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Towards Enabling Binary Decomposition for
Partial Multi-Label Learning
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Abstract—Partial multi-label learning (PML) is an emerging weakly supervised learning framework, where each training example is
associated with multiple candidate labels which are only partially valid. To learn the multi-label predictive model from PML training
examples, most existing approaches work by identifying valid labels within candidate label set via label confidence estimation. In this
paper, a novel strategy towards partial multi-label learning is proposed by enabling binary decomposition for handling PML training
examples. Specifically, the widely used error-correcting output codes (ECOC) techniques are adapted to transform the PML learning
problem into a number of binary learning problems, which refrains from using the error-prone procedure of estimating labeling
confidence of individual candidate label. In the encoding phase, a ternary encoding scheme is utilized to balance the definiteness and
adequacy of the derived binary training set. In the decoding phase, a loss weighted scheme is applied to consider the empirical
performance and predictive margin of derived binary classifiers. Extensive comparative studies against state-of-the-art PML learning
approaches clearly show the performance advantage of the proposed binary decomposition strategy for partial multi-label learning.

Index Terms—Machine learning, partial multi-label learning, binary decomposition, error-correcting output codes
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1 INTRODUCTION

Multi-label learning [13], [50], [53] deals with the problem
where each example is associated with multiple class labels,
which has been widely utilized in learning from real-world
objects with rich semantics [14], [17], [18], [24], [27], [31],
[33], [38], [42]. Most works on multi-label learning assume
that the class labels associated with the training example are
valid ones, which may not hold in real-world scenarios due
to the difficulty of acquiring accurate labeling information.
One commonly encountered practical situation is that the set
of labels acquired for the real-world object are only candidate
ones which are partially valid. For instance, in online image
tagging (Fig.1a), a set of candidate labels can be acquired
from the crowdsourcing annotators while only some of the
labels would be valid ones due to potential carelessness
of the annotators; in text categorization (Fig.1b), a set of
candidate labels can be acquired from the human labeler
where some of the labels are false positive ones due to the
labeler’s misunderstanding of the document semantics.

To deal with the inaccurate labeling information in learn-
ing from multi-label examples, the task of partial multi-
label learning (PML) has attracted significant attentions in
recent years as an emerging weakly supervised learning
framework [11], [22], [23], [30], [32], [35], [36]. Formally,
let X = Rd denote the d-dimensional feature space and
Y = {y1, y2, ..., yq} denote the output space with q possible
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class labels. Given the PML training set D = {(xi, Yi) |
(1 ≤ i ≤ m)} where xi ∈ X is a d-dimensional instance
and Yi ⊆ Y is the candidate label set associated with xi, it
is assumed that the ground-truth label set Ỹi for xi resides
in its candidate label set Yi, i.e. Ỹi ⊆ Yi. Accordingly, the
task of partial multi-label learning is to induce a multi-label
predictor f : X 7→ 2Y from D which can assign a set of
proper labels for the unseen instance.

As the ground-truth labeling information of PML train-
ing example is not directly accessible to the learning ap-
proach, most existing approaches work by estimating the la-
beling confidence of each candidate label being the ground-
truth label, which can be instantiated via an iterative [15],
[30], [35], [40], [43] or stage-wise [11], [32], [39] procedure.
However, the estimated labeling confidence might be error-
prone due to the inherent uncertainty brought by the initial-
ization and optimization steps of the iterative or stage-wise
procedure, especially when the proportion of false positive
labels of PML training examples is high.

In this paper, a novel strategy to learn from PML exam-
ples is proposed which refrains from using the error-prone
procedure of estimating labeling confidence of individual
candidate label. Specifically, a transformation-based PML
learning approach named PAMB, i.e. PArtial Multi-label learn-
ing via Binary decomposition, is proposed. PAMB works by
transforming the original partial multi-label learning prob-
lem into a number of binary learning problems where the
popular error-correcting output codes (ECOC) techniques
are adapted to fit training examples with candidate label
sets. Briefly, in the encoding phase, a number of binary train-
ing sets are derived from original PML training examples
based on a ternary encoding scheme balancing two factors
of definiteness and adequacy. Here, definiteness refers to the
confidence that examples in one derived binary training
set do belong to the derived binary training set where
indefiniteness comes from the existence of irrelevant labels
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Candidate Labels:  mountain  tree  house  rock  forest  water 

 

Japanese swimmer Ikee wins Olympic berth after leukemia 

(a) online image tagging

 

Japanese swimmer Ikee wins Olympic berth after leukemia 

TOKYO - Japanese swimmer Rikako Ikee, who returned to competition last August after 

recovering from leukemia, has qualified for the Tokyo Olympic Games by winning the women's 

100 meters butterfly at Japan's national championships here on Sunday.  

 

The 20-year-old clocked 57.77 seconds at the Tokyo Aquatics Center, which will host Olympic 

swimming and diving competitions. The winning time is well outside the required 57.10 

seconds for the individual competition, but is enough to book her a berth in the women's 4x100 

meters medley relay.  

 

Ikee, who was discharged from hospital in December 2019 after going through 10 months of 

treatment, will be taking part in her second Olympic Games after competing in seven events at 

the 2016 Rio Olympics.  

 

She is also set to compete in the 50 and 100 meters freestyle, keeping alive her chances of 

qualifying for an individual event. 

Candidate Labels:  Tokyo  Olympic  diving  swimming  Brazil 

(b) text categorization

Fig. 1. Two exemplary scenarios of partial multi-label learning, where the ground-truth labels among the set of candidate
labels are shown in red.

in candidate label sets, and adequacy refers to the degree
that the data distribution of one derived binary training
set approximates its ground-truth implicit data distribution
where inadequacy comes from the examples discarding rule
in ECOC as well as their large candidate label sets. In
the decoding phase, the predictions on unseen instance are
yielded based on a loss weighted scheme synthesizing the
empirical performance and predictive margin of derived
binary classifiers. Experimental studies show that PAMB
is capable of achieving highly competitive performance
against state-of-the-art approaches by employing the binary
decomposition strategy for partial multi-label learning.

The rest of this paper is organized as follows. Section 2
discusses related works on partial multi-label learning.
Section 3 presents technical details of the proposed PAMB
approach. Section 4 reports experimental results of compar-
ative studies. Finally, Section 5 concludes this paper and
indicates several issues for future work.

2 RELATED WORK

In PML, each training example is associated with multiple
candidate labels, among which multiple labels can be rel-
evant. There are two popular learning frameworks which
are highly related to PML, including multi-label learning
(MLL) [13], [50], [53] and partial label learning (PLL) [6],
[21], [48]. In MLL, each training example can be associated
with multiple labels and all of them are relevant. In PLL,
each training example is associated with multiple candidate
labels, among which only one is relevant. Compared with
MLL, each PML training examples can also be associated
with multiple relevant labels but they are concealed in
candidate label set. Compared with PLL, each PML training
example is also associated with multiple candidate labels,
but there can be more than one relevant label among can-
didate label set. In other words, the characteristics of both
MLL and PLL exist in the PML problem, which leads to that
it is more challenging to deal with the PML problem than
MLL and PLL.

The PML problem can be intuitively solved by regarding
all candidate labels as relevant ones and then inducing
a multi-label predictor with any off-the-shelf multi-label
algorithms. However, the resulting PML model in this way

will be misled by the irrelevant labels in candidate label set.
To alleviate the negative impact of inaccurate labeling infor-
mation for model induction, most existing PML approaches
work by estimating the labeling confidence of each candi-
date label being the ground-truth label in an iterative or a
stage-wise manner. Iterative approaches alternately optimize
the predictive model and estimate the labeling confidence
with some constraints or assumptions for ground-truth la-
beling information, such as low rank approximation [30],
[36], [43], [44], feature-induced regularization [4], [35], [43],
[45], label correlation exploitation [28], [35], [41], manifold
assumption [19], [29], and prior knowledge [37], etc. How-
ever, the objective function is generally convex only in
each optimization step, and the obtained labeling confidence
cannot be globally optimal and might be affected by initial-
ization. Stage-wise approaches firstly estimate the labeling
confidence and then learn the predictive model based on the
estimated results. PARTICLE [11] directly elicits the credible
labels from candidate label set and then induces a tailored
multi-label predictor, while both DRAMA [32] and PML-
LD [39] estimate the labeling confidence by exploiting the
information in feature space and then induce a multi-output
regression model supervised by the estimated confidence
scores. However, the performance of the learned model in
second stage will be degenerated if the supervisory informa-
tion obtained in the first stage is inaccurate. Therefore, the
label confidence estimation procedure might be error-prone
in either iterative or stage-wise methods.

