
1

Instance-specific Loss-weighted Decoding for
Decomposition-based Multi-class Classification
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Abstract—Multi-class classification problems are often ad-
dressed by decomposing them into a set of binary classification
tasks. A critical step in this approach is the effective aggregation
of predictions from each decomposed binary classifier to yield
the final multi-class prediction, a process known as decoding.
Existing studies have ignored the varying generalization ability
of each binary classifier across different samples during decoding,
potentially leading to suboptimal performance. In this paper, we
propose an instance-specific loss-weighted decoding strategy that
gauges the generalization ability of each binary classifier for one
specific sample based on its neighboring samples. This estimated
generalization ability is then utilized to adjust the importance of
the binary classifier in determining the sample’s final prediction.
Experimental results validate the effectiveness of the instance-
specific loss-weighted decoding strategy. Furthermore, we demon-
strate that softmax regression can be reinterpreted as a one-
vs-rest decomposition-based multi-class classification algorithm,
enabling the application of our decoding strategy to enhance
its performance. Comparative studies clearly demonstrate the
superiority of the improved softmax regression over its traditional
counterpart.

Index Terms—machine learning, multi-class classification,
decomposition-based strategy, loss-based decoding

I. INTRODUCTION

MULTI-CLASS classification is one of the most signif-
icant and commonly used learning tasks in artificial

intelligence and machine learning [69], [78]. A diverse range
of real-world applications in various fields, such as bioin-
formatics [18], [61], text mining [44], [26] and computer
vision [62], [64], [36], can be addressed by formulating them
within the multi-class classification framework. Moreover,
some complicated classification tasks, such as multi-label clas-
sification [73], [42] and multi-dimensional classification [23],
[24], [25], can also be solved by reducing them into one
or a set of multi-class classification problem(s). Compared
with binary classification, which aims to classify objects into
one of only two potential classes, multi-class classification
involves a greater number of possible classes, rendering it
more challenging to solve [7], [57], [76], [67], [31], [46].
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The existing multi-class classification methods can be
roughly divided into two categories: direct strategy and in-
direct strategy [38]. The former aims to design multi-class
classification algorithms that can directly handle multi-class
data, e.g., multi-class support vector machine [60] and softmax
regression [3]. The latter aims to decompose multi-class clas-
sification into a set of binary classification problems via some
rules, which is usually referred to as decomposition-based
multi-class classification [30]. With the decomposed binary
classification datasets, any off-the-shelf binary classification
algorithms can be employed to learn binary classifiers. Then
the final multi-class prediction for unseen instance can be
determined via combining the predicted results of these binary
classifiers. Compared with direct strategy, indirect strategy is
more flexible as it can be coupled with any binary classifi-
cation algorithms. Moreover, its effectiveness has also been
validated via some empirical studies [21], [10].

For indirect strategy, the key to its success lies in how
to decompose the original multi-class classification problem
into binary classification problems and how to obtain the final
prediction via combining the predicted results from binary
classifiers [63]. These two processes are usually referred to
as encoding and decoding, respectively. Specifically, the three
most commonly used encoding strategies correspond to one-
versus-one (OvO), one-versus-rest (OvR) and error-correcting
output codes (ECOC) [9], where both the first two strategies
can be regarded as special cases of the last one [2]. The
basic decoding strategy for ECOC is Hamming decoding [9]
which only utilizes binary predictions from binary classifiers.
The loss-based decoding strategy [2] further considers the
magnitude of predictions which usually indicates a level of
“confidence”. For both Hamming decoding and loss-based
decoding, each binary classifier acts equally in the decoding
process, while the generalization performance of different
binary classifiers are usually different. To consider this dif-
ference, the loss-weighted decoding strategy [11] adjusts the
importance of each binary classifier in the decoding process
with their respective accuracies on each class.

However, existing studies have failed to consider the dis-
tinct impacts of decomposed binary classifiers on individ-
ual instances, potentially leading to performance degradation.
Furthermore, the direct and indirect strategies in multi-class
classification are often treated as two separate paths, without
exploring their potential connections. To address these issues,
this paper offers a more in-depth examination of the decoding
process in decomposition-based multi-class classification. The
main contributions of this paper are summarized as follows:
• We unify some common decoding methods under the
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Fig. 1. An intuition for decomposition-based multi-class classification. Here,
the multi-class dataset D is decomposed into L binary datasets B1, . . ., BL
according to the employed encoding strategy. Then, binary classifiers f1, . . .,
fL are trained over the decomposed binary datasets B1, . . ., BL with some
binary classification algorithm (e.g., logistic regression), respectively. Finally,
the final multi-class prediction y∗ for unseen instance x∗ is determined based
on the predicted results f1(x∗), . . ., fL(x∗) according to the employed
decoding strategy.

loss-based decoding strategy. Specifically, it is shown that
the majority voting decoding in OvO is equivalent to
Hamming decoding which is further shown as a special
case of loss-based decoding with zero-one loss as loss
function. It is also shown that determining the final class
with maximum predicted confidence in OvR is also a
special case of loss-based decoding with any monotone
decreasing functions as loss function.

• We propose an instance-specific loss-weighted decoding
strategy which allows for the differences in binary classi-
fier’s generalization ability for each sample. Specifically,
the importance of each binary classifier for one specific
sample is estimated with the classifier’s accuracy in its
neighboring samples. Experiments show the superiority
of the proposed strategy over existing loss-based as well
as loss-weighted decoding strategies.

• We argue that softmax regression is based on OvR
decomposition, but just learns all decomposed binary
classifiers in a joint manner. Then, we apply the proposed
instance-specific loss-weighted decoding strategy in the
decoding process of softmax regression. Experiments
clearly show that the performance of softmax regression
can be further improved with our decoding strategy.

The rest of this paper is organized as follows. Section II
discusses related works on decomposition-based multi-class
classification. Section III presents the preliminaries on ECOC
and unifies some existing decoding strategies under loss-based
decoding. Section IV presents the proposed instance-specific
loss-weighted decoding strategy, including technical details
and comparative studies. Section V presents how to apply the
proposed decoding strategy in softmax regression and also
reports the corresponding experimental results. Finally, we
conclude this paper in Section VI.

II. RELATED WORK

Generally, classification algorithms are initially designed for
binary classification tasks. When we need to solve multi-class
classification problems, some binary classification algorithms
can be naturally generalized to deal with multi-class data,

e.g., KNN classifier and naı̈ve Bayes classifier [65], while
some other binary classification algorithms need some special
adaptions, e.g., logistic regression1 and support vector ma-
chine [60]. Instead of fitting binary classification algorithms to
multi-class data (i.e., direct strategy), another popular strategy
is to fit multi-class data to binary classification algorithms
(i.e., indirect strategy), which is termed as decomposition-
based multi-class classification in this paper. Fig.1 shows
an intuition of this strategy, which consists of four stages,
including encoding, training, testing and decoding.

The encoding stage aims to decompose the original multi-
class classification problem into a set of binary classifica-
tion problems according to the designed rule. Intuitively, the
difficulty of solving different binary classification problems
is different. Thus, it will be better if the obtained binary
classification problems are easier to solve. It is obvious that
OvO and OvR will lead to fixed decomposed results, while the
initial ECOC strategy randomly completes the decomposition
process [9], [2]. All of them are problem-independent and can-
not consider the specific characteristics in the original problem,
which can lead to a decline in performance [6]. Regarding
this issue, existing research mainly aims to design problem-
dependent encoding strategy to obtain the most suitable de-
composition rule for the specific multi-class classification
problem [13]. For example, DECOC [50] hierarchically splits
the class space into positive and negative parts with informatic
metrics and SECOC [12] will further split some linearly non-
separable classes into subclasses. In contrast to DECOC and
SECOC, M2ECOC [75] and SM2ECOC [74] pick out positive
and negative classes with maximum margin and then merge
them together in next iteration. Different from SECOC, VL-
ECOC [15] deals with hard class by longer codeword, leading
to a variable-length ECOC algorithm. ECOC-ONE [49] aims
to improve initial decompositions via iteratively creating new
binary decompositions. In addition to these special designs,
the encoding strategy is often optimized by using evolutionary
algorithms [68], [32], [66].

