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Abstract—Multi-label learning focuses on the ambiguity at the label side, i.e., one instance is associated with multiple class labels,
where the logical labels are always adopted to partition class labels into relevant labels and irrelevant labels rigidly. However, the
relevance or irrelevance of each label corresponding to one instance is essentially relative in real-world tasks and the label distribution
is more fine-grained than the logical labels by denoting one instance with a certain number of the description degrees of all class
labels. As the label distribution is not explicitly available in most training sets, a process named label enhancement emerges to recover
the label distributions in training datasets. By inducing the generative model of the label distribution and adopting the variational
inference technique, the approximate posterior density of the label distributions should maximize the variational lower bound. Following
the above consideration, LEVI is proposed to recover the label distributions from the training examples. In addition, the multi-label
predictive model is induced for multi-label learning by leveraging the recovered label distributions along with a specialized objective
function. The recovery experiments on fourteen label distribution datasets and the predictive experiments on fourteen multi-label
learning datasets validate the advantage of our approach over the state-of-the-art approaches.

Index Terms—Label enhancement, label distribution learning, multi-label learning, label ambiguity.
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1 INTRODUCTION

L EARNING with ambiguity is a hot topic in recent ma-
chine learning and data mining research. The paradigm

of multi-label learning (MLL) naturally emerges, which fo-
cuses on the label ambiguity, i.e., one instance is associated
with multiple class labels [18], [44], [57]. During the past
decade, multi-label learning has been widely adopted to
learn from data with rich semantics, such as image [3], [46],
text [6], [36], audio [21], [27], video [21], [47], etc. Logical
labels are always assigned to the instances in multi-label
learning, which partition the labels into relevant labels and
irrelevant labels rigidly.

Actually, the relevance or irrelevance of each label cor-
responding to one instance is essentially relative in real-
world tasks. If an instance is denoted with multiple labels,
the relative importance among the labels is more likely to
be different rather than exactly equal. For example, when
“sailboat” and “sand” are relevant to the two images in Fig.
1, “sand” is more significant than “sailboat” in image (a) and
the opposite scenario occurs in image (b). On the other hand,
the “irrelevance” of irrelevant labels may also be different.
For example, “bus” is more irrelevant than “sun” to the
two images in Fig. 1 as “sun” often appears with “sand”
and “sailboat” on the beach. Therefore, assigning the logical
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Fig. 1: An example of the relative importance among rele-
vant and irrelevant labels

label lyx ∈ {0, 1} to each instance xwith class label y ignores
the relative importance among the relevant (or irrelevant)
labels.

Therefore, a more natural way to denote the supervised
information of x is assigning a real-valued dyx to each label
y, which represents the degree to which y describes x. Such
dyx is called the description degree of y to x. For a particular in-
stance, the real-valued vector constituted by the description
degrees of all the labels is called label distribution [14], [50].
Therefore, the label distribution is more fine-grained than
logical labels for describing the supervised information in
the tasks of learning with label ambiguity.

However, given the difficulty and cost of quantifying the
description degrees, the label distributions are not explicitly
available in most training sets. They need to be recovered
from the training set via the process named label enhance-
ment (LE) [52]. Then, more effective supervised learning can
be achieved by leveraging the recovered label distributions
rather than learning directly on the original logical labels
[19], [55]. In recent years, label enhancement has been suc-
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cessfully employed for multi-label learning [28], [33], [37],
[54], label distribution learning [13], [41], [42], facial emotion
recognition [4], cross-modal retrieval [25], etc. Although
some label enhancement methods [26], [43], [49], [54], [61]
have been proposed, there is no theoretical explanation
about the process of recovering label distributions.

In this paper, a theoretical explanation about the essence
of label enhancement is proposed. By inducing the gen-
erative model of the label distribution and adopting the
variational inference technique, the approximate posterior
density of the label distributions should maximize the vari-
ational lower bound. Following the above consideration,
Label Enhancement via Variational Inference (LEVI) is pro-
posed to recover the label distributions from the training
examples. Specifically, the approximate posterior density is
constructed by employing a multi-layer perceptron or graph
convolutional network, which is optimized with the varia-
tional lower bound. In addition, the multi-label predictive
model would be induced for multi-label learning by lever-
aging the recovered label distributions along with a special-
ized objective function. Comprehensive experimental stud-
ies validate the performance superiority of the proposed
approaches against state-of-the-art comparing approaches
as well as the usefulness of the recovered label distributions.

Preliminary results of this paper have been reported in
a shorter conference version [51]. While only the variational
lower bound is employed to recover label distributions, here
we consider exploring the topological information and pro-
pose another LE method which constructs an approximate
posterior density with the explored topological information
by employing a graph convolutional network. Moreover, the
details about the specialized objective function to achieve
effective multi-label learning are shown, which induces a
multi-label predictive model with original logical labels and
the recovered label distributions. Besides, more datasets
and comparing algorithms are added into the recovery
experiment and the predictive experiment, and the ablation
experiment on MLL datasets is conducted to show the
usefulness of the proposed LE approaches.

The rest of this paper is organized as follows. Firstly,
some related work is briefly reviewed and discussed in
Section 2. Secondly, technical details of the theoretical ex-
planation and proposed method LEVI for LE and MLL are
introduced in Section 3. After that, the results of the label
distribution recovery experiments and the MLL prediction
experiments are reported in Section 4. Finally, we conclude
this paper in Section 5.

2 RELATED WORK

To deal with label ambiguity, multi-label learning is to learn
a mapping from the instance space to the power set of the
label space. Logical labels are assigned to the instance in
multi-label learning, which partition the supervised infor-
mation into relevance and irrelevance labels rigidly. The
simplest approaches are designed to decompose the multi-
label classification problem into a series of binary classifi-
cation problems for each class [1], [56], i.e., each class is
independently considered. The correlations between pairs
of classes are considered in [10], [11], which focus on the
difference between the relevant label and the irrelevant

label. Furthermore, the correlations among label subsets or
all the class labels are considered in [34], [45]. Some works
learn from multi-label data with auxiliary importance of la-
bels, which is explicitly given and accessible to the learning
approaches. For example, an ordinal scale is considered to
characterize the degrees of labels, and the ordinal grades of
labels are assigned to the training examples [2], [10]. A full
ordering assigned to the training examples is considered to
rank relevant labels [48].

Label distribution is the real-valued vector constituted
by the description degree, which represents the degree of
each label y describing an instance x. Therefore, label distri-
bution is more fine-grained than logical labels for describing
the supervised information in the tasks of learning with
label ambiguity. The paradigm of label distribution learning
(LDL) labels an instance with a label distribution and learns
a mapping from an instance to a label distribution straightly.
IIS-LDL and BFGS-LDL [14] are the representative LDL
approaches, which adopt the maximum entropy model for
learning the label distributions. In addition, [15] proposes a
SVR-based approach to deal with LDL. Furthermore, [38]
extends random forest to learn label distribution. Label
distribution learning has been successfully adopted to deal
with many real applications, such as age estimation [12],
emotion analysis [60], facial landmark detection [40], and
multi-label ranking [16].

Label enhancement (LE) is a process to recover the label
distributions from the training examples. Graph-Laplacian-
based LE method [49] constructs a local similarity matrix
to preserve the structure of the feature space and transfers
logical labels into label distributions with the local similarity
matrix. The label propagation technique is employed in [55]
to propagate labeling-importance information and generate
the label distributions. Manifold base LE approach [19]
adopts the locally linear embedding technique to achieve
identified label distributions. Tang [43] proposes a low-
rank representation LE method via capturing the global
relationships of samples and predicting the implicit label
correlation. Zhu [61] adopts the structural information be-
tween instances and the privileged information to recover
label distributions. A bi-directional loss function [26] is pro-
posed to fully explore the relationship between the feature
space and the label distribution space. In recent years, label
enhancement has been successfully employed for multi-
label learning [28], [33], [37], [54], label distribution learning
[13], [41], [42], facial emotion recognition [4], cross-modal
retrieval [25], etc.

In the next section, a theoretical explanation about the
essence of label enhancement is proposed. By inducing the
generative model of the label distribution and adopting
the variational inference technique, the posterior density
of the label distributions should maximize the variational
lower bound. Following the above consideration, LEVI is
proposed to recover the label distributions from the log-
ical labels. Different from existing label enhancement ap-
proaches, the approximate posterior density is constructed
by employing a multi-layer perceptron or a graph convo-
lutional network, which is optimized with the variational
lower bound. In addition, the multi-label predictive model
is induced for multi-label learning by fitting a predictive
model with logical labels and recovered label distributions
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Fig. 2: The framework of the proposed methods. LEVI-MLP and LEVI-GCN are two LE approaches, where the inference
model w is respectively instantiated by MLP and GCN to recover the label distributions from the training data. Then, the
MLL training set D could be transformed into the label distribution training set E , which induces the regression model
to deal with multi-label learning. The black solid lines denote the forward process, and the black dotted lines mark the
gradient flow.

along with a specialized objective function.