Binary decomposition is initially designed to transform
the multi-class classification problem into multiple binary
classification problems, where one-vs-rest (OvR), one-vs-
one (OvO) and error-correcting output codes (ECOC) [8]
are the three most widely-used decomposition strategies.
Binary decomposition has also been adapted to solve the
related learning frameworks MLL and PLL. For MLL, many
methods have been designed to decompose the MLL prob-
lem into multiple binary classification problems by respec-
tively adapting OvR [3], [46], [49], OvO [12] and ECOC [2],
[16]. For PLL, some methods which are developed by adapt-
ing OvO [34] or ECOC [20], [48] have also achieved state-
of-the-art performance. In this paper, we aim at enabling
binary decomposition for handling PML training examples,
where ECOC is adapted to transform the PML problem
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into multiple binary classification problems. Accordingly, a
novel approach named PAMB is proposed and its technical
details will be presented in the next section.

3 THE PAMB APPROACH

In this section, we firstly give a brief introduction to the
error correcting output codes (ECOC) method which is
the basis of the proposed PAMB approach. After that, we
present the technical details of our PAMB approach with
two subsections which introduce its encoding phase and
decoding phase, respectively.

3.1 ECOC Overview
The ECOC method is one of the popular strategies which
can decompose a multi-class classification problem into
multiple binary classification problems. Specifically, given
a multi-class classification problem with q classes, i.e.,
Y = {c1, c2, . . . , cq}, there are two main steps in the ECOC
method, i.e., encoding and decoding.

In the encoding phase, the main task is to generate a
coding matrix M to determine how the class space is par-
titioned. The two commonly used designs of coding matrix
are binary coding [8] (i.e., M ∈ {+1,−1}q×L) and ternary
coding [1] (i.e., M ∈ {+1, 0,−1}q×L). For the coding matrix,
its j-th row M(j, :) represents a unique L-bits codeword for
the j-th class label cj (1 ≤ j ≤ q), and its l-th column M(:, l)
partitions the class space Y into two or three parts: positive
part Y+

l , negative part Y−l and neutral part Y0
l which only

exists for ternary coding:

Y+
l = {cj |M(j, l) = +1, 1 ≤ j ≤ q}
Y−l = {cj |M(j, l) = −1, 1 ≤ j ≤ q}
Y0
l = {cj |M(j, l) = 0, 1 ≤ j ≤ q}

According to the l-th column of M, a binary classification
data set can be constructed where the instances associated
with the label in Y+

l (or Y−l ) are used as positive (or
negative) samples, respectively, and the remaining instances
associated with the label in Y0

l will be disgarded. Based on
the constructed data set, a binary classifier hl can be learned
and finally a total of L classifiers can be obtained according
to M.

In the decoding phase, the main task is to obtain the final
prediction of unseen instance x∗ according to the outputs of
the L learned binary classifiers:

h(x∗) = [h1(x∗), h2(x∗), ..., hL(x∗)]
>

Generally, the final prediction for x∗ is determined as fol-
lows:

f(x∗) = cĵ ,where ĵ = argmin
1≤j≤q

dist(h(x∗),M(j, :))

Here, dist(·, ·) is some kind of distance function (e.g., ham-
ming distance). In other words, the class whose codeword is
closest to the predicted vector h(x∗) will be considered as
the final prediction.

According to the technical details of ECOC, it is easy
to know that both one-vs-rest (OvR) and one-vs-one (OvO)
can be regarded as a special case of ECOC. Besides, the
vanilla ECOC strategy simply generates the coding matrix

in a random manner, while the specific characteristics of
practical problems are not considered which might lead to
suboptimal models. Thus, there are some works focusing
on problem-dependent encoding strategies which try to find
the coding matrix most suitable for given problems, e.g., DE-
COC [26], SECOC [10], M2ECOC [52] and SM2ECOC [51].

As to the decoding phase of ECOC, the key is how to
utilize the outputs of the L learned binary classifiers to de-
termine the final prediction, i.e., the design of distance func-
tion dist(·, ·). Commonly used decoding strategies include
hamming decoding [8], attenuated Euclidean decoding [25],
loss-based decoding [1] and weighted loss-based decod-
ing [9], etc., where loss-weighted decoding has claimed bet-
ter performance because it can utilize each binary classifier’s
empirical performance and predictive confidence.

The PML problem is a more complicated learning setting
than multi-class classification due to the existence of irrele-
vant labels in candidate label set and the possible multiple
ground-truth relevant labels. In this paper, the proposed
PAMB approach solves the PML problem by adapting ECOC
with ternary encoding and loss-weighted decoding. For
ternary encoding, we aim at dealing with large candidate
label set with the ‘0’s in coding matrix. For loss-weighted
decoding, we aim at taking full advantage of the ability
of learned binary classifiers. Technical details of PAMB’s
encoding phase and decoding phase are scrutinized in the
following Subsection 3.2 and Subsection 3.3, respectively.

3.2 Encoding Phase

In the encoding phase, PAMB induces a total of L binary
classifier over the binary training sets derived from the
original PML training setD w.r.t. each column of the ternary
coding matrix M.

Specifically, let v ∈ {+1, 0,−1}q be a randomly gener-
ated q-bits column ternary vector, where the number of ‘0’s
is z and the number of both ‘+1’s and ‘−1’s is q−z

2 . Here, z
is a hyper-parameter of PAMB and its value is usually set to
something which makes q − z even. With v, the label space
can be divided into positive groups Y+

v , negative group Y−v
and neutral group Y0

v :

Y+
v = {yj | vj = +1, 1 ≤ j ≤ q}
Y−v = {yj | vj = −1, 1 ≤ j ≤ q} (1)

Y0
v = {yj | vj = 0, 1 ≤ j ≤ q}

where vj denotes the j-th item in v. Instead of estimating
labeling confidence of individual candidate label, PAMB re-
gards the candidate label set of each PML training example
as an entirety to construct a binary training set Bv according
to the divided label space by ternary vector v in Eq.(1).
Specifically, xi is used as a positive (or negative) example
when the following condition C+

i (or C−i ) is true:

C+
i = (Yi ∩ Y+

v 6= ∅) ∧ (Yi ∩ Y−v = ∅)
C−i = (Yi ∩ Y+

v = ∅) ∧ (Yi ∩ Y−v 6= ∅)

In other words, if Yi entirely falls into the union of Y+
v (or

Y−v ) and Y0
v (i.e., Yi ∩ Y−v = ∅ or Yi ∩ Y+

v = ∅) and its
intersection with Y+

v (or Y−v ) is not empty (i.e., Yi∩Y+
v 6= ∅

or Yi ∩ Y−v 6= ∅), then xi is used as a positive (or negative)
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(a) coding matrix M (b) PML training set (c) binary training sets

(d) positive example in B1 (e) negative example in B2 (f) unused example by B2 (g) unused example by B4

Fig. 2. An illustrative example of PAMB’s encoding phase. Here, we denote BM(:,l) by Bl for brevity (1 ≤ l ≤ 4). (a) A 5× 4
coding matrix, where the symbol on the left of each row represents that the codeword of label yj corresponds to the vector
in the row (1 ≤ j ≤ 5) and the symbol on the top of each column represents that the classifier hl is learned according to
the ternary code vector in the column (1 ≤ l ≤ 4); (b) A PML training set with six examples where each row corresponds
to one label and each column corresponds to the label vector of one instance; (c) Four binary training sets constructed
according to the four columns of coding matrix; (d) x1 is used as positive example in B1 according to the 1st column of M;
(e) x1 is used as negative example in B2 according to the 2nd column of M; (f) x6 is unused in B2 according to the 2nd
column of M; (g) x4 is unused in B4 according to the 4th column of M.

example in Bv . Formally speaking, Bv is constructed as
follows:

Bv ={(xi,+1) | C+
i = true, 1 ≤ i ≤ m}

⋃
(2)

{(xi,−1) | C−i = true, 1 ≤ i ≤ m}

As shown in Eq.(2), not all PML training examples will
contribute to construct the binary training set Bv . To guar-
antee informative training set with enough samples, PAMB
discards the current randomly generated ternary vector v
when the corresponding Bv does not meet the pre-set eligi-
bility condition.1 If Bv is admissible, PAMB records v as one
column of coding matrix M, i.e., M(:, l) = v where M(:, l)
denotes M’s l-th column (1 ≤ l ≤ L). After M is obtained,
PAMB induces a binary classifier hl(·) = sign(fl(·)) by
invoking the employed binary classification algorithm L on
BM(:,l): hl ← [ L(BM(:,l)). Here, BM(:,l) is the binary training
set which is constructed according to the divided label space
by ternary vector M(:, l) in Eq.(1), hl(x) ∈ {+1,−1} returns
the predicted binary label for instance x while fl(x) ∈ R re-
turns the predicted confidence for instance x, where sign(·)
is the signed function.