Deep learning techniques usually deal with multi-class clas-
sification with the OvR-like one-hot encoding [52]. Therefore,
it is natural to explore the combination of more general
binary decomposition techniques with deep learning [48],
[56], [59], [58]. One major disadvantage of the binary de-
composition scheme is its limited ability to represent subtle
between-class differences, prompting studies to explore N-
ary decomposition, which aims to decompose the original
multi-class classification problem into a set of simpler multi-
class classification problems [77], [70], [45]. Moreover, recent
studies also show that performance improves when classes
are assigned subordination degrees instead of binary values
(i.e., positive/negative class), initiating the study of soft-coded
ECOC [40], [33], [39]. Besides, [20] specially aims to design
scalable ECOC for large multi-class problems. After obtaining
many decomposition results, D-Chooser provides an option to
select the best one from them without a training stage [4].

1When logistic regression is generalized to solve multi-class classification
problems, it is usually termed as softmax regression which is also known as
multinomial logistic regression [3].
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The training stage aims to learn binary classifiers based on
the decomposed binary classification datasets. In general, these
classifiers can be learned just like solving some independent
normal binary classification problems. However, JCL [41]
argued that correlations might exist among these decom-
posed binary classification problems [51] and the performance
of these classifiers can be improved with consideration of
potential correlations. On the other hand, different binary
classification problems have their own special characteristics.
If we can solve each problem based on a learning feature
representation which is more discriminative for the problem
than the original feature space, then better performance can
be achieved [22]. The special characteristics can also be
considered by learning binary classifiers with different binary
classification algorithms [28].

The testing stage aims to obtain predictions of binary
classifiers for unseen instance. It is usually studied together
with the decoding stage, which aims to combine predictions of
binary classifiers to obtain the final multi-class prediction [55].
Hamming decoding is the initial proposal to decode where
Hamming distance is used to measure the similarity between
binary predicted vector and the codeword of each class [9]. If
Hamming distance is replaced with Euclidean distance, then
Euclidean decoding is obtained [49]. A common disadvantage
of these strategies is that the magnitude of the predictions is
entirely ignored which can often indicate a level of “confi-
dence”. Loss-based decoding [2] and probabilistic-based de-
coding [47] utilize the magnitude of the predictions where the
former computes the similarity with some loss functions (e.g.,
exponential loss) and the latter estimates the class probability
with logistic function. Loss-weighted decoding [11] further
considers generalization abilities of decomposed binary clas-
sifier to adjust their importance in the decoding process. How-
ever, some ensemble-based studies [43], [23] show that the
generalization ability of one classifier might vary for different
samples and the performance of ensemble-based model can be
improved if the varying generalization ability can be properly
utilized. This idea can be generalized to the decoding process
in decomposition-based multi-class classification which aims
at combining multiple binary classifiers to obtain a single
multi-class classifier.

The idea of binary decomposition has also been applied to
some learning problems related to multi-class classification.
In partial label learning, PL-ECOC initiates the application of
ECOC for partial label data in designing a disambiguation-free
partial label method [72]. The following works mainly focus
on improving the quality of encoding matrix [34], [54], [35]
to achieve better binary decompositions. In multi-label learn-
ing, binary relevance [71] and calibrated label ranking [19]
correspond to the application of OvR and OvO, respectively.
However, most multi-label methods named after ECOC do
not aim to decompose the original multi-label problem into
several binary classification problems, but utilize the error
correcting capability like noisy communication [27], [17].
RMSC, though named after ECOC, actually works in OvR
mode [53]. In partial multi-label learning, PAMB adapts the
ternary ECOC to enable binary decomposition [37] without an
explicit disambiguation operation.

TABLE I
NOTATIONS.

Notations Descriptions
m the number of training samples
d the number of features
N the number of classes
L the number of binary decompositions
X the d-dimensional feature space
Y the output space where Y = {c1, c2, . . . , cN}
D the multi-class training set where D = {(xi, yi)}mi=1
Bl the binary dataset of the l-th binary decomposition
xi the i-th d-dimensional feature vector where xi ∈ X
yi the class label of xi where yi ∈ Y
x∗ the unseen instance where x∗ ∈ X
y∗ the multi-class prediction for x∗ where y∗ ∈ Y
M the N × L encoding matrix
Mjl the (j, l)-th item of M
Mj: the j-th row of M
L the employed binary classification algorithm
fl(·) the binary classifier induced over Bl
fbl (·) the specialized version of fl returning binary prediction
frl (·) the specialized version of fl returning real-valued prediction
f(·) the concatenated binary classifiers: f(·) = [f1(·), . . . , fL(·)]

sign(·) the sign function where fbl (·) = sign(frl (·))
JπK return 1 if condition π is true and 0 otherwise

III. PRELIMINARY

Let X = Rd be the d-dimensional feature space and Y =
{c1, c2, . . . , cN} be the output space with N classes, the task
of multi-class classification is to learn a mapping from X to Y
based on a set of training samples D = {(xi, yi)}mi=1, where
xi ∈ X is a d-dimensional feature vector and yi ∈ Y is the
corresponding class of xi. To facilitate understanding, Table I
summarizes commonly-used notations in this paper.

A. Error-Correcting Output Codes

In ECOC, the decomposition rule can be denoted by a
binary or ternary encoding matrix M ∈ {−1,+1}N×L or
{−1, 0,+1}N×L, where the value of the (j, l)-th item Mjl

in M indicates the role of samples belonging to the j-th
class cj in the l-th binary decomposition. Specifically, in the
construction of the l-th binary dataset, a value of Mjl = +1
or −1 indicates that the class cj is assigned as positive or
negative. Moreover, a value of Mjl = 0 signifies the exclusion
of the class cj . For convenience, let Y+1

l , Y−1l and Y0
l be the

set of positive, negative and excluded classes in the l-th binary
decomposition, they can be uniformly defined as follows:

Ys
l = {cj |Mjl = s, 1 ≤ j ≤ N}, (1 ≤ l ≤ L) (1)

where s ∈ {−1, 0,+1}. The l-th binary decomposition corre-
sponds to the following binary dataset Bl:

Bl = B+l ∪ B
−
l (2)

Here, B+l and B−l denote the set of positive and negative
samples in Bl, which are respectively defined as follows:

B+l = {(xi,+1) | ∀(xi, yi) ∈ D ∧ yi ∈ Y+1
l }

B−l = {(xi,−1) | ∀(xi, yi) ∈ D ∧ yi ∈ Y−1l }
(3)

Note that, according to the encoding rule of ternary ECOC, the
sample (xi, yi) will be discarded when constructing Bl if yi ∈
Y0
l (i.e., excluded class set). With some binary classification
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algorithm L (e.g., logistic regression), one binary classifier fl
can be induced over Bl, i.e., fl = L(Bl).