3 THE PROPOSED METHODS

First of all, the main notations used in this paper are listed
as follows. x denotes the instance variable and xi denotes
the particular i-th instance. y denotes the class label and yj
denotes the particular j-th class label. The logical label vec-
tor corresponding to xi is denoted by li = (ly1xi

, ly2xi
, ..., lycxi

)>,
where c is the number of labels. The description degree of
y to x is denoted by dyx, and the label distribution of xi is
denoted by di = (dy1xi

, dy2xi
, ..., dycxi

)>. X = [x1,x2, . . . ,xn],
L = [l1, l2, . . . , ln] and D = [d1,d2, . . . ,dn] are feature
matrix, logical label matrix and label distribution matrix,
respectively, where n is the number of samples.

In the section, we firstly adopt the generative models
of the label distribution and deduce the variational lower
bound for LE. Then we instantiate the generative models
as MLP and GCN [24] and propose LEVI-MLP and LEVI-
GCN for LE. At last, we train the MLL predictive model via
leveraging the recovered label distributions by LEVI-MLP
and LEVI-GCN. The framework of the proposed method is
shown in Fig. 2.

3.1 Variational Lower Bound
Given the difficulty and cost of quantifying the label distri-
butions, people instead choose simplifying the supervised
information by the logical labels. Therefore, the logical label
vector l and the instance x can be treated as observed vec-
tors, and the label distribution d is treated as a latent vector.

Then the problem of label enhancement could be solved if
the posterior density p(d|l,x) is obtained. As computation
of the exact posterior density p(d|l,x) is intractable, we
employ a fixed-form density q(d|l,x) to approximate the
true posterior p(d|l,x). By following the Variational Bayes
techniques, we derive a lower bound which could ensure
that the q(d|l,x) is as close as possible to p(d|l,x).

We begin with the definition of Kullback-Leibler diver-
gence (KL divergence) between p(d|l,x) and q(d|l,x):

KL[q(d|l,x)||p(d|l,x)] = Eq(d|l,x)[log q(d|l,x)

− log p(d|l,x)].
(1)

Applying Bayes rule:

KL[q(d|l,x)||p(d|l,x)] = Eq(d|l,x)[log q(d|l,x)−
log p(l,x|d)− log p(d) + log p(l,x)].

(2)

Here, log p(l,x) comes out of the expectation because it does
not depend on d :

KL[q(d|l,x)||p(d|l,x)] = KL[q(d|l,x)||p(d)]

+ log p(l,x)− Eq(d|l,x)[log p(l,x|d)].
(3)

Since this KL-divergence is non-negative, we have :

log p(l,x) ≥ Eq(d|l,x)[log p(l,x|d)]

− KL[q(d|l,x)||p(d)].
(4)

Therefore, label enhancement is the process which aims to
maximize the lower bound of the joint probability density
p(l,x) by recovering the optimal label distribution d. We
construct the approximate posterior density q(d|l,x) as an
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inference model, which is efficient variational inference [22],
[35]. The parameters of q(d|l,x) and p(l,x|d) are modeled
with w and η, respectively. Then, the Evidence Lower
Bound (ELBO) is written as

L(x, l;w,η) = Eqw(d|l,x)[log pη(l,x|d)]

−KL[qw(d|l,x)||p(d)].
(5)

The bound in Eq. (5) provides a unified objective function
for optimization of w and η.

3.2 LEVI for Label Enhancement
In this paper, two label enhancement approaches, i.e., LEVI-
MLP and LEVI-GCN are developed by handling the ELBO
in Eq. (5) with different models. LEVI-MLP directly employs
the multi-layer perceptron (MLP) to model the parameters
of the approximate posterior density, which is simple yet
efficient. Besides, LEVI-GCN is proposed by further consid-
ering the topological information of the feature space, which
leads to adopting a graph convolutional network (GCN) [23]
as the model of the approximate posterior density in Eq. (5).

3.2.1 LEVI-MLP

By expanding the label distribution into d ∈ Rc, we assume
that the prior over the latent label distribution is the cen-
tered isotropic multivariate Gaussian p(d) = N (0, I). We
let the variational approximate posterior be a multivariate
Gaussian with a diagonal covariance structure N (µ,σ2I).
Here µ and σ are the c-dimensional mean and the standard
deviation vectors, which are the outputs of a MLP with two
hidden layers. Then the KL divergence in Eq. (5) can be
computed:

KL[qw(d|l,x)||p(d)] =
1

2

(
µ>µ+ tr

(
σ2I

)
− c

− log
∣∣σ2I

∣∣). (6)

As there is a factorized form p(l,x|d) = p(l|x,d)p(x|d),
we let p(l|x,d) be a multivariate Bernoulli with probabilities
τ and p(x|d) be a multivariate Gaussian with means ρ.
Then the first part of Eq. (5) can be computed:

Eqw(d|l,x)[log pη(l,x|d)] =
1

J

J∑
j=1

(
− 1

2
‖x− ρ(j)‖22

+l> log τ (j) + (1− l)> log
(
1− τ (j)

))
,

(7)

Here, to simplify the observation model, MC sampling [24]
is employed in Eq. (9) during the training process, where
τ (j) and ρ(j) are computed from the j-th sampled d(j)

with the MLP parameterized by η and J is the sampling
number. In order to move the sampling to an input layer,
the reparameterization trick [35] is employed to sample d
by:

d(j) = µ+ σ � ε(j), (8)

where ε(j) ∼ N (0, I). In this case, Eq. (7) can be differenti-
ated.

As the label distributions inherit relevance and irrel-
evance from the initial label vectors [49], we add the
least squares for the label distribution and the initial label

Algorithm 1 LEVI-MLP Algorithm

Input: The MLL training setD = {(xi, li)}ni=1, epoch T and
iteration I ;

1: Initialize the reference model w and the observation
model η;

2: for t = 1, . . . , T do
3: Shuffle training set D = {(xi, li)}ni=1 into I mini-

batches;
4: for k = 1, . . . , I do
5: Calculate the label distribution di corresponding to

each example xi by Eq. (8);
6: Update w and η with back-propagation and for-

ward computation by Eq. (10);
7: end for
8: end for
9: Obtain the label distributions di for each example xi

and generate the label distribution training set E =
{(xi,di)}ni=1;

10: Initialize the predictive model Θ(0), t = 0;
11: repeat
12: Calculate Θ(s) via Eq. (30);
13: Update Θ(t+1) via line searching with Θ(t) and Θ(s);
14: t = t+ 1;
15: until convergence
Output: The predictive model Θ.

vectors into the objective function. The -1/1 label vector
l̂ = [l̂y1xi

, l̂y2xi
, . . . , l̂ycxi

]> of each xi is utilized in the least
squares:

∀cj=0 : l̂
yj
xi =

{
1, if yj ∈ Yi
−1, if yj /∈ Yi

(9)

where Yi represents the relevant label set of xi. Then, we for-
mulate the label enhancement problem into an optimization
framework to yield the target function for minimization:

T (η,w) =
n∑
i=1

(
1

J

J∑
j=1

(
1

2
‖xi − ρ(j)

i ‖
2
2

+λ‖d(j)
i − l̂i‖

2
2 − l>i log τ

(j)
i

− (1− li)> log
(
1− τ (j)

i

))
+

1

2

(
µ>i µi + tr

(
σ2
i I
)
− c− log

∣∣σ2
i I
∣∣)),

(10)

where λ is a hyper-parameter. Stochastic gradient descent is
utilized for the optimization. Whenw and η are determined,
the label distribution di of each instance xi can be sampled
from the posterior di ∼ qw(d|li,xi). In order to make the
output of LEVI-MLP deterministic rather than stochastic, we
let the output label distribution be equal to the mean of the
variational approximate posterior in the experiments.

In the training procedure of LEVI-MLP, we first initial-
ized the reference model w and the observation model
η. In each epoch, we calculated the label distribution di
corresponding to each example xi by Eq. (8) and updated
w and η with back-propagation and forward computation
by Eq. (10) on each mini-batch. Then, we transformed the
MLL training set D into the label distribution training set E
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and induced the regression model to deal with multi-label
learning as shown in Fig. 2. The algorithmic description of
LEVI-MLP is shown in Algorithm 1.