Fig.2 shows an illustrative example for the encoding
phase of PAMB.2 It is worth noting that not every randomly
generated v will be accepted as one column of M. In other

1. In this paper, the number of training examples in Bv cannot be
less than d0.01me, and the number of positive and negative training
examples cannot be less than 5, respectively.

2. For this simple illustrative example, the aforementioned pre-set
eligibility condition when generating binary training sets is not consid-
ered here.

words, there is no necessary correspondence between v and
the columns of M. Therefore, we cannot use vl to represent
the l-th column of M, i.e., M(:, l). In this example, the value
of z is set to 1, so the number of ‘+1’s,‘−1’s and ‘0’s in each
column of coding matirx M (Fig.2a) is 2, 2, 1, respectively.
The matrix shown in Fig.2b corresponds to the label matrix
of the PML training set D = {(xi, Yi) | 1 ≤ i ≤ 6}
with six examples, where each column corresponds to one
training example and each row corresponds to one label.
If the item in the i-th column and j-th row equals 1, then
yj ∈ Yi; otherwise, yj /∈ Yi. Take (x1, Y1) as an example,
because Y1 = {y1, y2}, x1 is used as a positive example
in BM(:,1) as Y1 entirely falls into Y+

M(:,1) (Fig.2d), and is
also used as a negative example in BM(:,2) as Y1 intersects
with Y−M(:,2) and entirely falls into Y−M(:,2)∪Y

0
M(:,2) (Fig.2e).

Besides, x6 isn’t used in BM(:,2) because Y6 = {y2} entirely
falls into Y0

M(:,2) but doesn’t intersect with either one of
Y+
M(:,2) or Y−M(:,2) (Fig.2f), and x4 isn’t used in BM(:,4)

because Y4 = {y1, y4} intersects with both Y+
M(:,4) and

Y−M(:,4) (Fig.2g). As a result, the original PML training set
D is transformed into four binary training sets as shown in
Fig.2c.

It is worth noting that PAMB decomposes the PML
problem into a number of binary classification problems
according to the ternary coding matrix M. The purpose
of this ternary encoding scheme is to make a compromise
between the definiteness and adequacy of the derived binary
training sets. Specifically, for the randomly generated q-bits
vector v, if z = 0, we actually conduct binary encoding
rather than ternary encoding. According to the ECOC en-
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Algorithm 1 The PAMB approach

Input: D: the PML training set {(xi, Yi) | 1 ≤ i ≤ m}(xi ∈ X , Yi ⊆ Y,X = Rd,Y = {y1, y2, ..., yq});
z: the number of ‘0’s in each column of coding matrix M;
L: the ECOC codeword length;
L: the employed binary classification algorithm;

x∗: the unseen instance;
Output: Y∗: the predicted class label set for x∗;

p̂∗: the predicted possibility vector of all labels for x∗;
1: Initialize M as a zero matrix with size q × L and l = 1;
2: while l ≤ L do
3: Randomly generate v ∈ {+1, 0,−1}q with z ‘0’s and q−z

2 ‘+1’s and ‘−1’s;
4: Divide the label space into Y+

v , Y−v and Y0
v according to Eq.(1);

5: Construct a binary training set Bv from the original training set D according to Eq.(2);
6: if the pre-set eligibility condition for Bv is true then
7: Set v as the l-th column of coding matrix, i.e., M(:, l) = v, BM(:,l) = Bv ;
8: Induce the binary classifier hl(·) by invoking L on BM(:,l): hl ← [ L(BM(:,l));
9: l = l + 1;

10: end if
11: end while
12: Calculate the performance matrix H according to Eq.(3);
13: Calculate the weighted performance matrix Ĥ according to Eq.(4);
14: Calculate the confidence vector p∗ for unseen instance x∗ according to Eq.(5);
15: Calculate the normalized confidence vector p̂∗ for unseen instance x∗ according to Eq.(6);
16: Obtain the predicted label set Y∗ for unseen instance x∗ according to Eq.(7);
17: Return p̂∗ and Y∗.

coding rule, examples whose candidate label sets entirely
fall into Y+

v or Y−v will be used as positive or negative
examples while those examples whose candidate label sets
intersect with both Y+

v and Y−v will be discarded when
generating Bv , thus there will be no indefiniteness for the
belongingness of all examples in the derived binary training
set Bv . Take Fig.2d as an example, regardless of whether
y1 or y2 is an irrelevant label, x1 will be definitely used
as a positive example by B1. However, this will lead to
inadequate training examples in the binary training set Bv ,
especially when the average number of candidate labels
(denoted by avg.#CLs) is relatively large to the number of
labels (see Table 1 for an intuition) because the candidate
label sets of many examples will intersect with both Y+

v and
Y−v (see Fig.2g for an intuition). As the value of z increases,
more and more training examples can be used as positive
or negative examples in Bv because more candidate label
sets of training examples can entirely fall into Y+

v ∪ Y0
v or

Y−v ∪ Y0
v with a large Y0

v . However, the definiteness of each
example in Bv will get worse because this operation will
introduce disturbing examples whose ground-truth label set
do not belong to Y+

v or Y−v , and the larger value of z means
introducing more disturbing examples. Take Fig.2e as an
example, if y1 is an irrelevant label, x1 which should be
discarded, will be wrongly used as a negative example in
B2. When z reaches to its maximum value (i.e., q − 2), we
will obtain the best adequacy but worst definiteness for the
derived binary training set Bv .

Therefore, it is necessary to employ the ternary decoding
to deal with the challenging irrelevant labels and carefully
tune the value of z to balance the definiteness and adequacy
and achieve better generalization performance for PAMB. On
one hand, to avoid deriving empty binary training sets, it is

better to make the size of Y+
v ∪Y0

v or Y−v ∪Y0
v not less than

avg.#CLs, which results the following empirical lower limit
of z:

z =

{
d2× avg.#CLs− qe, avg.#CLs > q

2

0, avg.#CLs ≤ q
2

On the other hand, the upper limit of z corresponds to q−2,
i.e., both Y+

v and Y−v only contain one class label. Note that
this is only a reference range and a value randomly selected
in this range does not necessarily mean better performance.
In Subsection 4.5.1, we will further investigate how the
performance of PAMB changes when value of z varies within
this range.

3.3 Decoding Phase
In the decoding phase, PAMB makes prediction for unseen
instance x∗ based on the L binary classifiers hl (1 ≤ l ≤ L)
induced in the encoding phase.

Specifically, the loss-weighted decoding [9] strategy is
adapted for PML data which can take advantage of both
empirical performance and predictive confidence of the
induced binary classifiers. Based on the obtained coding
matrix M and the corresponding binary classifiers hl (1 ≤
l ≤ L), PAMB generates a performance matrix H ∈ Rq×L
where the (j, l)-th item H(j, l) is defined as follows:

H(j, l) =
1

|Dj |
∑

(xi,Yi)∈Dj

Jhl(xi) = M(j, l)K (3)

where Dj = {(xi, Yi) | yj ∈ Yi, 1 ≤ i ≤ m}

Here, | · | returns the cardinality of a set and JπK returns 1
if predicate π holds and 0 otherwise. As shown in Eq.(3),
Dj consists of all PML training examples whose candidate
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TABLE 1
Characteristics of the experimental datasets. Here, avg.#CLs represents the average number of candidate labels per

instance. avg.#GLs represents the average number of ground-truth labels per instance.

Data Set #Examples #Features #Labels avg.#CLs avg.#GLs
music emotion 6833 98 11 5.29 2.42

music style 6839 98 10 6.04 1.44
mirflickr 10433 100 7 3.35 1.77
emotions 593 72 6 3,4,5 1.86

image 2000 294 5 2,3,4 1.23
yeast 2417 103 14 7,9,11,13 4.23

reference 5411 860 14 7,9,11,13 1.15
arts 4907 462 15 7,9,11,13 1.64

recreation 5000 606 22 11,13,15,17,19 1.42

label set contains class label yj , so the value of H(j, l)
corresponds to the proportion of examples in Dj whose
binary prediction returned by hl is consistent with the value
of M(j, l). This value can also be regarded as the recall of
classifier hl if focusing on class label yj . Under multi-label
learning setting, for each class label, we should pay more
attention on the examples associated with this label rather
than the rest examples. This is the initial motivation why we
use recall rather than other metrics (e.g., error rate) to weight
the exponential loss. Note that binary classifier hl can only
return binary prediction ‘+1’ or ‘−1’, so H(j, l) = 0 when
M(j, l) = 0. That is to say, the coding value ‘0’ in M doesn’t
contribute to the final prediction.