Given an unseen instance x∗, each binary classifier fl can
return one prediction fl(x∗). For convenience, we further use
f bl (x∗) ∈ {−1,+1} and frl (x∗) ∈ R to denote the prediction
if it is binary-valued and real-valued, respectively. The greater
the value of frl (x∗), the more likely f bl (x∗) is equal to +1.
Generally, it is assumed that f bl (x∗) = sign(frl (x∗)) where
sign(·) denotes sign function. For binary classifiers which aim
at learning a classification hyperplane (w, b): wTx + b = 0
to separate the two classes (e.g., logistic regression [29] and
support vector machine [5]), this assumption naturally holds
by simply setting frl (x∗) = w

Tx∗ + b.
To determine the final multi-class prediction y∗ for x∗,

we need to combine the L predictions (a.k.a. decoding). The
general form of decoding strategies can be written as follows:

y∗ = cĵ , where ĵ = argmin
1≤j≤N

dist(f(x∗),Mj:) (4)

where f(x∗) = [f1(x∗), f2(x∗), . . . , fL(x∗)] denotes the
prediction vector and Mj: denotes the j-th row of encoding
matrix M (a.k.a. the codeword for the j-th class cj). Differ-
ent distance functions dist(·, ·) will correspond to different
decoding strategies.

The most commonly used decoding strategy is Hamming
decoding, where the distance function is defined as follows:

dist(f(x∗),Mj:) =

L∑
l=1

|Mjl| · Jf bl (x∗) 6=MjlK (5)

Here, JπK returns 1 if condition π is true and 0 otherwise.
The term |Mjl| aims at excluding the influence of zeros in
ternary encoding matrix M which is known as attenuated
decoding [49]. It is easy to know that Eq.(5) calculates
the Hamming distance between the binary prediction vector
f b(x∗) = [f b1(x∗), f

b
2(x∗), . . . , f

b
L(x∗)] and Mj:.

Intuitively, the same prediction (e.g., positive class) might
be obtained with different confidences. Hamming decoding
simply treats the L binary predictions f bl (x∗) equally. To
further consider the predicted confidence, loss-based decod-
ing [2] utilizes the real-valued prediction in decoding process
and defines the distance function as follows:

dist(f(x∗),Mj:) =

L∑
l=1

|Mjl| · `(frl (x∗) ·Mjl) (6)

In general, `(·) corresponds to some monotone nonincreas-
ing functions. An intuition is that the larger the confidence
frl (x∗) ·Mjl, the smaller the loss `(frl (x∗) ·Mjl). Here, the
most commonly used loss function corresponds to the popular
exponential loss (i.e., `(z) = e−z) [2], [72], [37].

Loss-based decoding ignores one intuitive truth that the
generalization performance of the L binary classifiers fl
is different. Generally, classifiers with better generalization
performance should be given higher weight in the decoding
process. Regarding this issue, loss-weighted decoding [11]
attempts to weight the loss `(frl (x∗)·Mjl) with the generaliza-
tion performance of fl. To evaluate the performance for each

classifier fl, the following performance matrix H̃ is calculated
with training set:

H̃jl =

∑m
i=1

(
Jf bl (xi) =MjlK ∧ Jyi = cjK

)∑m
i=1Jyi = cjK

(7)

It is easy to know that the (j, l)-th item H̃jl in H̃ corresponds
to the empirical accuracy of classifier fl over the training
samples belonging to the j-th class cj . To make the total
contribution of involved binary classifiers the same for each
class in decoding process, H̃ is further normalized by row to
obtain the final weight matrix H:

Hjl =
H̃jl∑L

a=1 H̃ja

(8)

Note that H̃jl = 0 if Mjl = 0 since f bl (xi) ∈ {−1,+1} and
then Jf bl (xi) = MjlK always returns 0. Therefore, no matter
how many binary classifiers are involved in decoding for each
class, their weights add up to 1. Loss-weighted decoding
introduces the weight matrix H on the basis of loss-based
decoding. Thus, the corresponding distance function is defined
as follows:

dist(f(x∗),Mj:) =

L∑
l=1

|Mjl| ·Hjl · `(frl (x∗) ·Mjl) (9)

B. One-versus-One and Hamming Decoding

In OvO, there are a total of
(
N
2

)
binary decompositions

where one class is taken as positive and another one class is
taken as negative for each binary decomposition. According
to Eq.(2) and Eq.(3), suppose that the l-th binary dataset Bl
is constructed with Y+1

l = {cu}, Y−1l = {cv} and Y0
l =

Y \ {cu, cv} (1 ≤ u 6= v ≤ N ), then the learned binary
classifier fl over Bl will tell us whether one sample belongs
to class cu or cv . For unseen instance x∗, there are a total of(
N
2

)
votes returned by binary classifiers. Let s∗j be the number

of votes for the j-th class cj , its final multi-class prediction
y∗ is usually determined as follows:

y∗ = cĵ , where ĵ = argmax
1≤j≤N

s∗j (10)

In other words, the class with most votes is returned as the final
prediction (a.k.a. majority voting). As the most commonly
used decision fusion strategy, some theoretical studies have
analyzed the generalization bound of majority voting under
various conditions, such as partially labeled training data [16]
and an increasing number of independent voters [1].

For this decomposition rule, its encoding matrix M is a
N ×

(
N
2

)
ternary matrix. Each column has a ‘−1’, a ‘+1’ and

(N−2) ‘0’s, and each row has a total of N−1 nonzero values
(‘−1’ and ‘+1’). An example is shown in Eq.(11) for the OvO
encoding matrix (N = 4):

M =


+1 +1 +1 0 0 0
−1 0 0 +1 +1 0
0 −1 0 −1 0 +1
0 0 −1 0 −1 −1

 (11)
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Theorem 1. The majority voting decoding in Eq.(10) for OvO
is equivalent to Hamming decoding for ECOC as defined by
Eq.(4) and Eq.(5).

Proof. It is easy to know that minimizing the distance in
Eq.(5) is equivalent to maximizing the following distance:

dist(f(x∗),Mj:) =

L∑
l=1

|Mjl| · Jf bl (x∗) =MjlK (12)

Noting that the above distance exactly records the number of
votes for the j-th class cj and this completes the proof.

Theorem 1 tells us that the commonly used majority voting
decoding for OvO is just an equivalent implementation of
Hamming decoding for general ECOC encoding strategy. In
Section III-D, we will further show the relationship between
Hamming decoding and loss-based decoding.

C. One-versus-Rest and Loss-based Decoding

In OvR, there are a total of N binary decompositions
where one class is taken as positive and the rest classes are
taken as negative for each binary decomposition. According
to Eq.(2) and Eq.(3), the l-th binary dataset Bl is constructed
with Y+1

l = {cl} and Y−1l = Y \ cl in OvR decomposition
(1 ≤ l ≤ N ). For unseen instance x∗, its final multi-class
prediction y∗ is usually determined as follows:

y∗ = cĵ , where ĵ = argmax
1≤j≤N

frj (x∗) (13)

In other words, the class with maximum confidence value is
returned as the final prediction.

For this decomposition rule, its encoding matrix M is a
N ×N binary square matrix and can be written as Mjj = +1
and Mjl = −1 if j 6= l. An example is shown in Eq.(14) for
the OvR encoding matrix (N = 4):

M =


+1 −1 −1 −1
−1 +1 −1 −1
−1 −1 +1 −1
−1 −1 −1 +1

 (14)

Theorem 2. The maximum confidence decoding in Eq.(13) for
OvR is equivalent to loss-based decoding as defined by Eq.(4)
and Eq.(6) if loss function `(·) is monotonically decreasing.

Proof. For unseen instance x∗, let fr1 (x∗), fr2 (x∗), . . .,
frN (x∗) be the N real-valued predictions, without loss of
generality, suppose that Eq.(13) returns ck as the final multi-
class prediction, i.e., frk (x∗) is the largest one among the N
real-valued predictions, it is equivalent to proving that the
following inequality always holds:

N∑
l=1

`(frl (x∗) ·Mkl)−
N∑
l=1

`(frl (x∗) ·Mjl) < 0 (15)

where 1 ≤ j 6= k ≤ N . In other words, loss-based decoding
will also return ck as the final multi-class prediction.

