ȳj = 1, yz1 = 1, . . . , yzm−2 = 1, yzm =
1,x), . . . , p(yz1 = 1|ȳj = 1, yz2 = 1, . . . , yzm = 1,x)} (ξ ∈ (0, 1]).

Proof. Here, we apply induction to compute the difference as m increases. We start by computing the difference in the
case of m = 3. Suppose class labels lz1 , lz2 , lz3 ∈ Y are dependent, while the rest of labels in the label space are mutually
exclusive. x is associated with Y ⊆ {lz1 , lz2 , lz3}, and Y 6= ∅. Then we calculate transition probabilities in T from label
correlations according to Theorem 3 as follows:

p(ȳj = 1|x) =
K∑

k=1,k 6=j,z1,z2,z3

p(ȳj = 1|yk = 1,x)p(yk = 1|x) + p(ȳj = 1, yz1 = 1, yz2 = 1, yz3 = 1|x)

= p(ȳj = 1, yz1 = 1, yz2 = 1, yz3 = 1|x)

= p(yz3 = 1|ȳj = 1, yz1 = 1, yz2 = 1,x)p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1,x)p(yz1 = 1|x)

= p(yz3 = 1|ȳj = 1, yz1 = 1, yz2 = 1,x)p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1)p(yz1 = 1|x)

⇒ Tz1j = p(ȳj = 1|yz1 = 1) =
p(ȳj = 1|x)

p(yz3 = 1|ȳj = 1, yz1 = 1, yz2 = 1,x)p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)
.

Tz2j and Tz3j use the same way to estimate. Due to 0 ≤ p(yz1 = 1|x) ≤ p(yz1 = 1|ȳj = 1, yz2 = 1,x) ≤ p(yz1 =
1|ȳj = 1, yz2 = 1, yz3 = 1,x) ≤ 1, let ξ = max{p(yz3 = 1|ȳj = 1, yz1 = 1, yz2 = 1,x), p(yz2 = 1|ȳj = 1, yz1 = 1, yz3 =
1,x), p(yz1 = 1|ȳj = 1, yz2 = 1, yz3 = 1,x)}, we can obtain

Tz1j = p(ȳj = 1|yz1 = 1) ≥ 1

ξ3
p(ȳj = 1|x).

Similarly, we can compute Tz2j ,Tz3j ≥ 1
ξ3 p(ȳ

j = 1|x). Then the difference `j is

`j =
K∑
k=1

|Tkj −Qkj |

=
∣∣Tz1j + Tz2j + Tz3j − 3p(ȳj = 1|x)

∣∣
≥ 3(

1

ξ3
− 1)p(ȳj = 1|x).

Similarly, for any m (0 < m < K), suppose class labels lz1 , lz2 , . . . , lzm ∈ Y are strongly dependent, while the rest
of labels in the label space are mutually exclusive. x is associated with Y ⊆ {lz1 , lz2 , lz3} and Y 6= ∅. Then we calculate
transition probabilities from label correlations:

p(ȳj = 1|x) =
K∑

k=1,k 6=j,z1,...,zm

p(ȳj = 1|yk = 1,x)p(yk = 1|x) + p(ȳj = 1, yz1 = 1, . . . , yzm = 1|x)

= p(ȳj = 1, yz1 = 1, . . . , yzs = 1|x)

= p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(ȳj = 1|yz1 = 1)p(yz1 = 1|x)Πm
i=3p(y

zi = 1|ȳj = 1, yz1 = 1, . . . , yzi−1 = 1,x)

⇒ Tz1j = p(ȳj = 1|yz1 = 1) =
p(ȳj = 1|x)

p(yz2 = 1|ȳj = 1, yz1 = 1,x)p(yz1 = 1|x)Πm
i=3p(y

zi = 1|ȳj = 1, yz1 = 1, . . . , yzi−1 = 1,x)
.

As discussed above, Tz1j ≥ 1
ξm p(ȳ

j = 1|x) since ξ = max{p(yzm = 1|ȳj = 1, yz1 = 1, . . . , yzm−1 = 1,x), p(yzm−1 =

1|ȳj = 1, yz1 = 1, . . . , yzm−2 = 1, yzm = 1,x), . . . , p(yz1 = 1|ȳj = 1, yz2 = 1, . . . , yzm = 1,x)} (ξ ∈ (0, 1]). Using the same
calculation way, we can obtain Tz2j , . . . ,Tzmj ≥ 1

ξm p(ȳ
j = 1|x). Based on induction, we can summarize the difference

`j =
∑K
k=1 |Tkj −Qkj | ≥ m( 1

ξm − 1)p(ȳj = 1|x).
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APPENDIX D
THE PROOF OF THEOREM 6
Theorem 6. With Assumption 5, suppose the transition matrix T is invertible, then the ML-CLL optimal classifier f∗CL converges to
the MLL optimal classifier f∗.

Proof. Before presenting the proof, we need to introduce the definition of proper composite losses as defined in [56]. According
to the definition, many losses are considered composite, comprising a loss and a link function denoted as ψ (where ψ is
invertible). Let Lψ be a composite loss, which can be expressed with the assistance of a link function as follows:

Lψ(g(x),y) = L(ψ−1(g(x)),y),

where the inverse link function (ψ−1) represents the sigmoid function in the case of binary cross-entropy (BCE) loss. In this
context, g(·) ∈ RK denotes the output of a neural network before the application of the sigmoid function, and gk(·) denotes
the k-th element of this output. Within neural networks, the real-valued function f(x) denotes the output of g(x) after
passing through the sigmoid function. Moreover, [56] introduced the property of composite losses when the composite loss
is considered proper, which means:

argmin
g

E(x,y)∼D[Lψ(g(x),y)] = ψ(p(y|x)).

In cases where composite losses are deemed proper, their minimizer exhibits a specific form corresponding to the link
function applied to the class-conditional probabilities p(y|x). It’s noteworthy that binary cross-entropy (BCE) loss and
square loss are both examples of proper composite losses [46].
With Eq. (8) and the preceding equations, it is straightforward to have

L̄(f(x), ȳ) = L(TTf(x), ȳ)

= L(TTψ−1(g(x)), ȳ)

= Lφ(g(x), ȳ),

where φ−1 refers to the inverse link function, and we denote φ−1 = ψ−1 ◦ TT . Since φ−1 is composited by invertible
functions, φ−1 is also invertible. Equivalently, φ = (T−1)T ◦ ψ. Leveraging the property of proper composite losses, the
minimizer of the expected risk is:

argmin
g

E(x,ȳ)∼D̄[Lφ(g(x), ȳ)] = φ(p(ȳ|x))

= ψ((T−1)T p(ȳ|x))

= ψ((T−1)TTT p(y|x))

= ψ(p(y|x))

= argmin
g

E(x,y)∼D[Lψ(g(x),y)].

Since the sigmoid function preserves the rank of its inputs, and f(x) is the output of g(x) after passing through the sigmoid
function, it holds for that

argmin
f

E(x,ȳ)∼D̄[L̄(f(x), ȳ)] = argmin
f

E(x,y)∼D[L(f(x),y]

⇔ argmin
f

RL̄(f) = argmin
f

RL(f).

Finally, it can be observed that f∗CL converges to f∗, where f∗CL and f∗ are minimizers of RL̄(f) and RL(f), respectively.