To facilitate understanding, following the settings in
the aforementioned illustrative example in Fig.2, take the
calculating procedure of H(4, 2) as an example, it is easy to
knowD4 = {(x2, Y2), (x4, Y4), (x5, Y5)} because Y2, Y4 and
Y5 contain class label y4. Moreover, suppose the binary pre-
dictions of examples in D4 returned by h2 are h2(x2) = +1,
h2(x4) = −1 and h2(x5) = +1, respectively, then the value
of H(4, 2) equals 0.67 (i.e., 2/3) with M(4, 2) = +1.

To consider the relative performance of different binary
classifiers, PAMB further normalizes each row of H and then
obtains the following weighted performance matrix Ĥ:

Ĥ(j, l) =
H(j, l)∑L
l=1 H(j, l)

, (1 ≤ j ≤ q, 1 ≤ l ≤ L) (4)

For unseen instance x∗, PAMB calculates the weighted ex-
ponential loss to measure its closeness to each codeword (i.e.,
each row of M). Existing works have shown that exponen-
tial loss can result in better performance as it enlarges the
score between the predicted positive and negative instances
by applying ‘exponential’ to the predictive confidence value:

pj = −
L∑
l=1

Ĥ(j, l) exp(−fl(x∗) ·M(j, l)), (1 ≤ j ≤ q) (5)

Let p∗ = [p1, p2, . . . , pq]
>, each item can be regarded as the

possibility of its corresponding label being a relevant label.
To guarantee all possibility values for different scenarios in
the same scale, we further conduct min-max normalization
for p∗ and then obtains the normalized possibility vector
p̂∗ = [p̂1, p̂2, . . . , p̂q]

>:

p̂j =
pj −min(p∗)

max(p∗)−min(p∗)
, (1 ≤ j ≤ q) (6)

where min(p∗) and max(p∗) return the minimum item
and maximum item in p∗, respectively. As there can be

multiple relevant labels for each PML instance, to identify
the relevant label set Y∗ for x∗, we introduce a threshold τ to
divide the whole label set into relevant part and irrelevant
part:

Y∗ = {yj | p̂j > τ, 1 ≤ j ≤ q} (7)

In this paper, τ is simply fixed as 0.9 with which PAMB
generally achieves better performance.

Algorithm 1 summarizes the whole procedure of our
proposed PAMB approach, including the encoding phase
(Steps 1 to 11) and decoding phase (Steps 12 to 17). In the
encoding phase, one q-bits column coding v is randomly
generated based on the parameter z (Step 3). After dividing
the label space (Step 4), a binary training set will be derived
(Step 5). Then, if the training set is admissible (Step 6), v will
be recorded as one column of coding matrix and discarded
otherwise. Meanwhile, the corresponding binary training
set Bv will be accepted as BM(:,l), i.e., the binary training
set for the l-th column of M (Step 7), over which a binary
classifier will be induced (Step 8). In the decoding phase,
a weighted performance matrix Ĥ is calculated by using
empirical performance (Steps 12 to 13). The normalized
possibility vector p̂ is obtained based on Ĥ and predic-
tive possibility value of binary classifiers (Steps 14 to 15).
Finally, the predicted class label set Y∗ are obtained based
on the threshold τ and the normalized possibility vector
p̂ (Step 16). Both Y∗ and p̂ are returned for performance
evaluation (Step 17).

As shown in Algorithm 1, the proposed PAMB approach
enables binary decomposition by adapting the ECOC tech-
niques to solve the PML problem rather than attempts to
identify valid labels within candidate label set via label
confidence estimation. In the next section, extensive experi-
ments will be conducted over both real-world and synthetic
PML data sets, and the reported experimental results clearly
show that PAMB achieves very competitive performance
against other state-of-the-art baselines. Ablation study and
parameter sensitivity analysis are also included to verify the
effectiveness of PAMB’s algorithmic design.

4 EXPERIMENTS

4.1 Experimental Setup

4.1.1 Benchmark Data Sets
To evaluate the generalization performance of our pro-
posed PAMB approach, a total of nine data sets are em-
ployed for comparative studies in this paper. Specifically,
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TABLE 2
Experimental results in terms of hamming loss, where the best performance (the smaller the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .207±.003 .210±.005 .225±.003 .298±.006 .331±.001 .318±.008 .368±.007

music style 6.04 .116±.004 .119±.003 .119±.004 .152±.004 .836±.002 .161±.005 .839±.005
mirflickr 3.35 .164±.028 .174±.031 .198±.084 .240±.066 .279±.018 .231±.059 .221±.058

emotions
3 .217±.027 .200±.021 .238±.033 .297±.020 .306±.003 .243±.024 .275±.038
4 .214±.026 .199±.024 .240±.031 .305±.020 .653±.000 .302±.027 .620±.040
5 .259±.027 .354±.031 .286±.020 .379±.020 .653±.000 .441±.038 .686±.028

image
2 .175±.015 .180±.014 .193±.012 .347±.011 .214±.004 .218±.016 .232±.008
3 .207±.010 .184±.012 .222±.025 .366±.018 .698±.003 .262±.014 .721±.009
4 .240±.011 .445±.018 .262±.027 .391±.018 .752±.000 .403±.020 .752±.005

yeast

7 .216±.009 .240±.013 .254±.015 .215±.010 .269±.003 .207±.011 .250±.011
9 .208±.005 .206±.010 .247±.020 .219±.011 .633±.005 .212±.009 .624±.008
11 .209±.007 .197±.006 .232±.008 .231±.009 .684±.000 .238±.006 .697±.012
13 .226±.008 .686±.008 .317±.009 .270±.012 .702±.000 .331±.018 .697±.008

reference

7 .102±.004 .086±.003 .136±.007 .090±.003 .112±.001 .118±.005 .244±.027
9 .217±.014 .089±.003 .126±.011 .090±.003 .152±.003 .137±.008 .916±.001
11 .228±.021 .094±.003 .108±.007 .090±.003 .190±.006 .243±.028 .916±.001
13 .310±.030 .907±.002 .317±.077 .090±.003 .232±.007 .400±.043 .917±.001

arts

7 .121±.004 .151±.003 .203±.034 .221±.008 .269±.001 .282±.013 .233±.007
9 .124±.003 .153±.003 .202±.025 .265±.014 .587±.003 .309±.019 .890±.003
11 .145±.003 .206±.003 .198±.031 .263±.009 .757±.005 .356±.035 .895±.002
13 .161±.005 .335±.007 .226±.017 .430±.027 .822±.003 .450±.023 .895±.002

recreation

11 .097±.005 .113±.002 .144±.015 .200±.008 .345±.002 .285±.026 .348±.007
13 .099±.008 .100±.002 .154±.046 .235±.018 .588±.006 .336±.030 .932±.002
15 .101±.003 .090±.002 .142±.024 .234±.040 .739±.008 .318±.028 .934±.001
17 .117±.005 .102±.002 .141±.021 .312±.044 .839±.009 .424±.031 .935±.001
19 .122±.004 .344±.006 .177±.030 .298±.016 .871±.004 .417±.049 .934±.001