3.2.2 LEVI-GCN

As recovering the label distribution could benefit from topo-
logical structure of the feature space in the LE process [49],
LEVI-GCN further adopts a GCN to instantiate the infer-
ence model, which could explicitly leverage the topological
structure of the feature space and naturally integrate the
topological structure into the ELBO in Eq. (5) to recover the
label distributions.

The topological structure of the feature space can be
represented by the affinity graph G = (V,E,P). Here,
V = {xi | 1 ≤ i ≤ n} corresponds to the vertex set
consisting of feature vectors,E = {(xi,xj) | 1 ≤ i 6= j ≤ n}
corresponds to the edge set. Intuitively, the weight matrix
P = [pij ]n×n encodes the relationships among all training
examples, where each weight pij reflects the influence of
xi over xj . Therefore, P could be estimated via modeling
the relationship between one example and all the other
examples via the reconstruction of each instance.

For each instance xi, LEVI-GCN aims to reconstruct xi
from all the other instances in the training set. The weight
matrix P = [pij ]n×n can be optimized by solving the
following reconstruction problem [58]:

min
p̄i

∥∥X̄ip̄i − xi
∥∥2

2
+ ν ‖p̄i‖1 , (11)

where p̄i = [p1,i, . . . , pi−1,i, pi+1,i, . . . , pn,i]
>, X̄i =

[x1, . . . ,xi−1,xi+1, . . . ,xn], and ν is a tradeoff parameter.
To deal with large datasets, we would only reconstruct xi
from its K-nearest neighbors. For xi, pji = 0 unless xj
is one of xi’s K-nearest neighbors. In the reconstruction
problem in Eq. (11), we only consider its (k−1)-dimensional
weight vector p̄i and the matrix X̄i constituted by (k − 1)
vectors, and then Eq. (11) could be solved efficiently.

The optimization problem in Eq. (11) can be solved as a
series of minimization problems by ADMM technique [17]:

L (pi, zi, ζi) =
1

2
‖Xipi − xi‖

2
2 + ν ‖zi‖1

+ζ>i (pi − zi) +
1

2
‖vi − zi‖22 .

(12)

The minimization of pi, zi and ζi can be conducted by the
scaled ADMM iterations [58]. By solving the reconstruction
problem of Eq. (11) for each instance xi, we instantiate P̄
with p̄ and zero diagonal elements. Then the symmetrical
weight matrix P = 1

2 (P̄ + P̄>).
LEVI-GCN employs Cantelli’s inequality-based outlier

thresholding [30] to generate a very sparse adjacency matrix
A = [aij ]n×n:

∀i6=j : aij =

{
1, if pij ≥ µ̄+ δ̄
0, otherwise (13)

where µ̄ and δ̄ are the expected value and variance of all the
elements in P except zero diagonal elements, respectively.
The diagonal elements of A are set to 1. Then, the topologi-
cal information of the feature space is utilized by adding A
into Eq. (5):

L(L,X,A;η,w) = Eqw(D|L,X,A)[log pη(L,X,A|D)]

−KL[qw(D|L,X,A)||p(D)].
(14)

LEVI-GCN assumes that the prior over the latent label
distribution is the centered isotropic multivariate Gaussian:

p(D) =
∏
i

p (di) =
n∏
i=1

N (di | 0, I) (15)

In addition, we let the variational approximate posterior
be the product of each multivariate Gaussian with a di-
agonal covariance structure, where the mean and stan-
dard deviation matrix of each multivariate Gaussian, Π =
[µ1,µ2, . . . ,µn] and Σ = [σ1,σ1, . . . ,σn], are outputs of a
two-layer GCN [24]:

q(D | L,X,A) =
n∏
i=1

q (di | L,X,A)

=
n∏
i=1

N
(
µi,σ

2
i I
)
.

(16)

Here, the two-layer GCN parameterized by w is defined as
GCN(L,X,A) = Ã ReLU

(
ÃZW0

)
W1, with Z = [X; L]

and weight W0, W1. Ã = Â−
1
2 AÂ−

1
2 is the symmetrically

normalized weight matrix, where Â is the degree matrix of
A. Then, the KL divergence in the Eq. (14) can be computed:

KL[qw(D|L,X,A)||p(D)] =
1

2

n∑
i=1

(
tr(σ2

i I) + µ>i µi

−c− log
∣∣σ2
i I
∣∣). (17)

As there is a factorized form p(L,X,A|D) =
p(L|X,A,D)p(X|A,D)p(A|D). Then our generative
model is given by

p(L | X,A,D) =
n∏
i=1

p (li | X,A,D) ,

p(X | A,D) =
n∏
i=1

p (xi | A,D) ,

p(A | D) =
n∏
i=1

n∏
j=1

p (aij | di,dj) .

(18)

We further assume that p (li|X,A,D) is a multivariate
Bernoulli with probabilities τi and p(xi|A,D) is a multi-
variate Gaussian with means ρi. Then the first part of Eq.
(14) can be computed:

Eqw(D|L,X,A)[log pη(L,X,A|D)] =
1

J

J∑
j=1(

tr
(
L> log T(j)

)
+ tr

(
(I− L)

>
log
(
I−T(j)

))
−1

2
‖X−E(j)‖2F − ‖A− S

(
D(j)D(j)>

)
‖2F

)
.

(19)

In order to simplify the observation model, T(j) =

[τ
(j)
1 , τ

(j)
2 , . . . , τ

(j)
n ] and E(j) = [ρ

(j)
1 ,ρ

(j)
2 , . . . ,ρ

(j)
n ] are

computed from j-th sampling D(j) with the MLP param-
eterized by η. S(·) is the logistic sigmoid function.

Finally, we formulate the label enhancement problem
into an optimization framework with the least squares of the
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label distribution di and the logical label vectors l̂i, which
yields the target function for minimization:

T (η,w) =
1

J

J∑
j=1

(
1

2
‖X−E‖2F + λ‖D(j) − L̂‖2F

− tr
(
L> log T

)
− tr

(
(I− L)

>
log (I−T)

)
+ ‖A− S

(
D(j)D(j)>

)
‖2F

)
+

1

2

n∑
i=1

(
µ>i µi

+ tr(σ2
i I)− c− log |σ2

i I|
)
,

(20)

where λ is a tradeoff parameter and L̂ = [l̂1, l̂2, . . . , l̂n].
When η and w are determined, the label distribution

matrix D can be sampled from the approximate posterior
D ∼ q(D|L,X,A). In order to make the output of LEVI-
GCN deterministic rather than stochastic, we let the output
label distributions be equal to the means of the approximate
posterior in the experiments.

LEVI-GCN models the topological information by em-
ploying the adjacency matrix A = [aij ]n×n which encodes
the relationships among all training examples and leverages
the topological information via Eq. (14) with the added
adjacency matrix. Comparing to LEVI-GCN, LEVI-MLP only
considers the relationship between instance x and the cor-
responding label l via Eq. (5) so that it cannot explicitly
capture the topological information of the feature space.

In the training procedure of LEVI-GCN, we first ini-
tialize the reference model w, the observation model η
and the weight matrix P. Then the adjacency matrix A
was obtained by calculating Eq. (13) with weight matrix
P generated by solving the minimization problem in Eq.
(11) via ADMM technique. In each epoch, we calculated
the label distribution di corresponding to each example xi
by Eq. (16) and updated w and η with back-propagation
and forward computation by Eq. (20) on each mini-batch.
Then, we transformed the MLL training set D into the label
distribution training set E and induced the regression model
to deal with multi-label learning as shown in Fig. 2. The
algorithmic description of LEVI-GCN is shown in Algorithm
2.

3.3 LEVI for Multi-Label Learning

When the label distribution di of each xi is recovered
by LEVI-MLP or LEVI-GCN, the multi-label training set
D = {(xi, li) | 1 ≤ i ≤ n} can be transformed into the label
distribution training set E = {(xi,di) | 1 ≤ i ≤ n}.

As di is real-valued, multi-output support vector re-
gression (MSVR) [5], [31] is employed to handle this case,
where the kernel regression model is used to parametrize
the multi-label predictor:

∀cj=1 : f(yj |xi,Θ, b) = θ̂jϕ(xi) + bj

= θ>j φi.
(21)

Here, θj = [θ̂
>
j , bj ]

>, φi = [ϕ (xi)
>
, 1]>, Θ =

[θ1,θ2, . . . ,θc], and ϕ(xi) is a nonlinear transformation of
xi to a higher dimensional feature space. According to
the representer theorem [39], a learning problem would be

Algorithm 2 LEVI-GCN Algorithm

Input: The MLL training setD = {(xi, li)}ni=1, epoch T and
iteration I ;

1: Initialize the reference model w, the observation model
η, and the weight matrix P;

2: Obtain the weight matrix P by solving the minimization
problem in Eq. (11) via ADMM technique.