In OvR, note that Mjl = +1 if j = l and −1 otherwise.
Thus, the two summations on the left side of Eq.(15) differ
only in two terms (i.e., when l = k and l = j):

N∑
l=1

`(frl (x∗) ·Mkl)−
N∑
l=1

`(frl (x∗) ·Mjl)

= `(frk (x∗)) + `(−frj (x∗))− `(−frk (x∗))− `(frj (x∗))
=
[
`(frk (x∗))− `(frj (x∗))

]
+
[
`(−frj (x∗))− `(−frk (x∗))

]
As supposed before, frk (x∗) > frj (x∗) hold, thus −frj (x∗) >
−frk (x∗) must hold. Because `(z) is monotonically decreas-
ing, then both `(frk (x∗))− `(frj (x∗)) < 0 and `(−frj (x∗))−
`(−frk (x∗)) < 0 hold. Thus the inequality in Eq.(15) always
holds and this completes the proof.

Theorem 2 tells us that the commonly used maximum con-
fidence decoding for OvR is just a special case of loss-based
decoding for general ECOC. Thus, the performance of OvR-
based models might be further improved with more advanced
decoding strategy than loss-based decoding. Experiments in
Sections IV-B and V-B clearly validate this conjecture.

It is worth noting that Hamming decoding is not suitable
for OvR decomposition. Take the encoding matrix in Eq.(14)
as an example, let f b(x∗) = [f b1(x∗), f

b
2(x∗), f

b
3(x∗), f

b
4(x∗)]

be the binary prediction vector, if there is one and only one
‘+1’ in f b(x∗), then the corresponding class can be returned
by Hamming decoding (e.g., c1 will be returned if f b(x∗) =
[+1,−1,−1,−1]). However, two bad cases arise frequently
in OvR decomposition. If there are multiple ‘+1’s in f b(x∗),
the Hamming distances between f b(x∗) and the corresponding
rows in encoding matrix are equal as well as the nearest which
will prevent picking out the proper class (e.g., if f b(x∗) =
[+1,+1,−1,−1], the Hamming distances between f b(x∗) and
both the first and second row in encoding matrix are equal to
1, and this is also the nearest distance. So which class should
be returned?). Moreover, such similar problem also exists if
there is no ‘+1’ in f b(x∗). This is why OvR uses maximum
confidence decoding rather than Hamming decoding.

D. Hamming Decoding and Loss-based Decoding

Generally, Hamming decoding and loss-based decoding are
treated as two separate decoding techniques. As discussed in
Section III-A, loss-based decoding can be considered to be
an improved version of Hamming decoding that can further
regard the predicted confidence. In this section, we will
demonstrate a more essential relationship between them.

Theorem 3. When the loss function `(·) corresponds to zero-
one loss `0/1(z), the distance function in Eq.(6) for loss-
based decoding will be specialized into the distance function
in Eq.(5) for Hamming decoding. Here, `0/1(z) returns 1 if
z < 0 and 0 otherwise.

Proof. As assumed in Section III-A, we have f bl (x∗) =
sign(frl (x∗)). It is easy to show the following equation always
holds for Mjl ∈ {−1,+1} (no effect if Mjl = 0):

`0/1(f
r
l (x∗) ·Mjl) = Jf bl (x∗) 6=MjlK (16)
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Specifically, when Mjl ∈ {−1,+1}, if f bl (x∗) 6= Mjl, i.e.,
sign(frl (x∗)) 6=Mjl, then frl (x∗) ·Mjl < 0 must hold, which
leads to `0/1(frl (x∗) ·Mjl) also returns 1. The proof will be
completed by replacing the corresponding term in Eq.(5) or
Eq.(6) with its equivalent form in Eq.(16).

Theorem 3 tells us that the commonly used Hamming
decoding for ECOC is just a special case of loss-based decod-
ing. Thus, the performance of Hamming decoding might be
further improved with proper weight matrix like loss-weighted
decoding. Experiments in Section IV-B clearly validate this
conjecture, especially our instance-specific loss-weighted de-
coding proposed in Section IV can significantly improve the
performance of Hamming decoding.

E. Summary
In this section, we begin with a brief introduction to ECOC,

with a special focus on its decoding strategy. We discuss the
evolution from Hamming decoding to loss-based decoding,
and to loss-weighted decoding. Subsequently, we prove the
equivalence of majority voting in OvO with Hamming de-
coding, and that of maximum confidence decoding in OvR
with loss-based decoding. Finally, we elucidate the relation-
ship between Hamming decoding and loss-based decoding,
demonstrating that the former can be considered a special
case of the latter. These findings unify the commonly used
decoding strategies in OvO, OvR, and ECOC under loss-
based decoding. Therefore, these decoding strategies can be
further enhanced by employing loss-weighted decoding with
an appropriate weight matrix. In the next section, we will
propose our instance-specific loss-weighted decoding strategy,
which can consider the varying generalization ability of each
binary classifier for each instance.

IV. INSTANCE-SPECIFIC LOSS-WEIGHTED DECODING

In common experience, it is widely believed that different
people are adept at different tasks. This also holds true for ma-
chine learning, where the generalization ability of one classi-
fier may vary when it is used to classify different samples [43],
[23]. Given this fundamental insight, in decomposition-based
multi-class classification, its performance could potentially
be enhanced by assigning sample-dependent weights to each
binary classifier during the decoding process, provided that
these weights can reflect each classifier’s generalization ability
for each sample. The loss-weighted decoding strategy assigns
the same weight to each binary classifier for all possible
samples. Thus, it fails to consider the individual generalization
ability of each binary classifier for each sample, which may
result in performance degradation. In this section, we propose
to estimate the distinct instance-specific importance for each
binary classifier during the decoding of the final multi-class
prediction for each sample.

A. Methodology
Following the notations in previous sections, for conve-

nience, we rewrite the dataset for the l-th binary decomposition
in Eq.(2) as follows:

Bl = {(xl
i, y

l
i) | 1 ≤ i ≤ |Bl|}, (1 ≤ l ≤ L) (17)

where xl
i ∈ X , yli ∈ {−1,+1} and | · | returns the cardinality

of one set. It is easy to know |Bl| is equal to the number
of training samples whose class is in Y+1

l ∪ Y−1l (cf. Eq.(1)
for their definitions). For the unseen instance x∗, we firstly
identify its K nearest neighbors in the l-th binary dataset Bl:

N l(x∗) = {(xl
ik
, ylik) | 1 ≤ k ≤ K} (18)

Generally, the neighboring samples have similar properties
as x∗. Thus, the accuracy of fl over N l(x∗) can reflect its
specific generalization ability for x∗. Specifically, for each
neighboring sample xl

ik
, fl can return a binary prediction

f bl (x
l
ik
). Then, the local accuracy of fl in neighboring x∗

can be calculated as follows:

H̃x∗
l =

1

K

K∑
k=1

Jf bl (x
l
ik
) = ylikK (19)

Here, JπK returns 1 if condition π is true and 0 otherwise.
After all L accuracies are obtained, similar to Eq.(8), we can
further normalize each accuracy as follows:

Hx∗
l =

H̃x∗
l∑L

a=1 H̃
x∗
a

(20)

With the normalized accuracies, the corresponding distance
function in Eq.(4) for instance-specific loss-weighted decoding
can be finally defined as follows:

dist(f(x∗),Mj:) =

L∑
l=1

|Mjl| ·Hx∗
l · `(f

r
l (x∗) ·Mjl) (21)

Note that the weight Hx∗
l is instance-dependent and can be

regarded as the generalization ability estimation of fl for
x∗, thus this decoding strategy can consider instance-specific
characteristics of each binary for each instance.