TABLE 3
Experimental results in terms of ranking loss, where the best performance (the smaller the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .233±.010 .252±.009 .265±.012 .271±.010 .277±.001 .303±.011 .326±.011

music style 6.04 .134±.006 .154±.006 .147±.003 .158±.006 .179±.003 .197±.009 .214±.010
mirflickr 3.35 .126±.039 .218±.029 .132±.125 .117±.054 .135±.004 .189±.032 .136±.039

emotions
3 .161±.028 .202±.031 .188±.037 .235±.019 .338±.009 .191±.020 .198±.042
4 .174±.028 .197±.024 .198±.043 .249±.030 .455±.007 .244±.042 .248±.034
5 .232±.041 .271±.033 .269±.046 .320±.035 .439±.005 .322±.052 .413±.052

image
2 .167±.022 .220±.020 .202±.022 .229±.015 .271±.009 .206±.027 .299±.025
3 .207±.015 .240±.026 .223±.023 .236±.031 .294±.007 .240±.025 .362±.030
4 .255±.025 .324±.032 .279±.027 .300±.014 .402±.015 .331±.021 .412±.022

yeast

7 .174±.012 .188±.014 .178±.010 .180±.012 .197±.001 .182±.011 .183±.011
9 .178±.015 .186±.017 .187±.015 .189±.016 .214±.002 .194±.014 .195±.017
11 .177±.015 .186±.010 .195±.008 .192±.009 .210±.002 .204±.010 .214±.006
13 .213±.013 .212±.014 .298±.017 .218±.010 .215±.004 .231±.016 .271±.017

reference

7 .251±.011 .309±.009 .278±.013 .247±.011 .292±.010 .273±.015 .252±.013
9 .262±.012 .289±.010 .266±.011 .249±.010 .319±.010 .281±.009 .256±.010
11 .267±.010 .311±.014 .308±.019 .266±.013 .316±.008 .292±.011 .272±.014
13 .285±.011 .305±.010 .350±.024 .262±.012 .360±.013 .291±.013 .266±.014

arts

7 .197±.007 .301±.010 .306±.024 .211±.009 .271±.003 .266±.008 .229±.008
9 .221±.010 .323±.009 .378±.048 .232±.009 .288±.003 .280±.009 .263±.010
11 .239±.010 .383±.014 .361±.048 .250±.009 .290±.005 .287±.011 .293±.008
13 .262±.009 .402±.024 .566±.048 .284±.010 .300±.003 .316±.017 .293±.008

recreation

11 .186±.008 .314±.010 .400±.029 .183±.008 .216±.004 .239±.008 .210±.012
13 .193±.009 .362±.012 .437±.027 .198±.010 .225±.002 .271±.011 .230±.011
15 .204±.014 .312±.014 .358±.021 .208±.010 .235±.004 .262±.012 .256±.009
17 .232±.009 .388±.013 .411±.036 .220±.011 .248±.007 .280±.010 .299±.018
19 .242±.012 .334±.014 .474±.028 .230±.008 .241±.008 .290±.010 .351±.011

the experiments are conducted over three real-world PML
data sets and twenty-three synthetic PML data sets which
are generated from six multi-label data sets. The detailed
characteristics of all data sets are summarized in Table 1,
including number of examples (#Examples), number of features
(#Features), number of labels (#Labels), average number of
candidate labels (avg.#CLs), and average number of ground-
truth labels (avg.#GLs).

For the three real-world PML datasets, including mu-
sic emotion, music style and mirflickr, their candidate labels

are tagged by common labelers and their ground truth
labels are further examined by professional labelers. For
the six multi-label data sets, including emotions, image, yeast,
reference, arts, recreation, we generate several synthetic PML
data sets from each of them by randomly choosing some
irrelevant labels to form the candidate label sets with its
ground truth labels. As shown in Table 1, each number in
the column ‘avg.#CLs’ corresponds to one different setting
with choosing different number of irrelevant labels, where
twenty-three synthetic PML data sets are generated in total.
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TABLE 4
Experimental results in terms of one-error, where the best performance (the smaller the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .403±.030 .436±.023 .508±.024 .542±.027 .570±.002 .543±.026 .569±.028

music style 6.04 .333±.015 .362±.020 .372±.017 .391±.015 .400±.000 .379±.014 .404±.019
mirflickr 3.35 .333±.085 .148±.137 .208±.256 .242±.146 .198±.013 .459±.167 .375±.072

emotions
3 .253±.074 .256±.071 .302±.089 .339±.050 .502±.009 .295±.058 .322±.071
4 .246±.072 .256±.053 .300±.078 .344±.059 .508±.000 .314±.063 .397±.056
5 .346±.070 .363±.067 .424±.080 .425±.061 .508±.000 .478±.097 .569±.071

image
2 .299±.038 .338±.029 .350±.035 .437±.023 .491±.012 .355±.036 .513±.029
3 .387±.029 .373±.026 .391±.029 .440±.051 .530±.012 .407±.037 .600±.040
4 .431±.039 .379±.036 .465±.041 .559±.041 .618±.035 .547±.033 .666±.037

yeast

7 .229±.026 .229±.036 .256±.037 .248±.041 .198±.002 .244±.030 .254±.035
9 .220±.023 .243±.026 .250±.027 .249±.025 .290±.004 .252±.026 .255±.027
11 .221±.022 .249±.024 .250±.027 .248±.021 .224±.011 .256±.029 .255±.026
13 .251±.034 .255±.031 .478±.048 .253±.032 .264±.000 .255±.031 .276±.025

reference

7 .557±.018 .545±.018 .612±.017 .553±.021 .590±.007 .557±.020 .554±.021
9 .578±.020 .557±.023 .574±.027 .553±.021 .590±.008 .557±.021 .554±.022
11 .595±.022 .552±.021 .586±.028 .553±.021 .593±.007 .570±.022 .555±.022
13 .620±.025 .565±.023 .685±.018 .553±.021 .594±.007 .569±.019 .558±.022

arts

7 .511±.018 .871±.012 .800±.106 .550±.014 .679±.038 .688±.024 .601±.013
9 .543±.022 .874±.014 .898±.050 .622±.028 .732±.000 .717±.020 .671±.017
11 .587±.023 .879±.014 .815±.069 .722±.023 .732±.000 .733±.023 .699±.023
13 .642±.012 .737±.018 .916±.025 .739±.024 .760±.024 .762±.023 .699±.023

recreation

11 .617±.016 .767±.019 .929±.033 .622±.018 .798±.003 .769±.025 .724±.012
13 .644±.015 .920±.009 .898±.042 .698±.021 .800±.000 .781±.013 .739±.018
15 .643±.017 .793±.024 .878±.043 .717±.026 .800±.000 .794±.015 .763±.015
17 .670±.020 .863±.011 .893±.027 .752±.020 .800±.000 .818±.017 .791±.019
19 .682±.017 .767±.023 .930±.047 .770±.019 .800±.000 .857±.022 .839±.019

TABLE 5
Experimental results in terms of coverage, where the best performance (the smaller the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .405±.010 .410±.010 .425±.012 .430±.010 .432±.001 .467±.010 .482±.010

music style 6.04 .194±.008 .203±.009 .205±.007 .216±.009 .236±.004 .260±.011 .279±.012
mirflickr 3.35 .229±.082 .278±.062 .242±.064 .225±.054 .317±.003 .276±.068 .235±.058

3 .301±.033 .325±.027 .323±.036 .372±.038 .492±.008 .330±.033 .328±.043
4 .319±.047 .322±.040 .341±.047 .387±.047 .600±.013 .386±.057 .381±.044emotions
5 .363±.036 .375±.035 .401±.053 .435±.042 .535±.007 .434±.035 .498±.038
2 .187±.017 .224±.017 .217±.019 .238±.014 .269±.006 .218±.021 .291±.019
3 .219±.016 .232±.021 .233±.022 .242±.026 .289±.006 .245±.022 .340±.024image
4 .257±.021 .278±.023 .274±.022 .292±.010 .371±.012 .316±.017 .378±.013
7 .476±.017 .457±.020 .461±.016 .464±.019 .490±.002 .476±.015 .476±.016
9 .481±.017 .467±.017 .492±.016 .481±.014 .486±.004 .498±.012 .491±.016
11 .479±.019 .464±.018 .513±.015 .491±.017 .513±.007 .512±.022 .520±.015yeast

13 .535±.011 .510±.010 .590±.017 .540±.013 .515±.009 .554±.017 .607±.020
7 .262±.011 .303±.009 .286±.013 .259±.011 .300±.009 .285±.015 .259±.012
9 .274±.012 .279±.009 .277±.011 .262±.010 .331±.010 .291±.009 .268±.010
11 .279±.010 .294±.013 .318±.018 .279±.012 .325±.008 .302±.009 .284±.015reference

13 .295±.010 .290±.010 .355±.022 .274±.010 .365±.013 .302±.013 .278±.013
7 .260±.007 .344±.007 .372±.019 .269±.009 .318±.004 .322±.009 .290±.006
9 .286±.008 .368±.008 .434±.043 .290±.010 .334±.004 .335±.009 .323±.010
11 .303±.008 .426±.012 .416±.046 .305±.007 .340±.005 .345±.011 .357±.010arts

13 .325±.009 .442±.020 .600±.045 .332±.009 .342±.004 .369±.018 .357±.010
11 .232±.007 .346±.009 .439±.029 .224±.011 .251±.005 .281±.011 .253±.017
13 .240±.010 .396±.011 .491±.023 .243±.011 .264±.003 .316±.010 .276±.011
15 .251±.015 .349±.016 .400±.023 .249±.010 .279±.005 .307±.012 .299±.010
17 .281±.010 .422±.013 .449±.034 .260±.012 .289±.008 .325±.009 .348±.018

recreation

19 .283±.008 .366±.013 .509±.025 .274±.009 .283±.009 .336±.012 .399±.009

Besides, we also denote one specific synthetic PML data set
by the concatenation of its data set name and the value of
‘avg.#CLs’, e.g., ‘emotions3’ denotes the synthetic PML data
set generated from emotions with the setting ‘avg.#CLs = 3’.