3: Calculate the adjacency matrix A via Eq. (13);
4: for t = 1, . . . , T do
5: Shuffle training set D = {(xi, li)}ni=1 into I mini-

batches;
6: for k = 1, . . . , I do
7: Calculate the label distribution di corresponding to

each example xi by Eq. (16);
8: Update w and η with back-propagation and for-

ward computation by Eq. (20);
9: end for

10: end for
11: Obtain the label distributions di for each example xi

and generate the label distribution training set E =
{(xi,di)}ni=1;

12: Initialize the predictive model Θ(0), t = 0;
13: repeat
14: Calculate Θ(s) via Eq. (30);
15: Update Θ(t+1) via line searching with Θ(t) and Θ(s);
16: t = t+ 1;
17: until convergence
Output: The predictive model Θ.

represented as a linear combination of the training data
in the feature space under fairly general conditions, i.e.
θj =

∑
i η

jϕ(xi). By replacing this expression into final
objective function, the inner product < ϕ(xi), ϕ(xj) >
could be generated, and then the kernel trick can be applied.

As the kernel regression model could handle the nonlin-
ear mapping problem and possess the higher interpretabil-
ity than MLP, we employ the kernel regression model as the
predictive model for MLL in this section. This is different
from the model selection that MLP is employed to model the
parameters of the fixed-form density q(d|x, l) in Section 3.2
since the high-capacity MLP will hopefully make variational
posterior density approximate the true posterior density [8]
and is widely-used in variational reference [24].

The multi-label predictive model is induced by optimiz-
ing the following objective function:

Ω(f, E ,D) =
1

2
‖Θ‖2F + βΩ1(f, E) + γΩ2(f,D). (22)

The first term of Ω(f, E ,D) controls the complexity of the
induced model. Besides, Ω1(f, E) concerns the distance
between the predictions and the label distribution, and
Ω2(f,D) is employed to keep the sign consistency of the
prediction and the ground-truth.

Ω1(f, E) is defined to yield a single support vector:

Ω1(f, E) =
n∑
i=1

V (ri) (23)

Here, ri = ‖ei‖ =
√
e>i ei, ei = di −Θ>ϕ(xi)− b. V (z) =

(z − ε)2 if z ≥ ε, and V (z) = 0 otherwise. This term could
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generate an insensitive zone determined by ε around the
estimation, i.e., the loss of r less than ε will be ignored.

Ω2(f,D) is employed to keep the signs of the prediction
and the ground-truth label l̂ consistent:

Ω2(f,D) = −
n∑
i=1

c∑
j=1

l̂jxi
θ>j φi

= −tr
(
L̂>ΘΦ

)
,

(24)

where Φ = [φ1,φ2, . . . ,φn] and L̂ = [l̂1, l̂2, . . . , l̂c].
To minimize the objective function Ω(f, E ,D), we choose

to adopt an iterative quasi-Newton method called Iterative
Re-Weighted Least Square (IRWLS) [32]. Firstly, Ω(f, E ,D)
is approximated by its first order Taylor expansion at the
solution of the current k-th iteration, denoted by Θ(k):

Ṽ (ri) =V (ri
(k)) +

dV

dr

∣∣∣∣∣
r
(k)
i

(e
(k)
i )>

r
(k)
i

(
ei − e(k)

i

)
, (25)

where e(k)
i and r(k)

i are calculated from Θ(k) and b(k). Then
a quadratic approximation is further constructed as

V̄ (ri) =V (ri
(k)) +

dV (ri)

dri

∣∣∣∣∣
r
(k)
i

r2
i − (r

(k)
i )2

2r
(k)
i

=
1

2
ξir

2
i + τ,

(26)

where

ξi =
1

r
(k)
i

V (ri)

dri

∣∣∣∣∣
r
(k)
i

=

0 r
(k)
i < ε

2
(
r
(k)
i −ε

)
r
(k)
i

r
(k)
i ≥ ε,

(27)

and τ is a constant term that does not depend on either Θ(k)

or b(k). Combining Eq. (22), (24) and (26), we could obtain:

Ω̄(f, E ,D) =
1

2
‖Θ‖2F +

1

2
β

n∑
i=1

air
2
i − γtr

(
L̂>ΘΦ

)
=

1

2
‖Θ‖2F − γtr

(
L̂>ΘΦ

)
+

1

2
β
(

(D−Θ>Φ)H(D−Θ>Φ)>
)
.

(28)

Here, H = [hij ]n×n with hij = ξiδij where δij is the
Kronecker’s delta function. By making the corresponding
gradient to be zero:

∇Θ = βΦHΦ>Θ− βΦHD> + γΦL̂> + Θ = 0, (29)

the solution is obtained as

Θs =
(
βΦHΦ> + I

)−1
(βΦHD> − γΦL̂>). (30)

Then, the solution to the next iteration Θ(k+1) is obtained
via a line search algorithm with Θs and Θ(k). The algorith-
mic descriptions about the optimization processes of LEVI-
MLP and LEVI-GCN for MLL are shown in Algorithm 1 and
Algorithm 2, respectively.

Let Θ∗ be the resulting model after the whole iterative
optimization process, the prediction is made on the output
of unseen instance x with Eq. (21). Then, the predicted label
set for x is determined as:

h(x) = {yj | f(yj |x,Θ∗, b∗) > 0, 1 ≤ j ≤ c}. (31)

TABLE 1: Statistics of the 14 datasets adopted in the label
distribution recovery experiment

No. Dataset #Examples #Features #Labels

1 Artificial (Ar) 2601 3 3

2 SJAFFE (SJ) 213 243 6
3 Yeast-spoem (spoem) 2,465 24 2
4 Yeast-spo5 (spo5) 2,465 24 3
5 Yeast-dtt (dtt) 2,465 24 4
6 Yeast-cold (cold) 2,465 24 4
7 Yeast-heat (heat) 2,465 24 6
8 Yeast-spo (spo) 2,465 24 6
9 Yeast-diau (diau) 2,465 24 7
10 Yeast-elu (elu) 2,465 24 14
11 Yeast-cdc (cdc) 2,465 24 15
12 Yeast-alpha (alpha) 2,465 24 18
13 SBU 3DFE (3DFE) 2,500 243 6
14 Movie (Mov) 7,755 1,869 5

4 EXPERIMENTS

4.1 Label Distribution Recovery

In this experiment, the label distributions are recovered from
the datasets with logical labels by LEVI-MLP, LEVI-GCN and
other label enhancement algorithms, and then compared
with the ground-truth label distributions in terms of six label
distribution evaluation metrics.

4.1.1 Datasets

There are in total one artificial dataset and 13 real-world
label distribution datasets [14], whose basic statistics are
given in Table 1. The datasets have been collected from
several tasks and domains including Yeast-spoem to
Yeast-alpha with phylogenetic profile vectors from the
biological experiments on the budding yeast Saccharomyces
cerevisiae, SBU_3DFE and SJAFFE with images from the
facial expression estimation task, Movie with videos from
the movie rating task, and Artificial generated from a
certain manifold to show the results directly and visually.
• Artificial is generated to show the result of each

label enhancement algorithm in a visual way. In this
dataset, the examples are generated from a certain
manifold to show the results directly and visually. The
instance x is a three-dimensional vector with three
class labels. The label distribution d = [dy1x , d

y2
x , d

y3
x ] of

x = [x1, x2, x3]> is generated to deliberately make the
description degree of one label depend on other labels
[14].

• Yeast-spoem to Yeast-alpha are derived from the
biological experiments on the budding yeast [9]. Each
dataset records one biological experiment and contains
2,465 yeast genes represented by a phylogenetic profile
vector. The discrete time points during one experiment
constitute the labels in each dataset. The label distribu-
tion is constituted by the gene expression level at each
time point.

• SBU_3DFE is a facial expression dataset which contains
the basic emotions including sadness, happiness, fear,
surprise, anger and disgust [53]. The level of emotional
intensity (1 to 5) of each facial expression is annotated
by twenty-three persons. The label distribution of each
facial expression is constituted by the averaged intensi-
ties.
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(a) Ground-Truth (b) LEVI-GCN (c) LEVI-MLP (d) LESC

(e) PLEML (f) LP (g) ML (h) GLLE

Fig. 3: The visualization of the ground-truth and the recovered label distributions ( RGB colors) on the artificial dataset.