To facilitate understanding, Algorithm 1 presents the pseu-
docode of instance-specific loss-weighted decoding.

B. Experiments

TABLE II
THE CHARACTERISTICS OF MULTI-CLASS DATASETS.

Dataset #Sample (m) #Class (N ) #Feature (d)
iris 150 3 4
wine 178 3 13
glass 214 6 9
svmguide2 391 3 20
vowel 528 11 10
dna 2000 3 180
segment 2310 7 19
satimage 4435 6 36
usps 7291 10 256
pendigits 7494 10 16
letter 15000 26 16
protein 17766 3 357
poker 25010 10 10
shuttle 43500 7 9
mnist 60000 10 780
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Algorithm 1 Instance-specific loss-weighted decoding.
Input: The N ×L encoding matrix M, the L decomposed binary classification datasets Bls, the L learned binary classifiers

fls, the number of nearest neighbors K, and the unseen instance x∗
Output: The final multi-class prediction y∗ for x∗

1: for l = 1 to L do
2: Identify the K nearest neighbors of x∗ in Bl and store them in sample set N l(x∗) as shown in Eq.(18);
3: Calculate the local accuracy H̃x∗

l of fl in K nearest neighbors N l(x∗) according to Eq.(19);
4: end for
5: for l = 1 to L do
6: Calculate the normalized accuracy Hx∗

l according to Eq.(20);
7: end for
8: for j = 1 to N do
9: Calculate the distance dist(f(x∗),Mj:) according to Eq.(21);

10: end for
11: Return y∗ according to Eq.(4).

TABLE III
EXPERIMENTAL RESULTS (MEAN±STD.) FOR BINARY ECOC WHERE THE BEST AND SECOND PERFORMANCE FOR EACH DATASET IS HIGHLIGHTED IN

BOLDFACE AND UNDERLINED, RESPECTIVELY.

(a) Accuracy
Dataset LB-0/1 LW-0/1 ILW-0/1 LB-Exp LW-Exp ILW-Exp
iris 0.720±0.069 0.953±0.055 0.953±0.055 0.913±0.095 0.940±0.073 0.947±0.061
wine 0.972±0.040 0.972±0.040 0.972±0.040 0.983±0.027 0.983±0.027 0.983±0.027
glass 0.542±0.100 0.547±0.120 0.580±0.149 0.576±0.088 0.627±0.121 0.618±0.127
svmguide2 0.796±0.053 0.806±0.043 0.826±0.055 0.834±0.058 0.829±0.057 0.831±0.059
vowel 0.394±0.058 0.479±0.061 0.680±0.045 0.451±0.101 0.517±0.056 0.612±0.085
dna 0.912±0.023 0.930±0.016 0.916±0.021 0.944±0.021 0.944±0.021 0.944±0.020
segment 0.880±0.029 0.907±0.019 0.935±0.018 0.906±0.017 0.913±0.017 0.929±0.017
satimage 0.804±0.021 0.846±0.023 0.875±0.017 0.835±0.017 0.855±0.016 0.876±0.014
usps 0.916±0.011 0.920±0.011 0.930±0.012 0.933±0.010 0.934±0.011 0.939±0.012
pendigits 0.868±0.016 0.882±0.015 0.973±0.005 0.901±0.011 0.903±0.011 0.968±0.006
letter 0.429±0.013 0.552±0.017 0.856±0.014 0.467±0.022 0.583±0.021 0.843±0.015
protein 0.669±0.013 0.642±0.013 0.665±0.011 0.684±0.014 0.683±0.015 0.684±0.013
poker 0.498±0.011 0.301±0.019 0.502±0.010 0.499±0.010 0.424±0.012 0.500±0.011
shuttle 0.834±0.064 0.956±0.002 0.975±0.003 0.924±0.004 0.952±0.004 0.975±0.003
mnist 0.855±0.011 0.860±0.010 0.895±0.008 0.874±0.008 0.876±0.008 0.898±0.006

(b) Average-F1
Dataset LB-0/1 LW-0/1 ILW-0/1 LB-Exp LW-Exp ILW-Exp
iris 0.693±0.066 0.951±0.059 0.951±0.059 0.913±0.089 0.937±0.073 0.942±0.067
wine 0.969±0.042 0.969±0.042 0.969±0.042 0.977±0.037 0.977±0.037 0.977±0.037
glass 0.436±0.133 0.505±0.124 0.471±0.188 0.480±0.105 0.573±0.145 0.525±0.164
svmguide2 0.664±0.103 0.708±0.080 0.753±0.093 0.743±0.118 0.737±0.121 0.739±0.123
vowel 0.347±0.068 0.452±0.060 0.651±0.056 0.407±0.108 0.492±0.063 0.582±0.100
dna 0.903±0.023 0.923±0.018 0.907±0.023 0.935±0.023 0.935±0.023 0.935±0.022
segment 0.873±0.029 0.906±0.017 0.934±0.015 0.904±0.016 0.912±0.015 0.927±0.016
satimage 0.683±0.022 0.793±0.026 0.828±0.017 0.737±0.016 0.804±0.021 0.831±0.010
usps 0.907±0.012 0.911±0.013 0.922±0.014 0.925±0.012 0.926±0.012 0.932±0.014
pendigits 0.865±0.016 0.880±0.015 0.972±0.005 0.899±0.011 0.901±0.012 0.968±0.006
letter 0.393±0.010 0.535±0.020 0.855±0.013 0.425±0.022 0.564±0.023 0.843±0.013
protein 0.632±0.015 0.633±0.013 0.643±0.013 0.664±0.015 0.664±0.015 0.664±0.014
poker 0.083±0.007 0.078±0.008 0.088±0.008 0.082±0.008 0.073±0.007 0.082±0.008
shuttle 0.344±0.147 0.569±0.078 0.715±0.071 0.494±0.077 0.536±0.083 0.677±0.073
mnist 0.852±0.011 0.858±0.010 0.893±0.008 0.872±0.008 0.874±0.008 0.897±0.006

1) Experimental Setup: In this paper, we have collected
fifteen publicly available multi-class datasets for comparative
studies2. Table II summarizes the characteristics of these
datasets, including the number of samples (i.e., m), the number

2These datasets are publicly available at https://www.csie.ntu.edu.tw/∼cjlin/
libsvmtools/datasets/multiclass.html

of classes (i.e., N ) and the number of features (i.e., d).

To measure the performance of different multi-class classi-
fication models, we use the two popular evaluation metrics
including accuracy and average-F1 [38], [22]. Specifically,
given the multi-class test set S = {(xi, yi) | 1 ≤ i ≤ p}
with p samples where yi ∈ {c1, c2, . . . , cN}, for the multi-
class classifier f to be evaluated, let ŷi = f(xi) be the multi-
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TABLE IV
EXPERIMENTAL RESULTS (MEAN±STD.) FOR TERNARY ECOC WHERE THE BEST AND SECOND PERFORMANCE FOR EACH DATASET IS HIGHLIGHTED IN

BOLDFACE AND UNDERLINED, RESPECTIVELY.