In the following of this paper, we call the three real-
world PML data sets and the first two multi-label data
sets (i.e., emotions and image) as sufficient data sets because
their number of training examples is larger than or close
to the size of all possible label combinations (i.e., 2q). In
contrast, we call the rest four multi-label data sets (i.e., yeast,

reference, arts and recreation) as insufficient data sets. Gener-
ally, sufficient data sets contain more sufficient supervisory
information than insufficient data sets for model induction.

4.1.2 Evaluation Metrics
Since the final task of PML problem is to induce a multi-
label predictor, six widely-used metrics for multi-label learn-
ing [13], [50], [53], including hamming loss, ranking loss, one-
error, coverage, average precision and microF1, are employed
to evaluate the performance of PAMB and other state-of-
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TABLE 6
Experimental results in terms of average precision, where the best performance (the larger the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .641±.013 .622±.012 .589±.015 .574±.014 .564±.001 .555±.013 .533±.015

music style 6.04 .747±.009 .724±.011 .720±.010 .704±.010 .683±.002 .686±.011 .662±.014
mirflickr 3.35 .781±.050 .681±.046 .807±.167 .812±.072 .818±.006 .686±.039 .764±.051

3 .804±.041 .787±.040 .773±.048 .739±.018 .652±.004 .772±.028 .767±.043
4 .801±.037 .790±.028 .765±.041 .730±.030 .594±.004 .740±.038 .713±.034emotions
5 .734±.044 .712±.036 .693±.043 .674±.033 .613±.001 .652±.048 .584±.047
2 .803±.024 .766±.020 .767±.023 .720±.015 .679±.008 .765±.025 .664±.020
3 .752±.019 .744±.021 .743±.021 .716±.033 .649±.007 .730±.024 .604±.026image
4 .712±.026 .682±.030 .693±.027 .641±.020 .582±.016 .636±.021 .557±.020
7 .762±.014 .751±.017 .745±.018 .742±.021 .744±.001 .745±.017 .741±.016
9 .756±.016 .745±.017 .738±.018 .734±.017 .698±.002 .736±.015 .728±.019
11 .757±.017 .745±.019 .723±.018 .732±.018 .721±.002 .721±.019 .706±.016yeast

13 .714±.022 .723±.021 .586±.018 .708±.017 .691±.003 .689±.020 .659±.020
7 .553±.013 .542±.014 .509±.013 .553±.014 .517±.007 .539±.013 .553±.014
9 .535±.015 .539±.016 .530±.017 .552±.014 .489±.008 .530±.015 .548±.016
11 .524±.013 .541±.015 .511±.020 .549±.013 .511±.005 .522±.018 .543±.016reference

13 .503±.016 .524±.015 .436±.011 .541±.017 .479±.009 .517±.015 .543±.016
7 .597±.012 .368±.009 .394±.062 .572±.011 .479±.017 .478±.014 .537±.009
9 .569±.014 .361±.009 .304±.055 .526±.015 .442±.006 .455±.014 .486±.009
11 .536±.012 .302±.010 .356±.058 .474±.015 .443±.001 .448±.014 .456±.016arts

13 .497±.010 .379±.015 .223±.026 .450±.017 .432±.008 .416±.017 .456±.016
11 .516±.013 .348±.014 .224±.031 .512±.012 .391±.008 .394±.018 .446±.011
13 .493±.012 .253±.009 .224±.039 .468±.013 .382±.001 .374±.012 .424±.014
15 .491±.013 .357±.016 .263±.029 .441±.012 .374±.003 .371±.010 .397±.009
17 .460±.015 .266±.011 .235±.022 .417±.014 .366±.006 .347±.013 .359±.013

recreation

19 .444±.011 .355±.016 .198±.038 .397±.013 .369±.008 .318±.010 .305±.013

TABLE 7
Experimental results in terms of microF1, where the best performance (the larger the better) is shown in boldface.

Data Set avg.#CLs PAMB PARTICLE-VLS PARTICLE-MAP FPML PML-LRS ML-KNN LIFT
music emotion 5.29 .404±.011 .424±.013 .343±.015 .485±.013 .481±.001 .436±.012 .439±.012

music style 6.04 .589±.010 .569±.013 .537±.014 .536±.013 .254±.001 .508±.014 .255±.005
mirflickr 3.35 .721±.079 .710±.096 .599±.138 .655±.133 .674±.010 .659±.125 .670±.128

3 .584±.047 .625±.051 .591±.075 .590±.029 .516±.006 .651±.042 .646±.055
4 .611±.051 .656±.041 .567±.054 .579±.027 .516±.000 .589±.034 .498±.037emotions
5 .537±.054 .597±.044 .487±.053 .543±.036 .516±.000 .524±.044 .475±.031
2 .633±.032 .531±.033 .594±.021 .525±.013 .390±.005 .604±.028 .332±.037
3 .574±.020 .560±.030 .553±.020 .524±.023 .404±.001 .549±.026 .404±.007image
4 .527±.020 .493±.017 .500±.033 .478±.014 .397±.000 .453±.017 .397±.006
7 .530±.021 .401±.060 .359±.096 .632±.016 .621±.003 .646±.016 .647±.014
9 .583±.012 .573±.018 .399±.096 .625±.019 .491±.002 .636±.015 .489±.009
11 .578±.015 .644±.011 .481±.013 .622±.018 .480±.000 .614±.014 .465±.015yeast

13 .523±.018 .468±.010 .338±.019 .592±.018 .459±.000 .558±.022 .465±.010
7 .407±.017 .395±.021 .337±.015 .415±.019 .071±.001 .379±.011 .291±.014
9 .298±.012 .399±.023 .350±.020 .415±.019 .085±.001 .346±.016 .153±.002
11 .285±.017 .409±.018 .369±.026 .415±.019 .098±.003 .266±.015 .153±.002reference

13 .240±.016 .153±.002 .207±.018 .415±.019 .109±.003 .216±.010 .153±.002
7 .401±.015 .100±.011 .211±.083 .358±.012 .200±.003 .290±.009 .333±.012
9 .376±.013 .104±.011 .116±.047 .324±.012 .184±.001 .276±.010 .189±.004
11 .356±.012 .107±.010 .194±.041 .310±.014 .185±.001 .261±.013 .188±.004arts

13 .321±.010 .209±.013 .099±.027 .255±.011 .186±.001 .240±.008 .188±.004
11 .335±.015 .189±.016 .096±.026 .283±.011 .137±.002 .213±.010 .220±.005
13 .316±.019 .068±.011 .100±.022 .260±.011 .128±.001 .194±.007 .122±.002
15 .311±.013 .197±.018 .127±.030 .251±.015 .127±.001 .198±.010 .122±.002
17 .287±.011 .149±.016 .114±.018 .225±.008 .124±.001 .176±.008 .122±.002

recreation

19 .267±.013 .176±.007 .088±.036 .223±.008 .124±.000 .174±.008 .122±.002

the-art baselines in this paper. For hamming loss, ranking
loss, one-error, coverage, the smaller the value, the better the
performance, while for average precision and microF1, the
larger the value, the better the performance.

4.1.3 Comparing Approaches

In this paper, the performance of PAMB is compared with
four state-of-the-art PML baselines, including PARTICLE
(PARTICLE-VLS and PARTICLE-MAP) [11], FPML [43],

PML-LRS [30], and two well-established multi-label base-
lines, including ML-KNN [49] and LIFT [47]:

• PARTICLE, i.e., PARTIal multi-label learning via
Credible Label Elicitation, works in a stage-wise
mode, where credible labels are elicited from candi-
date label set in the first stage and then a tailored
multi-label predictor is induced based on the ob-
tained credible labels by virtual label splitting (VLS)
or maximum a posterior reasoning (MAP).
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Fig. 3. Comparison results of PAMB (control approach) against other four PML and two MLL comparing approaches
with the Bonferroni-Dunn test. Approaches not connected with PAMB by the thick horizontal line are considered to have
significantly different performance with the control approach (CD = 2.1595 at 0.05 significance level).
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Fig. 4. The performance of PAMB changes as the value of z varies in some range over the three real-world PML data sets
and six synthetic PML data sets.