• SJAFFE is a facial expression dataset [29] which con-
tains the same emotions as SBU 3DFE. Similarly, the
level of emotional intensity is annotated by sixty per-
sons and the label distribution of each the facial expres-
sion is constituted by averaged intensities.

• Movie is a movie dataset which contains 7,755 movies
and 54,242,292 ratings from 478,656 different users [15].
The ratings are denoted from 1 to 5 stars (5 classes).
The label distribution is calculated for each movie as
the percentage of each rating level.

The discrete labels of each label distribution dataset are
obtained via employing the most binarization method in LE
[20], [43], [49], [59] as follows. For each training example,
we select the greatest description degree d

yj
x in the label

distribution and set the corresponding class label yj as the
relevant label, i.e., lyjx = 1. Then, we calculated the sum of
the description degrees corresponding to current relevant
labels via H =

∑
yj∈Y+ d

yj
x , where Y+ denotes the set of

the current relevant labels. We continually seek the greatest
description degree among other labels excluded from Y+

and add the corresponding class label to Y+ until H > T ,
where T is a predefined threshold. Finally, we set all the
labels in Y+ to 1 and the other labels to 0. We adopt the
widely-used threshold T = 0.5 in the experiments [20], [43],
[49], [59].

4.1.2 Evaluation Metrics
As suggested in [14], [49], we select four evaluation metrics
including Chebyshev distance, Kullback-Leibler divergence,
cosine coefficient, and intersection similarity, which belong
to the Minkowski family, the Shannon’s entropy family,
the inner product family, and the intersection family, re-
spectively. These metrics are significantly different in both
syntax and semantics. The first two are distance measures
and the last two are similarity measures.
• Chebyshev distance ↓
DCheb = 1

n

∑n
i=1 maxj |d

yj
xi − d̂

yj
xi |;

• Kullback-Leibler divergence ↓
DKL = 1

n

∑n
i=1

∑c
j=1 d

yj
xi ln

d
yj
xi

d̂
yj
xi

;

• Cosine coefficient ↑
SCos = 1

n

∑n
i=1

∑c
j=1 d

yj
xi
d̂
yj
xi√∑c

j=1(d
yj
xi

)2
√∑c

j=1 (d̂
yj
xi

)
2

;

• Intersection similarity ↑
SInter = 1

n

∑n
i=1

∑c
j=1 min(d

yj
xi , d̂

yj
xi).

Here, di = [dy1xi
, dy2xi

, . . . , dycxi
] denotes a real label distri-

bution, d̂i = [d̂y1xi
, d̂y2xi

, . . . , d̂ycxi
] denotes a recovered label

distribution. “↓” indicates “the smaller the better”, and “↑”
indicates “the larger the better”.

4.1.3 Comparing Algorithms

Five baseline algorithms are utilized for comparative stud-
ies:
• LP [55] generates the label distributions via iterative

label propagation technique [suggested configuration:
trade-off hyper-parameter α = 0.5].

• ML [19] estimates the label distributions via leveraging
the feature manifold and the label manifold [suggested
configuration: the number of neighbors K = c+ 1].

• GLLE [52] adopts the graph laplacian with the topo-
logical structure of the feature space to generate
the label distributions [suggested configuration: the
hyper-parameters λ1 and λ2 are selected among
{10−2, 10−1, ..., 100}].

• LESC [43] is a low-rank representation LE method via
capturing the global relationships of samples and pre-
dicting the implicit label correlation [suggested config-
uration: the parameters λ1 and λ2 are selected among
{10−4, 10−3, . . . , 10}].

• PLEML [61] adopts the structural information between
instances and the privileged information to recover
label distributions [suggested configuration: the param-
eters λ1 and λ2 are selected among {2−4, 2−3, . . . , 28},
γ = 0.1, and C = 0.1].

We employ three-layer MLP and two-layer GCN as the
encoding models of LEVI-MLP and LEVI-GCN, respectively,
and three-layer MLP as the decoding models of LEVI-MLP
and LEVI-GCN. The numbers of hidden-layer nodes in MLP
and GCN are set to 500. The hyper-parameter λ is set to 1.
We use Adam as the optimizer and the learning rate and the
weight decay are set to 1e-3 and 1e-5, respectively. Source
code is available.1

1. https://github.com/palm-ml/LEVI
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TABLE 2: Recovery results evaluated by six label distribution evaluation metrics. • and ◦ denote the best and second best
performance among all the approaches respectively.

Comparing Chebyshev distance ↓
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov

LP 0.107 0.163 0.114 0.128 0.137 0.086 0.090 0.099 0.044 0.042 0.040 0.123 0.161
ML 0.186 0.403 0.273 0.244 0.242 0.165 0.171 0.148 0.072 0.071 0.057 0.233 0.164

GLLE 0.087 0.088 0.099 0.052 0.066 0.049 0.062 0.053 0.023 0.022 0.020 0.126 0.122
LESC 0.069 • 0.087 0.092 0.043 0.056 0.046 0.060 0.042 0.019 0.019 0.015 0.122 0.121

PLEML 0.097 0.089 0.092 0.037 ◦ 0.054 0.044 0.060 0.042 0.017 ◦ 0.017 0.014 0.121 ◦ 0.166
LEVI-MLP 0.073 ◦ 0.063 ◦ 0.067 ◦ 0.034 • 0.051 ◦ 0.033 ◦ 0.045 ◦ 0.033 ◦ 0.012 • 0.015 ◦ 0.013 ◦ 0.092 • 0.109 •
LEVI-GCN 0.077 0.061 • 0.064 • 0.034 • 0.049 • 0.031 • 0.042 • 0.030 • 0.012 • 0.013 • 0.010 • 0.092 • 0.112 ◦

Comparing Kullback-Leibler divergence ↓
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov

LP 0.077 0.067 0.042 0.103 0.103 0.089 0.084 0.127 0.109 0.111 0.121 0.105 0.177
ML 0.391 0.503 0.317 0.586 0.556 0.556 0.532 0.509 0.589 0.601 0.602 0.565 0.218

GLLE 0.050 0.027 0.034 0.013 0.019 0.017 0.029 0.027 0.013 0.014 0.013 0.069 0.123
LESC 0.029 • 0.027 0.032 0.009 0.015 0.016 0.027 0.017 0.009 0.010 0.008 0.064 0.120

PLEML 0.066 0.027 0.030 0.006 ◦ 0.014 0.013 0.027 0.016 0.007 ◦ 0.007 0.006 ◦ 0.064 0.170
LEVI-MLP 0.031 ◦ 0.013 ◦ 0.015 ◦ 0.005 • 0.011 ◦ 0.008 ◦ 0.014 ◦ 0.011 ◦ 0.005 • 0.006 ◦ 0.006 ◦ 0.042 ◦ 0.081 •
LEVI-GCN 0.029 • 0.012 • 0.014 • 0.005 • 0.010 • 0.007 • 0.013 • 0.009 • 0.005 • 0.005 • 0.004 • 0.041 • 0.084 ◦

Comparing Cosine coefficient ↑
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov

LP 0.941 0.950 0.969 0.921 0.925 0.932 0.939 0.915 0.918 0.916 0.911 0.922 0.929
ML 0.857 0.815 0.884 0.763 0.784 0.783 0.803 0.803 0.763 0.759 0.756 0.815 0.919

GLLE 0.958 0.978 ◦ 0.971 0.988 0.982 0.984 0.974 0.975 0.987 0.987 0.987 0.927 0.936
LESC 0.973 • 0.978 ◦ 0.974 0.992 0.986 0.986 0.975 ◦ 0.985 0.991 0.991 0.992 0.932 0.937

PLEML 0.948 0.977 0.974 0.994 ◦ 0.987 0.987 0.975 ◦ 0.985 0.994 ◦ 0.993 0.995 ◦ 0.936 ◦ 0.882
LEVI-MLP 0.970 0.990 • 0.987 ◦ 0.995 • 0.990 ◦ 0.992 ◦ 0.988 • 0.990 ◦ 0.996 • 0.994 ◦ 0.995 ◦ 0.957 • 0.955 •
LEVI-GCN 0.971 ◦ 0.990 • 0.989 • 0.995 • 0.991 • 0.993 • 0.988 • 0.992 • 0.996 • 0.995 • 0.996 • 0.957 • 0.951 ◦

Comparing Intersection similarity ↑
algorithm SJ spoem spo5 dtt cold heat spo diau elu cdc alpha 3DFE Mov