(a) Accuracy
Dataset LB-0/1 LW-0/1 ILW-0/1 LB-Exp LW-Exp ILW-Exp
iris 0.953±0.055 0.953±0.055 0.953±0.055 0.953±0.055 0.953±0.055 0.953±0.055
wine 0.989±0.024 0.989±0.024 0.989±0.024 0.983±0.027 0.983±0.027 0.983±0.027
glass 0.575±0.108 0.523±0.105 0.594±0.117 0.594±0.129 0.552±0.115 0.594±0.124
svmguide2 0.824±0.041 0.826±0.046 0.829±0.047 0.826±0.050 0.826±0.050 0.829±0.053
vowel 0.481±0.078 0.557±0.065 0.650±0.053 0.557±0.091 0.585±0.072 0.655±0.058
dna 0.941±0.015 0.940±0.015 0.941±0.015 0.945±0.018 0.945±0.018 0.945±0.018
segment 0.914±0.024 0.919±0.022 0.933±0.018 0.912±0.021 0.918±0.022 0.931±0.014
satimage 0.842±0.019 0.855±0.021 0.882±0.019 0.851±0.019 0.860±0.019 0.878±0.022
usps 0.949±0.007 0.949±0.008 0.952±0.008 0.952±0.010 0.953±0.010 0.954±0.010
pendigits 0.936±0.008 0.937±0.010 0.971±0.009 0.946±0.007 0.946±0.007 0.972±0.005
letter 0.538±0.011 0.601±0.013 0.834±0.016 0.594±0.018 0.643±0.022 0.831±0.012
protein 0.682±0.014 0.683±0.014 0.682±0.014 0.684±0.014 0.683±0.015 0.685±0.015
poker 0.499±0.010 0.386±0.079 0.500±0.010 0.500±0.010 0.402±0.055 0.501±0.013
shuttle 0.942±0.034 0.964±0.001 0.979±0.002 0.940±0.009 0.964±0.003 0.982±0.007
mnist 0.900±0.005 0.903±0.006 0.914±0.004 0.911±0.005 0.911±0.005 0.919±0.004

(b) Average-F1
Dataset LB-0/1 LW-0/1 ILW-0/1 LB-Exp LW-Exp ILW-Exp
iris 0.951±0.059 0.951±0.059 0.951±0.059 0.951±0.059 0.951±0.059 0.951±0.059
wine 0.985±0.032 0.985±0.032 0.985±0.032 0.977±0.037 0.977±0.037 0.977±0.037
glass 0.510±0.157 0.520±0.136 0.539±0.152 0.526±0.162 0.538±0.140 0.525±0.156
svmguide2 0.740±0.105 0.741±0.109 0.754±0.092 0.740±0.117 0.740±0.118 0.741±0.122
vowel 0.448±0.089 0.541±0.079 0.624±0.075 0.537±0.111 0.564±0.090 0.647±0.057
dna 0.931±0.018 0.932±0.018 0.931±0.018 0.937±0.020 0.937±0.020 0.937±0.020
segment 0.913±0.022 0.919±0.021 0.933±0.015 0.912±0.021 0.917±0.022 0.930±0.012
satimage 0.771±0.042 0.812±0.028 0.844±0.024 0.783±0.028 0.818±0.021 0.835±0.027
usps 0.943±0.008 0.943±0.009 0.946±0.009 0.947±0.011 0.947±0.011 0.949±0.011
pendigits 0.936±0.008 0.936±0.010 0.970±0.009 0.945±0.006 0.946±0.007 0.972±0.005
letter 0.511±0.014 0.589±0.014 0.830±0.018 0.570±0.023 0.630±0.025 0.829±0.012
protein 0.662±0.016 0.664±0.016 0.663±0.016 0.664±0.015 0.665±0.016 0.665±0.016
poker 0.083±0.009 0.080±0.013 0.084±0.009 0.082±0.008 0.072±0.008 0.086±0.011
shuttle 0.546±0.094 0.642±0.081 0.700±0.065 0.543±0.077 0.592±0.070 0.687±0.077
mnist 0.898±0.005 0.901±0.006 0.913±0.004 0.910±0.005 0.910±0.005 0.918±0.004

TABLE V
WILCOXON SIGNED-RANKS TEST FOR BINARY ECOC (SIGNIFICANCE

LEVEL α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
LW-0/1 vs.
LB-0/1 win[4.19e-02] (8/2/0) win[8.54e-04](10/0/0)
ILW-0/1 vs.
LB-0/1 win[6.10e-04](10/0/0) win[1.22e-04](10/0/0)
LW-0/1 win[7.32e-04](10/0/0) win[1.05e-02](10/0/0)
LB-Exp vs.
LB-0/1 win[6.10e-05](10/0/0) win[1.22e-04](10/0/0)
LW-0/1 tie[5.61e-01](0/10/0) tie[4.54e-01](0/10/0)
ILW-0/1 loss[4.79e-02](0/0/10) loss[3.02e-02](0/0/10)
LW-Exp vs.
LB-0/1 win[2.62e-03](10/0/0) win[1.83e-04](10/0/0)
LW-0/1 win[8.54e-04](10/0/0) win[2.15e-02](10/0/0)
ILW-0/1 tie[1.21e-01] (0/1/9) tie[1.21e-01] (0/6/4)
LB-Exp win[8.03e-02](10/0/0) win[1.71e-02](10/0/0)
ILW-Exp vs.
LB-0/1 win[6.10e-05](10/0/0) win[1.22e-04](10/0/0)
LW-0/1 win[1.22e-04](10/0/0) win[3.05e-04](10/0/0)
ILW-0/1 tie[5.99e-01](0/10/0) tie[7.62e-01](0/10/0)
LB-Exp win[4.03e-03](10/0/0) win[3.05e-03](10/0/0)
LW-Exp win[2.32e-03](10/0/0) win[1.07e-02](10/0/0)

TABLE VI
WILCOXON SIGNED-RANKS TEST FOR TERNARY ECOC (SIGNIFICANCE

LEVEL α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
LW-0/1 vs.
LB-0/1 tie[2.04e-01] (3/7/0) win[4.64e-03](10/0/0)
ILW-0/1 vs.
LB-0/1 win[4.88e-04](10/0/0) win[2.44e-04](10/0/0)
LW-0/1 win[9.77e-04](10/0/0) win[1.22e-03](10/0/0)
LB-Exp vs.
LB-0/1 win[1.34e-02](10/0/0) win[2.45e-02] (8/2/0)
LW-0/1 tie[5.42e-01](0/10/0) tie[5.83e-01](0/10/0)
ILW-0/1 loss[8.54e-03](0/0/10) loss[3.05e-03](0/0/10)
LW-Exp vs.
LB-0/1 tie[1.53e-01] (6/4/0) win[1.34e-02](10/0/0)
LW-0/1 win[8.54e-03] (5/5/0) tie[2.68e-01](0/10/0)
ILW-0/1 loss[3.05e-03](0/0/10) loss[5.25e-03](0/0/10)
LB-Exp tie[4.65e-01](0/10/0) win[2.69e-02]( 9/1/0)
ILW-Exp vs.
LB-0/1 win[1.71e-03](10/0/0) win[1.71e-03](10/0/0)
LW-0/1 win[1.22e-03](10/0/0) win[3.05e-03](10/0/0)
ILW-0/1 tie[4.26e-01](0/10/0) tie[5.83e-01](0/10/0)
LB-Exp win[9.77e-04](10/0/0) win[2.44e-03](10/0/0)
LW-Exp win[4.88e-04](10/0/0) win[6.84e-03](10/0/0)
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TABLE VII
WILCOXON SIGNED-RANKS TEST FOR OVR (SIGNIFICANCE LEVEL

α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
LW-0/1 vs.
LB-0/1 tie[1.04e-01] win[1.22e-04]
ILW-0/1 vs.
LB-0/1 win[3.66e-04] win[1.22e-04]
LW-0/1 win[7.32e-04] win[2.44e-03]
LB-Exp vs.
LB-0/1 win[1.22e-04] win[1.22e-04]
LW-0/1 win[2.01e-03] win[2.56e-02]
ILW-0/1 tie[1.07e-01] tie[1.07e-01]
LW-Exp vs.
LB-0/1 win[1.53e-03] win[1.83e-04]
LW-0/1 win[4.27e-03] win[8.36e-03]
ILW-0/1 loss[7.30e-02] tie[1.69e-01]
LB-Exp loss[6.81e-02] tie[6.35e-01]
ILW-Exp vs.
LB-0/1 win[6.10e-05] win[6.10e-05]
LW-0/1 win[1.22e-04] win[2.62e-03]
ILW-0/1 tie[9.34e-01] tie[3.89e-01]
LB-Exp win[5.25e-03] win[4.03e-03]
LW-Exp win[3.66e-04] win[1.22e-03]