• FPML, i.e., Feature-induced Partial Multi-Label
Learning, works in an iterative mode, where two
optimization procedures are conducted iteratively to
identify the ground-truth labels and train a multi-
label predictor by leveraging a low-rank matrix ap-

proximation and dependencies between features and
labels.

• PML-LRS, i.e., Partial Multi-Label Learning by Low-
Rank and Sparse decomposition, also works in an
iterative mode, where two optimization procedures
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Fig. 5. The performance of PAMB changes as the coefficient k of codeword length L varies from the 10 to 150 over
music emotion, music style, mirflickr, emotions3, image2, yeast7, reference7, arts7 and recreation11.

are conducted iteratively to recover the ground-truth
label matrix from the observed one and induce the
predictive model with low-rank and sparse decom-
position strategy.

• ML-KNN, i.e., Multi-Label k-Nearest Neighbors, is a
popular multi-label baseline and works by adapting
kNN techniques for multi-label data, where the labels
of unseen instance are predicted by maximum a
posterior reasoning based on the counting statistics
of its k nearest neighbors.

• LIFT, i.e., Label specIfic FeaTures for multi-label
learning, is also a popular multi-label baseline and
works by assuming existence of label-specific fea-
tures for each label, where clustering analysis is
performed on both positive and negative instances
to generate label-specific features.

For all comparing approaches, their parameters are
tuned according to their respective literatures. For the two
multi-label baseline ML-KNN and LIFT, we regard all labels
in candidate label set as ground-truth labels to induce the
predictive models. For our proposed PAMB approach, L is
set to 100 log2(q), z is set to bavg.#CLsc for sufficient data
sets and davg.#CLs+2e for insufficient data sets. Moreover,
the binary classification model in PAMB, PARTICLE, and
LIFT, is induced with support vector machine (SVM) which
is implemented by the popular Libsvm package [5].

We conduct ten-fold cross validation for all comparing
approaches over each data set, and record both the mean
value and standard derivation of each evaluation metric for
performance comparison.

4.2 Experimental results

Tables 2 to 7 report the detailed experimental results of all
comparing approaches in terms of six evaluation metrics
respectively, where the best result over each data set in terms
of each evaluation metric is emphasized in boldface.

In addition, Friedman test [7] is utilized to evaluate
whether statistical difference exists in the generalization
performance of all approaches. Let k be the number of
comparing approaches, N be the number of employed data
sets, and rji be the rank of the jth approach over the ith
data set, then the average rank of each approach can be
given by Rj = 1

N

∑N
i=1 r

j
i (1 ≤ j ≤ q). Under the null

hypothesis that all comparing approaches have the same
generalization performance, the Friedman statistic FF is
distributed according to the F-distribution with k − 1 and
(k − 1)(N − 1) degrees of freedom:

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, where

χ2
F =

12N

k(k + 1)

 k∑
j=1

R2
j −

k(k + 1)2

4


Table 8 summarizes the Friedman statistics FF in terms

of each evaluation metrics and the critical value.3 It is
obvious that the null hypothesis is rejected in terms of all
evaluation metrics at 0.05 significance level.

3. The critical value can be obtained by running the Matlab command
icdf(‘F’, 1−α, k− 1, (k− 1)∗(N − 1)) where α denotes the significance
level.
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TABLE 8
Summary of the Friedman statistics FF in terms of six

evaluation metrics and the critical value at 0.05 significance
level for PAMB (#approaches k = 7, #data sets N = 26).

Evaluation Metric FF Critical Value
Hamming loss 45.6958

2.1595

Ranking loss 17.6518
One-error 11.3958
Coverage 11.7056

Average precision 12.5444
MicroF1 16.6953

As the results of Friedman test have told us that the
performance of PAMB and other six state-of-the-art base-
lines is significantly different, to further evaluate whether
PAMB achieves statistically superior or inferior performance
against other baselines, we employ the Bonferroni-Dunn
test [7] as a post-hoc test and regard PAMB as the control
approach. Specifically, the performance of the control ap-
proach and other approaches is significantly different if the
difference between their respective average ranks is no less
than one critical difference (CD):

CD = qα

√
k(k + 1)

6N

Here, qα is a constant with specified significance level α and
number of comparing approaches k, and qα = 2.638 when
α = 0.05 and k = 7 (cf. Table 5b in [7]), thus CD = 2.1595.

Fig.3 shows the CD diagrams in terms of six evaluation
metrics where PAMB is regarded as the control approach.
In each diagram, the average rank of each approach Rj
is marked on the axis with descending order from left to
right. For the six comparing approaches, if the average
rank of anyone differs from that of the control approach
within one CD, then there will be a thick horizontal line
connecting it and the control approach PAMB, which means
that its performance is comparable with PAMB. Otherwise,
the approach is considered to achieve significantly different
performance against the control approach. Based on the
reported experimental results, the following observations
can be made:

• As shown in Tables 2 to 7, the proposed PAMB
approach achieves the best performance in 98 cases
among 156 configurations (26 data sets × 6 metrics).
As shown in Fig.3, PAMB has the lowest average rank
in terms of all the six evaluation metrics. Moreover,
PAMB achieves statistically superior performance
against each comparing approach in terms of at least
one evaluation metric.

• The performance of PAMB is statistically superior
against FPML in terms of hamming loss and compara-
ble against FPML in terms of the rest five evaluation
metrics. FPML utilizes the discriminative informa-
tion in feature space to help estimate label confi-
dence [43] and such idea can be introduced into
PAMB to further improve its generalization perfor-
mance in the future.
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Fig. 6. The average ranks in terms of six evaluation metrics
for PAMB and the six comparing approaches on the resam-
pled reference dataset.

• The PML-LRS approach achieves poor performance
in our experiments, where it has the highest average
rank in terms of all the evaluation metrics except
for hamming loss. Possible reason is that its sparse
assumption for noisy labels [30] doesn’t hold in
the employed data sets. PAMB works without extra
assumptions for data structure which is a desired
algorithmic property in model induction.

• It is shown that PAMB usually achieves statistically
superior performance against the two multi-label
baselines (i.e., ML-KNN [49] and LIFT [47]), both of
which directly regard all the labels in candidate label
set as ground-truth ones. These experimental results
not only show the superiority of our PAMB approach,
but also suggest that it is better to specially design
PML approaches with carefully utilizing the labeling
information in candidate labels.

4.3 Ablation Study

In this paper, PAMB employs weighted exponential loss de-
coding (abbreviated as WeightedExp) scheme . To validate
its effectiveness, we compared it with several popular de-
coding schemes, including hamming decoding [8] (abbre-
viated as Hamming), attenuated Euclidean decoding [25]
(abbreviated as AttEuclidean), linear loss-based decoding
(abbreviated as Linear) [1], exponential loss-based decoding
(abbreviated as Exponential) [1], weighted linear loss-based
decoding (abbreviated as WeightedLin) [9].

Table 9 reports the detailed experimental results where
the best performance in terms of each evaluation metric over
each data set is shown in bold face. It can be observed that
the weighted exponential loss decoding scheme achieves best
performance in most cases (33 out of 54 cases) which clearly
validates the superiority of the decoding scheme in PAMB.

4.4 Limitation Analysis

As shown in Subsection 3.2, PAMB generates the coding
matrix in a random manner. In other words, PAMB doesn’t
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TABLE 9
Experimental results among different decoding scheme on three real-world and six synthetic PML datasets, where the best

performance is shown in boldface. Note that the WeightedExp is the decoding scheme in our PAMB approach.