LP 0.837 0.837 0.886 0.786 0.794 0.805 0.819 0.788 0.782 0.779 0.774 0.810 0.778
ML 0.661 0.597 0.727 0.546 0.565 0.564 0.580 0.593 0.544 0.538 0.537 0.587 0.779

GLLE 0.872 0.912 0.901 0.939 0.924 0.929 0.909 0.906 0.936 0.937 0.938 0.850 0.831
LESC 0.905 ◦ 0.913 0.908 0.949 0.935 0.934 0.912 0.933 0.949 0.950 0.953 0.855 0.833

PLEML 0.858 0.911 0.908 0.957 ◦ 0.974 • 0.939 0.913 0.933 0.958 0.957 0.962 • 0.859 0.768
LEVI-MLP 0.899 0.937 ◦ 0.933 ◦ 0.958 • 0.940 ◦ 0.952 • 0.940 ◦ 0.942 ◦ 0.959 ◦ 0.958 ◦ 0.960 0.882 ◦ 0.850 ◦
LEVI-GCN 0.908 • 0.939 • 0.936 • 0.958 • 0.940 ◦ 0.951 ◦ 0.941 • 0.946 • 0.960 • 0.959 • 0.961 ◦ 0.884 • 0.851 •
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Fig. 4: Parameter sensitivity analysis for LEVI-MLP and LEVI-GCN on Yeast-spoem, SBD_3DFE and Movie. (a) and (b):
Performance of LEVI-MLP changes in terms of two evaluation metrics as the parameter λ increases from 0.4 to 1.6. (c) and
(d): Performance of LEVI-GCN changes in terms of two evaluation metrics as the parameter λ increases from 0.4 to 1.6.

4.1.4 Recovery Performance
The description degrees of the three labels in the artificial
dataset are treated as the three color channels to show the re-
sults of LE approaches visually. Thus the color of each point
could represent the label distribution visually and then the
label distributions recovered by the LE approaches would be
compared with the ground-truth label distributions with the
color patterns. The results visually enhanced by adopting
a decorrelation stretch process for easier comparison are
shown in Fig. 3. It can be seen that LEVI-MLP and LEVI-GCN
recover almost identical color patterns against the ground-
truth label distributions.

Table 2 tabulates the results of each LE approach on all
real-world datasets for quantitative analysis, where • and
◦ denote the best and second best performance among all
the approaches respectively. There is no record of standard
deviation since each LE approach only runs once. LEVI-

GCN ranks 1st in 84.62% cases and ranks 2nd in 13.46%
cases while LEVI-MLP ranks 1st in 28.85% cases and ranks
2nd in 65.38% cases on all evaluation metrics. We can find
that LEVI-MLP and LEVI-GCN achieve superior performance
than other LE approaches in terms of all the six evaluation
metrics.

4.1.5 Sensitivity Analysis

In this subsection, the performance sensitivity of LEVI-GCN
and LEVI-MLP for label enhancement w.r.t. the parameter λ
will be further analyzed. Fig. 4 shows the performance of
LEVI-MLP and LEVI-GCN under different parameter config-
urations on three datasets Yeast-spoem, SBU_3DFE, and
Movie. It is obvious that the performance of LEVI-GCN
and LEVI-MLP is relatively stable across a broad range of
parameter λ. This property is quite desirable as one can
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TABLE 3: Statistics of the 14 datasets utilized in multi-label
prediction experiment

No. Dataset #Examples #Features #Labels

1 cal500 502 68 174
2 emotion 593 72 6
3 medical 978 1,449 45
4 llog 1,460 1,004 75
5 enron 1,702 1,001 53
6 msra 1,868 898 19
7 image 2,000 294 5
8 scene 2,407 294 6
9 yeast 2,417 103 14
10 slashdot 3,782 1,079 22
11 corel5k 5,000 499 374
12 rcv1subset1 6,000 944 101
13 rcv1subset2 6,000 944 101
14 bibtex 7,395 1,836 159

make use of LEVI to achieve robust label enhancement
performance.

4.2 Multi-Label Prediction
In this experiment, the effective performance of LEVI for
multi-label learning can be validated. As mentioned in
Section 3.3, the multi-label predictive models are induced
by the label distributions recovered by LEVI-MLP and LEVI-
GCN, which enable the comparison with the predictive
performance of the state-of-the-art MLL approaches.

4.2.1 Datasets
There are fourteen multi-label learning datasets2 uti-
lized in the experiments, which cover a broad range
of cases with diversified multi-label properties and thus
serve as a solid basis for thorough comparative stud-
ies. In addition, these datasets cover a broad range
of scenarios, including text (medical, llog, enron,
slashdot, rcv1subset1, rcv1subset2, and bibtex),
audio (cal500 and emotions), image (image, msra,
scene, and corel5k), and biology (yeast). The basic
statistics about these datasets are given in Table 3.

4.2.2 Evaluation Metrics
Five popular multi-label metrics including Ranking loss,
Hamming loss, One-error, Coverage, and Average precision
[57] are employed for performance evaluation. Let S =
{(xi, Yi) | 1 ≤ i ≤ n} be a multi-label test set, Yi and Zi be
the sets of true and predicted labels for an instance, and τx
be the rank function which maps the output real value of
the classifier to the position of the label in the ranking.
• Hamming loss: 1

n

∑n
i=1

1
c |Zi∆Yi| where ∆ stands for

the symmetric difference of two sets. Hamming loss
evaluates how many times, on average, an example-
label pair is misclassified. This metric takes into account
both prediction errors and omission errors.

• One-error: 1
n

∑n
i=1Jarg miny∈Y τi(y) /∈ YiK, where JπK

returns 1 if π is true and 0 otherwise. One-error mea-
sures the fraction of examples whose top-ranked pre-
dicted label is not in the ground-truth relevant label
set.

2. mulan.sourceforge.net/datasets.html

• Coverage: 1
n

∑n
i=1

1
c maxy∈Yi

τi(y) − 1. Coverage evalu-
ates how many steps are needed on average to move
down the ranked label list of an example so as to cover
all its relevant class labels.

• Ranking loss: 1
n

∑n
i=1

1

|Yi||Ȳi| |E|, where E ={
(y, y′) | τi(y) > τi (y′) , (y, y′) ∈ Yi × Ȳi

}
. Ranking

loss evaluates the average fraction of misordered label
pairs, i.e., a relevant label of an example is ranked
lower than its irrelevant one.

• Average precision:
1
n

∑n
i=1

1
|Yi|

∑
y∈Yi

|{y′∈Yi|τi(y′)≤τi(y)}|
τi(y) . Average preci-

sion evaluates the average fraction of labels ranked
above a particular label, y ∈ Y, which actually are in
Y .

Note that the values of all the five metrics vary between
[0, 1]. Besides, for average precision, the larger the better;
While for the other four metrics, the smaller the better. The
metrics could be adopted as well indicators for comprehen-
sive studies since the five metrics evaluate the performance
of learned models in different aspects.

4.2.3 Comparing Algorithms
In this paper, LEVI-MLP and LEVI-GCN are compared
against seven well-established multi-label learning algo-
rithms which have been widely employed for comparative
studies in multi-label learning.
• BR [1] disassembles the multi-label learning prob-

lem into c independent binary classification problems,
where each of them refer to one class.

• CLR [11] transform the multi-label learning problem
into the label ranking problem, where each classifier
learns to generate the ranking among the labels and
bipartition.

• ECC [34] transform the multi-label learning problem
into a series of binary classification problems, where the
outputs of binary classifiers are used as extra features to
build subsequence [suggested configuration: ensemble
size m = 30].

• RAKEL [45] transforms the multi-label learning problem
into an ensemble of classification problems, where each
classifiers is induced by adopting the label powerset
techniques on a random k-label set [suggested configu-
ration: ensemble size m = 2c, k = 3].

• GLOCLA [62] exploits global and local label correlations
simultaneously via learning a latent label representa-
tion and optimizing label manifolds [suggested config-
uration: parameter λ = 0.1].

• RELIAB-LP [55] generates the implicit relative labeling-
importance via global label propagation procedure to
train a multi-label predictive model with multi-label
empirical loss regularization.

• RELIAB-KNN [55] generates the implicit relative
labeling-importance via local k-nearest neighbor recon-
struction to train multi-label a predictive model with
multi-label empirical loss regularization.

We employ three-layer MLP and two-layer GCN as the
encoding models of LEVI-MLP and LEVI-GCN, respectively,
and three-layer MLP as the decoding models of LEVI-MLP
and LEVI-GCN. The numbers of hidden-layer nodes in MLP
and GCN are set to 500. The hyper-parameter λ is set to 1.
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TABLE 4: Predictive performance of each approach (mean±std) measured by Ranking loss ↓. The best and second best
performance among all the approaches are denoted by • and ◦ respectively.