TABLE VIII
WILCOXON SIGNED-RANKS TEST FOR OVO (SIGNIFICANCE LEVEL

α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
LW-0/1 vs.
LB-0/1 tie[5.70e-01] win[5.22e-02]
ILW-0/1 vs.
LB-0/1 win[3.71e-02] win[2.73e-02]
LW-0/1 tie[1.02e-01] tie[3.39e-01]
LB-Exp vs.
LB-0/1 win[7.71e-02] win[3.27e-02]
LW-0/1 tie[1.29e-01] tie[3.76e-01]
ILW-0/1 tie[7.91e-01] tie[1.00e+00]
LW-Exp vs.
LB-0/1 tie[6.26e-01] win[7.85e-02]
LW-0/1 tie[6.70e-01] tie[1.53e-01]
ILW-0/1 tie[3.76e-01] tie[8.08e-01]
LB-Exp tie[7.42e-01] tie[1.64e-01]
ILW-Exp vs.
LB-0/1 win[4.25e-02] win[2.66e-02]
LW-0/1 win[3.42e-02] win[1.71e-02]
ILW-0/1 tie[1.76e-01] tie[4.14e-01]
LB-Exp tie[1.48e-01] win[7.42e-02]
LW-Exp win[1.37e-02] tie[3.22e-01]

class prediction for test sample xi, then the two metrics can
be defined as follows:
• Accuracy:

AccS(f) =
1

p

p∑
i=1

Jŷi = yiK (22)

Here, JπK returns 1 if condition π is true and 0 otherwise.
• Average-F1:

AvgF1S(f) =
1

N

N∑
j=1

2Pj ·Rj

Pj +Rj
(23)

TABLE IX
WILCOXON SIGNED-RANKS TEST FOR GEPECOC (SIGNIFICANCE LEVEL

α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
LW-0/1 vs.
LB-0/1 tie[1.51e-01] win[6.84e-03]
ILW-0/1 vs.
LB-0/1 win[4.88e-04] win[4.88e-04]
LW-0/1 win[6.84e-03] win[6.40e-02]
LB-Exp vs.
LB-0/1 win[3.27e-02] win[1.71e-03]
LW-0/1 tie[1.76e-01] tie[4.97e-01]
ILW-0/1 tie[4.97e-01] tie[2.16e-01]
LW-Exp vs.
LB-0/1 tie[4.14e-01] win[1.34e-02]
LW-0/1 tie[7.65e-01] win[9.42e-02]
ILW-0/1 tie[1.91e-01] tie[5.88e-01]
LB-Exp tie[6.25e-01] tie[2.40e-01]
ILW-Exp vs.
LB-0/1 win[5.74e-02] win[7.32e-04]
LW-0/1 win[5.22e-02] win[1.71e-02]
ILW-0/1 tie[3.05e-01] win[8.03e-02]
LB-Exp win[3.71e-02] win[2.93e-03]
LW-Exp win[1.95e-03] win[5.37e-02]

Here, the definitions of Pj and Rj are given as follows:

Pj =

∑p
i=1Jŷi = cjK ∧ Jyi = cjK∑p

i=1Jŷi = cjK

Rj =

∑p
i=1Jŷi = cjK ∧ Jyi = cjK∑p

i=1Jyi = cjK

For both the two metrics, it is easy to know that the larger the
metric value, the better the performance. We conduct ten-fold
cross validation over each dataset and report both mean and
standard deviation in experiments.

We compare the proposed instance-specific loss-weighted
decoding strategy (abbreviated as ILW) with existing strate-
gies including loss-based decoding (abbreviated as LB) [2]
and loss-weighted decoding (abbreviated as LW) [11]. For
the loss function `(·), we employ the popular exponential loss
which has been widely used in diverse applications [72], [37].
Moreover, as discussed in Section III-D, Hamming decoding
is a special case of loss-based decoding when zero-one loss
serves as the loss function. Therefore, in addition to expo-
nential loss, we also investigate zero-one loss in experiments.
For convenience, let A ∈ {LB, LW, ILW} be one decoding
strategy, we use A-0/1 and A-Exp to denote the version
coupled with zero-one loss and exponential loss, respectively.
For example, LB-0/1 denotes the loss-based decoding with
loss function being zero-one loss (i.e., Hamming decoding).

For encoding strategy, we investigate the two random ECOC
approaches (i.e., binary ECOC and ternary ECOC), the two
deterministic ECOC approaches (i.e., OvR and OvO) and one
state-of-the-art ECOC approach GEPECOC [66]. For the first
four ECOC versions, their corresponding encoding matrices
are generated by the built-in function designecoc in Mat-
lab with parameter setting ‘denserandom’, ‘sparserandom’,
‘onevsall’ and ‘onevsone’, respectively. For GEPECOC, its
corresponding encoding matrix is generated with the released
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code by authors.3 For decomposed binary classification prob-
lems, logistic regression is used to learn binary classifier which
is implemented by the efficient LIBLINEAR software [14]
with parameter setting ‘-s 0 -B 1 -R -q’, i.e., “L2-regularized
logistic regression (primal)”.

2) Experimental Results: Due to page limit, we only report
the detailed experimental results for binary ECOC and ternary
ECOC in Table III and Table IV, respectively. As the relative
performance of different approaches might vary over different
datasets due to their specific data distribution, in this paper,
in order to obtain more robust experimental conclusion, we
pay more attention to compare the overall performance of
each approach over the whole benchmark datasets. To achieve
this goal, Wilcoxon signed-ranks test [8] is employed as the
statistical tool. Tables V-IX summarize the corresponding
test results for binary ECOC, ternary ECOC, OvR, OvO
and GEPECOC4, respectively. The win/tie/loss in each cell
for “A vs. B” means that the decoding strategy A achieves
superior/comparable/inferior performance against the decoding
strategy B. Take the binary ECOC in Table V as an example,
the test result in bottom right corner (i.e., win[1.07e-02])
means that ILW-Exp achieves superior performance against
LW-Exp and this is also equivalent to that LW-Exp achieves
inferior performance against ILW-Exp. Besides, to investigate
the impact of randomness in generating binary ECOC and
ternary ECOC, we repeatedly run their programs ten times
with different random seeds. In Table V and Table VI, we
also show the win/tie/loss counts of the ten experiments for
each setting. The detailed experimental results in Table III and
Table IV and the statistical test results in Table V and Table VI
only correspond to one of the ten experiments.

According to the reported experimental results, we can make
the following observations:
• As shown in Tables V-IX, ILW achieves superior per-

formance against LB and LW in most cases with either
encoding strategies (binary ECOC, ternary ECOC, OvR,
OvO and GEPECOC) as well as loss functions (zero-one
loss or exponential loss). These experimental results not
only validate the effectiveness of instance-specific loss-
weighted decoding but also support our previous claim
that neglecting the distinct impacts of the decomposed
binary classifiers on individual instances can potentially
lead to performance degradation.

• It is also shown that Hamming decoding (i.e., LB-0/1)
achieves inferior performance to other decoding strategies
in most cases, especially to the proposed ILW strategy.
Hamming decoding was proposed along with ECOC,
and it is the most commonly-used decoding strategy.
These experimental results show that its performance can
be further improved by considering the instance-specific
characteristics of binary classifiers.