Dataset Evaluation
Metrics Hamming AttEuclidean Linear Exponential WeightedLin WeightedExp

music emotion

hamming loss .211±.004 .211±.003 .211±.003 .211±.004 .206±.003 .207±.003
ranking loss .243±.007 .251±.009 .236±.008 .243±.010 .236±.009 .234±.008

one-error .439±.030 .441±.032 .439±.030 .437±.027 .405±.028 .401±.028
coverage .414±.010 .424±.015 .409±.010 .419±.014 .409±.011 .406±.011

average precision .621±.013 .616±.011 .624±.013 .621±.010 .637±.012 .640±.012
microF1 .357±.015 .348±.014 .365±.013 .373±.012 .398±.016 .405±.014

music style

hamming loss .115±.004 .115±.004 .114±.005 .114±.005 .116±.004 .117±.004
ranking loss .141±.006 .144±.006 .137±.006 .139±.007 .135±.005 .134±.005

one-error .355±.019 .353±.020 .349±.021 .348±.020 .344±.016 .336±.016
coverage .200±.008 .202±.009 .197±.007 .200±.009 .195±.008 .193±.009

average precision .733±.010 .732±.011 .738±.012 .736±.012 .742±.009 .746±.008
microF1 .545±.016 .539±.015 .557±.017 .560±.017 .573±.012 .586±.011

mirflickr

hamming loss .218±.057 .225±.062 .214±.058 .214±.063 .162±.029 .165±.027
ranking loss .170±.050 .163±.056 .164±.055 .167±.056 .120±.039 .122±.038

one-error .497±.066 .448±.132 .458±.102 .457±.096 .306±.099 .316±.095
coverage .260±.087 .255±.088 .257±.091 .264±.095 .224±.080 .225±.080

average precision .706±.055 .719±.066 .722±.065 .716±.062 .796±.052 .790±.051
microF1 .549±.131 .494±.158 .571±.114 .575±.141 .712±.071 .720±.079

emotions3

hamming loss .228±.030 .231±.026 .226±.030 .225±.030 .223±.029 .218±.032
ranking loss .170±.026 .178±.031 .172±.029 .177±.027 .163±.028 .161±.027

one-error .264±.061 .268±.058 .264±.060 .278±.067 .254±.068 .253±.069
coverage .308±.040 .315±.042 .313±.041 .317±.037 .303±.037 .301±.036

average precision .799±.031 .793±.034 .794±.035 .788±.036 .802±.041 .805±.040
microF1 .542±.055 .531±.047 .550±.057 .560±.055 .563±.047 .584±.057

image2

hamming loss .176±.019 .175±.016 .173±.016 .171±.016 .171±.016 .172±.016
ranking loss .178±.020 .179±.022 .169±.019 .170±.021 .168±.019 .168±.019

one-error .299±.034 .298±.036 .305±.038 .302±.040 .300±.037 .300±.037
coverage .195±.018 .195±.017 .189±.016 .191±.016 .189±.015 .189±.016

average precision .798±.021 .798±.021 .799±.022 .799±.022 .802±.021 .801±.021
microF1 .626±.036 .627±.033 .634±.032 .639±.033 .637±.032 .637±.033

yeast7

hamming loss .245±.010 .255±.009 .241±.008 .232±.008 .232±.009 .215±.007
ranking loss .173±.014 .178±.015 .171±.015 .177±.015 .174±.012 .173±.013

one-error .249±.039 .249±.040 .244±.036 .246±.036 .224±.028 .228±.029
coverage .460±.018 .470±.017 .462±.019 .477±.018 .476±.016 .471±.018

average precision .754±.021 .751±.022 .756±.020 .751±.020 .761±.015 .762±.016
microF1 .412±.041 .360±.021 .427±.028 .472±.015 .466±.018 .534±.012

reference7

hamming loss .092±.003 .091±.003 .092±.003 .095±.003 .099±.003 .103±.007
ranking loss .249±.012 .254±.013 .244±.011 .250±.014 .250±.011 .249±.011

one-error .553±.020 .556±.019 .552±.018 .554±.018 .560±.020 .557±.020
coverage .258±.012 .261±.013 .255±.012 .261±.014 .261±.011 .260±.011

average precision .556±.012 .553±.012 .558±.011 .553±.013 .552±.012 .553±.013
microF1 .414±.017 .413±.016 .417±.018 .411±.016 .406±.015 .404±.020

arts7

hamming loss .120±.005 .118±.004 .121±.004 .128±.006 .119±.004 .121±.004
ranking loss .203±.008 .208±.010 .199±.007 .220±.018 .198±.008 .197±.008

one-error .538±.024 .539±.023 .531±.025 .559±.028 .512±.014 .514±.016
coverage .262±.008 .268±.008 .260±.007 .286±.017 .261±.008 .261±.007

average precision .582±.015 .578±.014 .586±.015 .562±.025 .595±.009 .595±.010
microF1 .381±.019 .372±.016 .385±.015 .368±.022 .400±.012 .401±.011

recreation11

hamming loss .095±.005 .092±.005 .096±.004 .100±.015 .095±.004 .096±.004
ranking loss .197±.010 .204±.014 .191±.010 .244±.031 .188±.011 .187±.011

one-error .679±.031 .679±.030 .669±.027 .733±.066 .622±.025 .621±.028
coverage .238±.011 .244±.015 .234±.011 .290±.030 .234±.013 .233±.013

average precision .472±.022 .469±.024 .481±.019 .417±.042 .512±.020 .513±.021
microF1 .285±.026 .278±.022 .292±.020 .248±.044 .333±.019 .334±.018

specifically consider the characteristics of PML problems,
e.g., positive/negative correlations between a pair of labels,
labels with high/low frequency. Thus, PAMB might achieve
suboptimal performance over some PML data sets with
certain characteristics.

For example, as shown in Tables 2-7, PAMB achieves rel-
atively inferior performance against comparing approaches
over reference dataset. Possible reason is that the number of
examples associated with 14th label is 20 times more than
the number of examples associated with 1st label in reference.
In other words, there exists extreme class-imbalance prob-

lem in reference. To verify this conjecture, we resample 1/3
examples associated with the 14th label of reference dataset
to make it more balanced. Fig.6 shows the average ranks
in terms of six evaluation metrics for PAMB and the six
baselines over reference(7,9,11,13). It can be observed that
PAMB achieves the best performance over the resampled
reference data set.

4.5 Parameter Sensitivity Analysis
As shown in Algorithm 1, PAMB has two parameters to be
set, i.e., z (the number of ‘0’s in each column of coding ma-
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trix M) andL (the ECOC code length). In this subsection, we
further investigate how the performance of PAMB changes
with different values of these two parameters, respectively.

4.5.1 Analysis w.r.t. Parameter z

As discussed before, a proper value of z should be set for
PAMB to make a better compromise between the definiteness
and adequacy of the derived binary training sets. Fig.4 il-
lustrates how the performance of PAMB changes when the
value of z increases from one small value to q−2. It is shown
that, the performance of PAMB indeed fluctuates as the value
of z varies. Specifically, for sufficient data sets music emotion,
music style, mirflickr, emotions3 and image2, PAMB usually
achieves better performance with a relatively small z. For
insufficient data set yeast7, reference7, arts7 and recreation11,
PAMB usually achieves better performance with a relatively
larger z. Possible reason is that, sufficient data sets have
relatively enough training examples w.r.t their label space
and a small z can make the derived binary training sets
adequate. In contrast, insufficient data sets need a relatively
large z to obtain adequate binary training sets. In this
paper, we set z to bavg.#CLsc for sufficient data sets and
davg.#CLs + 2e for insufficient data sets, respectively.

4.5.2 Analysis w.r.t. Parameter L

The codeword length L controls how many binary train-
ing sets are generated from the original PML data set.
According to previous studies on ECOC [2], [8], [16], [20],
[48], L serves as a crucial parameter for approaches which
are designed based ECOC techniques. Fig.5 illustrates how
the performance of PAMB changes when the value of L
increases from 10 log2(q) to 150 log2(q). It is shown that, the
performance of PAMB will be improved as the value of L in-
creases at first, and then will become stable when the value
of L is large enough. Specifically, for sufficient data sets
mirflickr, music emotion, music style, emotions3 and image2,
the performance of PAMB become stable when L is larger
than 50 log2(q) even though there are some fluctuations on
mirflickr. For insufficient data set yeast7, reference7, arts7 and
recreation11, the performance of PAMB become stable when
L is larger than 100 log2(q). In this paper, we simply set L
to 100 log2(q) for PAMB over all experimental data sets.

5 CONCLUSION

In this paper, the problem of learning from PML data is
investigated, where each training example is associated with
a set of candidate labels which are partially valid. The main
contributions of this paper are two-fold: (1) Different from
existing PML approaches which mainly focus on estimating
the labeling confidence of each candidate label being the
ground-truth label, we present an alternative strategy which
solves the PML problem by enabling binary decomposition
for handling PML training examples. (2) From the binary
decomposition perspective, we propose a transformation-
based PML learning approach named PAMB which works
by transforming the original PML problem into a number
of binary learning problems by adapting the popular ECOC
techniques. Extensive experiments clearly validate the supe-
riority of our proposed PAMB approach.

In the future, it is interesting to explore more effec-
tive binary decomposition methods for PML by utilizing
prior feature topology and label correlations. Moreover, it
is also worth to design some binary classifiers tailored for
the derived binary training sets which can deal with the
definiteness and adequacy in a better way.
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