Datasets LEVI-GCN LEVI-MLP RELIAB-LP RELIAB-KNN GLOCLA BR CLR ECC RAKEL

cal500 0.177±0.002 • 0.177±0.002 • 0.181±0.003 0.185±0.003 0.180±0.002 ◦ 0.258±0.003 0.239±0.026 0.205±0.004 0.444±0.005
emotions 0.183±0.009 • 0.192±0.008 0.185±0.015 ◦ 0.246±0.017 0.284±0.021 0.233±0.016 0.222±0.014 0.227±0.017 0.254±0.020
medical 0.023±0.004 • 0.024±0.004 ◦ 0.033±0.006 0.027±0.005 0.049±0.008 0.091±0.005 0.123±0.026 0.032±0.007 0.095±0.033

llog 0.138±0.006 0.154±0.005 0.116±0.005 • 0.120±0.005 ◦ 0.219±0.008 0.328±0.007 0.190±0.015 0.154±0.009 0.412±0.010
enron 0.079±0.002 • 0.080±0.003 ◦ 0.093±0.003 0.092±0.004 0.157±0.004 0.312±0.009 0.089±0.002 0.120±0.004 0.241±0.005
msra 0.125±0.010 • 0.126±0.010 ◦ 0.142±0.012 0.141±0.013 0.135±0.011 0.368±0.021 0.288±0.018 0.332±0.047 0.223±0.075

image 0.141±0.005 • 0.142±0.006 ◦ 0.180±0.007 0.180±0.006 0.180±0.008 0.314±0.014 0.294±0.009 0.276±0.005 0.311±0.010
scene 0.062±0.003 • 0.062±0.004 ◦ 0.089±0.005 0.096±0.003 0.098±0.004 0.229±0.010 0.127±0.003 0.151±0.005 0.205±0.008
yeast 0.167±0.002 • 0.169±0.002 ◦ 0.367±0.006 0.358±0.005 0.356±0.003 0.190±0.004 0.198±0.003 0.190±0.003 0.245±0.004

slashdot 0.094±0.003 • 0.098±0.002 ◦ 0.137±0.003 0.131±0.002 0.179±0.003 0.240±0.008 0.260±0.007 0.123±0.004 0.190±0.005
corel5k 0.110±0.002 • 0.118±0.002 0.115±0.002 0.110±0.002 • 0.180±0.002 0.416±0.003 0.114±0.002 ◦ 0.292±0.003 0.627±0.004

rcv1subset1 0.036±0.001 • 0.040±0.001 0.045±0.001 0.038±0.001 ◦ 0.099±0.003 0.279±0.004 0.040±0.001 0.079±0.002 0.243±0.004
rcv1subset2 0.037±0.001 • 0.038±0.001 ◦ 0.042±0.001 0.039±0.001 0.111±0.003 0.251±0.004 0.042±0.001 0.096±0.004 0.216±0.004

bibtex 0.063±0.001 • 0.065±0.001 ◦ 0.208±0.004 0.207±0.008 0.129±0.004 0.303±0.004 0.065±0.002 0.192±0.003 0.286±0.003

TABLE 5: Predictive performance of each approach (mean±std) measured by Hamming loss ↓. The best and second best
performance among all the approaches are denoted by • and ◦ respectively.

Datasets LEVI-GCN LEVI-MLP RELIAB-LP RELIAB-KNN GLOCLA BR CLR ECC RAKEL

cal500 0.139±0.002 0.137±0.002 • 0.186±0.002 0.191±0.003 0.149±0.002 0.214±0.004 0.165±0.005 0.146±0.002 0.138±0.002 ◦
emotions 0.221±0.014 • 0.224±0.008 ◦ 0.332±0.039 0.317±0.021 0.311±0.005 0.265±0.013 0.270±0.011 0.254±0.013 0.269±0.011
medical 0.010±0.001 • 0.012±0.001 0.015±0.001 0.016±0.001 0.028±0.000 0.022±0.003 0.024±0.002 0.013±0.001 0.010±0.003 ◦

llog 0.015±0.000 • 0.015±0.000 • 0.015±0.000 • 0.017±0.001 0.018±0.000 0.052±0.003 0.019±0.002 0.016±0.000 ◦ 0.017±0.001
enron 0.047±0.001 • 0.047±0.001 • 0.064±0.003 0.075±0.003 0.065±0.001 0.105±0.003 0.072±0.002 0.064±0.001 0.058±0.001 ◦
msra 0.180±0.008 • 0.182±0.009 ◦ 0.231±0.015 0.218±0.014 0.670±0.005 0.404±0.037 0.342±0.033 0.353±0.037 0.237±0.079

image 0.154±0.003 • 0.157±0.003 ◦ 0.245±0.018 0.214±0.005 0.247±0.002 0.287±0.008 0.305±0.005 0.244±0.005 0.286±0.007
scene 0.078±0.003 • 0.080±0.002 ◦ 0.184±0.008 0.175±0.007 0.178±0.000 0.184±0.005 0.181±0.004 0.133±0.002 0.171±0.005
yeast 0.194±0.003 • 0.195±0.003 ◦ 0.433±0.005 0.433±0.004 0.302±0.002 0.219±0.003 0.222±0.002 0.216±0.002 0.202±0.003

slashdot 0.038±0.001 • 0.039±0.001 ◦ 0.067±0.001 0.065±0.002 0.053±0.000 0.130±0.003 0.058±0.001 0.049±0.001 0.048±0.001
corel5k 0.009±0.000 • 0.009±0.000 • 0.010±0.000 ◦ 0.010±0.000 ◦ 0.009±0.000 • 0.027±0.000 0.011±0.001 0.015±0.001 0.012±0.001

rcv1subset1 0.026±0.000 • 0.026±0.000 • 0.027±0.001 ◦ 0.034±0.002 0.028±0.000 0.031±0.001 0.029±0.001 0.030±0.001 0.031±0.001
rcv1subset2 0.023±0.000 • 0.023±0.000 • 0.027±0.001 0.030±0.001 0.026±0.000 0.028±0.001 0.025±0.001 0.024±0.001 ◦ 0.027±0.001

bibtex 0.013±0.000 • 0.013±0.000 • 0.015±0.000 0.015±0.000 0.015±0.000 0.015±0.001 0.014±0.001 ◦ 0.017±0.001 0.015±0.001

TABLE 6: Predictive performance of each approach (mean±std) measured by Average precision ↑. The best and second best
performance among all the approaches are denoted by • and ◦ respectively.

Datasets LEVI-GCN LEVI-MLP RELIAB-LP RELIAB-KNN GLOCLA BR CLR ECC RAKEL

cal500 0.512±0.004 • 0.511±0.004 ◦ 0.495±0.004 0.493±0.006 0.503±0.005 0.300±0.005 0.395±0.042 0.463±0.006 0.353±0.006
emotions 0.781±0.010 • 0.773±0.008 ◦ 0.772±0.018 0.720±0.011 0.674±0.021 0.730±0.015 0.742±0.016 0.740±0.021 0.717±0.023
medical 0.893±0.011 • 0.879±0.014 ◦ 0.838±0.016 0.858±0.011 0.847±0.014 0.762±0.022 0.400±0.062 0.860±0.015 0.700±0.234

llog 0.409±0.011 • 0.367±0.013 0.399±0.011 ◦ 0.382±0.010 0.366±0.008 0.215±0.009 0.194±0.018 0.342±0.009 0.197±0.013
enron 0.698±0.009 • 0.697±0.008 ◦ 0.656±0.007 0.661±0.011 0.609±0.009 0.381±0.009 0.610±0.008 0.559±0.008 0.539±0.006
msra 0.827±0.013 • 0.826±0.013 ◦ 0.805±0.015 0.804±0.016 0.814±0.014 0.540±0.015 0.624±0.022 0.567±0.048 0.601±0.200

image 0.828±0.006 • 0.824±0.005 ◦ 0.779±0.007 0.782±0.006 0.781±0.009 0.649±0.012 0.666±0.008 0.685±0.008 0.661±0.010
scene 0.888±0.004 • 0.887±0.005 ◦ 0.841±0.006 0.832±0.003 0.835±0.005 0.692±0.010 0.778±0.004 0.766±0.005 0.713±0.008
yeast 0.766±0.005 • 0.765±0.005 ◦ 0.601±0.005 0.607±0.005 0.599±0.004 0.734±0.004 0.730±0.003 0.741±0.004 0.720±0.005

slashdot 0.711±0.006 • 0.710±0.005 ◦ 0.565±0.007 0.596±0.007 0.602±0.006 0.427±0.014 0.250±0.007 0.628±0.009 0.617±0.004
corel5k 0.301±0.003 • 0.297±0.003 ◦ 0.258±0.003 0.275±0.003 0.269±0.002 0.123±0.003 0.274±0.002 0.264±0.003 0.122±0.004

rcv1subset1 0.632±0.004 • 0.625±0.003 0.592±0.007 0.613±0.005 0.533±0.007 0.383±0.007 0.628±0.003 ◦ 0.606±0.004 0.436±0.006
rcv1subset2 0.649±0.005 • 0.642±0.004 ◦ 0.620±0.005 0.640±0.004 0.534±0.007 0.434±0.005 0.641±0.003 0.616±0.005 0.487±0.005

bibtex 0.577±0.003 ◦ 0.583±0.004 • 0.334±0.013 0.343±0.015 0.430±0.003 0.363±0.004 0.564±0.004 0.515±0.004 0.399±0.004

We use Adam as the optimizer and the learning rate and the
weight decay are set to 1e-3 and 1e-5, respectively. For LEVI-
MLP and LEVI-GCN, the parameters β and γ are set to 1 and
0.01, respectively. The kernel function of each approach is
Gaussian kernel.

4.2.4 Predictive Performance

Table 4 to 6 tabulate the results of all the algorithms (LEVI-
MLP, LEVI-GCN, BR, CLR, ECC, RAKEL, GLOCLA, RELIAB-
LP and RELIAB-KNN) on the fourteen multi-label learning
datasets evaluated by Ranking loss, Hamming loss and Aver-
age precision, where • and ◦ denote the best and second best
performance among all the approaches respectively. The
results on other evaluation measures are similar. For each
evaluation metric, ↓ indicates the smaller the better while

↑ indicates the larger the better. Ten-fold cross-validation is
adopted for all approaches.

In addition, the Friedman test [7] is adopted to analyze
the relative performance of these methods. At 0.05 signif-
icance level, the Friedman statistics FF (FF > 16 on all
evaluation metrics) is greater than the critical value 2.70
(#algorithms n = 8; #datasets N = 14). Therefore, the
null hypothesis of indistinguishable performance among
comparing approaches is rejected on all of the evaluation
metrics across the 14 benchmark cases.

Bonferroni-Dunn test [7] is utilized as the post-hoc test
to show whether the proposed approaches have a signifi-
cantly different performance against comparing approaches.
Here, LEVI-GCN and LEVI-MLP are regarded as the control
approaches, and the critical difference (CD) calibrates the
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Fig. 5: Comparison of LEVI-MLP against other comparing approaches with the Bonferroni-Dunn test. The approaches not
connected with LEVI-MLP are considered to be significantly different from LEVI-MLP (CD=2.4905 at 0.05 significance level).
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Fig. 6: Comparison of LEVI-GCN against other comparing approaches with the Bonferroni-Dunn test. The approaches not
connected with LEVI-GCN are considered to be significantly different from LEVI-GCN (CD=2.4905 at 0.05 significance level).
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Fig. 7: Parameter sensitivity analysis for LEVI on enron, slashdot and yeast. (a) and (b): Performance changes in terms
of Ranking loss and Average precision as the parameter β increases from 0.4 to 1.6 (γ = 0.01). (c) and (d): Performance
changes in terms of Ranking loss and Average precision as the parameter γ increases from 0.01 to 10 (β = 1).

difference of the average rank over all datasets between the
control approach and one comparing approach. Then, the
performance between the control approach and one com-
paring approach is considered to be significantly different if
difference of the average rank is greater than the CD (CD =
2.4905 with comparing approaches n = 8, and benchmark
datasets N = 14 ),

Fig. 5 and 6 illustrate the CD diagrams [7] in terms
of five evaluation metrics. Here, the average ranks of the
approaches are marked along the axis. If the average rank
difference between the control approach and one comparing
approach is within the CD, we use a thick line to connect

them. Otherwise, the control approach is considered to be
significantly different from the comparing approach.

Based on the experimental results of the comparative
studies, we could make the following observations:
• LEVI-GCN ranks 1st in 91.43% cases and ranks 2nd in

0.06% cases while LEVI-MLP ranks 1st in 18.57% cases
and ranks 2nd in 61.43% cases on all evaluation metrics.

• As shown in Fig. 5 and 6, both LEVI-GCN and LEVI-
MLP achieve optimal (lowest) average rank on all the
evaluation metrics. Specifically, LEVI-GCN achieve su-
perior performance against BR, ECC, CLR, RAKEL, and
RELIAB-LP on all evaluation metrics and LEVI-MLP
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Fig. 8: Performance comparison among LEVI-GCN, LEVI-MLP and LEVI-NON in terms of Ranking loss and Average precision.

TABLE 7: Wilcoxon signed-ranks test for LEVI against its
variant LEVI-NON in terms of each evaluation metric (at 0.05
significance level) and p-values are shown in the brackets.

Evaluation metric LEVI-MLP LEVI-GCN
against LEVI-NON

Ranking loss tie [p=2.47e-1] win [p=7.60e-3]
One-error win [p=1.50e-3] win [p=9.79e-4]
Coverage tie [p=5.30e-1] win [p=1.69e-2]
Hamming loss win [p=3.30e-3] win [p=2.20e-3]
Average precision win [p=9.76e-4] win [p=9.79e-4]

achieve superior performance against BR, ECC, CLR,
and RAKEL on all evaluation metrics.

• LEVI-GCN achieves superior performance against
RELIAB-KNN on One-error, Hamming loss and Average
precision, and is comparable to RELIAB-KNN on Ranking
loss. LEVI-MLP achieves superior performance against
RELIAB-LP and RELIAB-KNN on One-error, Hamming loss
and Average precision, and is comparable to RELIAB-
LP and RELIAB-KNN on Ranking loss and Coverage.
Note that both RELIAB-LP and RELIAB-KNN consider
the implicit ranking information, i.e, relative labeling-
importance of each example, which could improve
the performance on the rank based evaluation metrics
Ranking loss and Coverage.

4.2.5 Sensitivity Analysis
In this subsection, the performance sensitivity of LEVI-GCN
and LEVI-MLP for MLL w.r.t. the parameters β and γ will be
further analyzed. Fig. 7 shows the performance of LEVI-GCN
under different parameter configurations on three datasets
enron, slashdot and yeast while similar observations
also hold on other datasets. As shown in Fig. 7, it is obvious
that the performance of our approach is relatively stable
across a broad range of each parameter. The parameter
configuration for LEVI in Subsection 5.2.3 naturally follows
from these observations.

4.2.6 Usefulness of Recovered Label Distribution
To illustrate the usefulness of the label distributions to our
advantage, a vanilla variant of LEVI for MLL (termed as
LEVI-NON) is employed here. LEVI-NON ablates the label
enhancement stage and maintains the same procedure in
the other stages for MLL. Following the same evaluation
protocol of Subsection 5.2.2, the performance of LEVI-NON
is investigated as well.

Fig. 8 reports the experimental results on Ranking loss
and Average precision while similar observations also hold
on other metrics. To show whether LEVI-MLP and LEVI-
GCN perform significantly better than their ablation version,
the Wilcoxon signed-ranks test [7] is employed. Table 7
summarizes the statistical test results at 0.05 significance

level, where the p-values for the corresponding tests are also
shown.

As shown in Table 7, LEVI-MLP achieves superior or
at least comparable performance to LEVI-NON across all
evaluation metrics. In addition, LEVI-GCN achieves superior
performance to LEVI-NON across all evaluation metrics.
These results clearly validate the usefulness of recovered
label distributions for improving predictive performance.

5 CONCLUSION

Label enhancement is the process of recovering the label
distributions from the training examples with logical labels,
which can help describe the supervised information in a
more fine-grained way for learning with label ambiguity.
In this paper, we propose the theoretical explanation of
the label enhancement process and two LE approaches. In
addition, the multi-label predictive model is induced via
leveraging the recovered label distributions. Comprehensive
experimental studies validate the performance superiority
of proposed methods against state-of-the-art comparing al-
gorithms as well as the usefulness of the recovered label
distributions.

In the future, other than variational inference, it is inter-
esting to explore other ways for latent label distribution re-
covery. It is also interesting to further employ label enhance-
ment with auxiliary information to deal with other learning
problems, such as learning with noisy labels, partial label
learning, zero-shot learning, etc.
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