• It can be observed that there are some differences between
ILW-0/1 and ILW-Exp in detailed experimental results,

3The code of GEPECOC is publicly available at https://github.com/
MLDMXM2017/GEP ECOC.

4As the encoding matrices of GEPECOC for datasets “letter” and “mnist”
are not returned in one week, the reported statistical results in Table IX only
employ the remaining 13 datasets.

while they achieve comparable performance according to
Wilcoxon signed-ranks test results. Different multi-class
classification applications may prefer to different loss
functions and it is encouraged to select the loss function
according to the task in practice.

• As shown in Table III and Table IV, the relative perfor-
mance of different decoding strategies is slightly different
on different datasets. Specifically, we may expect that
the performance rank is “ILW≥LW≥LB” and “LB-
Exp≥LB-0/1 (i.e., Hamming decoding)”, but this is
not always true over all datasets. Note that, the “LB-
Exp≥LB-0/1” holds when the quality of predicted con-
fidence is reliable, “LW≥LB” holds when the quality
of estimated weight matrix is reliable, and “ILW≥LW”
holds when the quality of estimated weight matrix in
neighboring samples is more reliable. However, these
reliabilities should be examined in different real-world
applications that depend on specific data distribution.

• As shown in Table V and Table VI, in the ten experi-
ments, the statistical test result for a single setting keeps
unchanged in most cases, i.e., win/tie/loss counts are
either ten wins or ten ties or ten losses. Especially for
the proposed ILW-Exp strategy, the statistical test result
keeps unchanged in all cases. These experimental results
demonstrate that the randomness in encoding matrix has
little impacts on the final results.

TABLE X
WILCOXON SIGNED-RANKS TEST FOR ABLATION STUDY (SIGNIFICANCE

LEVEL α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

(a) Loss function: zero-one loss
Accuracy Average-F1

Binary ECOC win[1.22e-04] win[6.10e-05]
Ternary ECOC win[1.22e-04] win[1.22e-04]
OvR win[1.22e-04] win[6.10e-05]
OvO win[1.37e-02] win[1.86e-02]
GEPECOC win[4.88e-04] win[4.88e-04]

(b) Loss function: exponential loss
Accuracy Average-F1

Binary ECOC win[4.03e-03] win[3.05e-03]
Ternary ECOC win[3.05e-03] win[8.54e-03]
OvR win[5.25e-03] win[4.03e-03]
OvO win[4.20e-02] win[2.69e-02]
GEPECOC win[1.37e-02] win[2.10e-02]

3) Ablation Study: In this paper, the proposed ILW strategy
estimates the generalization ability of one binary classifier
on one sample with its accuracy in the sample’s k nearest
neighbors. It is easy to understand that this accuracy and
the prediction confidence on this sample are likely to be
highly correlated. Then we can also consider simply using the
prediction confidence of each binary classifier as its weight.
To make real-valued prediction confidence being in [0, 1]
that is similar to the value of accuracy, we normalize each
real-valued prediction confidence frl (x) with sigmoid function
s(z) = 1

1+exp(−z) . As the magnitude of prediction confidence
indicates the possibility of belonging to positive class for one
sample, the weight is set to s(frl (x)) for one positive class
while 1− s(frl (x)) for one negative class.
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Due to page limit, the detailed experimental results of this
ablation version is omitted in this paper. Here, we pay more
attention to compare the overall performance of ILW against
this ablation version over the whole benchmark datasets.
Table X reports the Wilcoxon signed-ranks test results for all
the five ECOC versions and the two loss functions. It can be
observed that ILW achieves superior performance against this
ablation version in all cases. These experimental results show
that the reliability of the estimated accuracy in neighboring
samples is better than the prediction confidence.

4) Parameter Sensitivity Analysis: To estimate the instance-
specific generalization ability of one decomposed binary clas-
sifier, the accuracy in K nearest neighbors of one instance
serves as this purpose. In this section, we conduct parame-
ter sensitivity analysis to investigate how the generalization
performance of our proposed instance-specific loss-weighted
decoding strategy changes with K.

Fig. 2 illustrates the performance fluctuation of ILW-Exp
for both binary ECOC and ternary ECOC. It is shown that the
performance of ILW-Exp is relatively stable when the value
of K varies from 8 to 12. In this paper, we fix K = 10 in all
cases which can also be used as the default parameter.

V. APPLICATION TO SOFTMAX REGRESSION

Softmax regression is a generalized version of logistic re-
gression for multi-class classification where logistic regression
was initially designed for binary classification. Generally, it
is regarded as one algorithm in direct strategy which can
directly learn from multi-class data. In this section, we show
that softmax regression can be considered as working based
on OvR decomposition, but the decomposed binary classifica-
tion problems are solved in a joint manner. Thus, the final
multi-class prediction can be determined with the help of
our proposed instance-specific loss-weighted decoding strategy
instead of simply maximizing the predicted confidence.

A. Methodology

Softmax regression aims to estimate each class’s probability
for each sample xi by learning a set of model parameters
Θ = [θ1,θ2, . . . ,θN ] ∈ Rd×N as follows:

P (yi = c1 | xi)
P (yi = c2 | xi)

...
P (yi = cN | xi)

 =
1∑N

j=1 e
θT
j xi


eθ

T
1 xi

eθ
T
2 xi

...
eθ

T
Nxi

 (24)

Note that each class’s probability is related to all parameters in
Θ due to the normalization term

∑N
j=1 e

θT
j xi . However, if we

rank these N probabilities, the ranking of the j-th probability
P (yi = cj | xi) is only dependent on θj (1 ≤ j ≤ N ) as the
normalization term functions equally for all probabilities.

Generally, Θ is determined by maximum likelihood estima-
tion (MLE) where the likelihood function is defined as follows:

L(Θ) =

m∏
i=1

N∏
j=1

[P (yi = cj | xi)]
Jyi=cjK (25)

To prevent numerical underflow caused by continuous multi-
plication in Eq.(25), a common practice is to optimize the log-
likelihood LL(Θ) = lnL(Θ). Moreover, maximizing LL(Θ)
is equivalent to minimizing −LL(Θ). Then, the optimization
problem for softmax regression corresponds to:

min
Θ
−

m∑
i=1

N∑
j=1

Jyi = cjK · lnP (yi = cj | xi) (26)

It can be observed that the above optimization problem deter-
mines all θjs in a joint manner. The obtained solution must
make the sum of N probabilities be equal to one.

After model parameters are obtained via optimizing Eq.(26),
the final multi-class prediction for unseen instance x∗ can be
determined as follows:

y∗ = cĵ , where ĵ = argmax
1≤j≤N

P (cj | x∗) (27)

From the above derivation, softmax regression essentially
operates in an OvR decomposition mode. During the encoding
stage, it decomposes the original multi-class problem into
N binary classification problems, aiming to learn a linear
model θj for each class (1 ≤ j ≤ N ). In the decoding
stage, the determination formula in Eq.(27) is identical to
the maximum confidence decoding in Eq.(13) for the OvR
strategy, provided we set frj (x∗) = P (cj | x∗). The most
significant difference lies in the training stage, specifically
how the model parameters θj for each class are determined.
Generally, OvR independently learns the model parameters for
each class. In contrast, as shown in Eq.(26), softmax regression
determines all θjs jointly. Thus, softmax regression can indeed
be considered as an OvR decomposition-based multi-class
classifier with jointly learning all model parameters. As a re-
sult, further improvements in its performance may be achieved
through our instance-specific loss-weighted decoding.

Specifically, it is easy to know that Eq.(27) is equivalent to
the following formulation:

y∗ = cĵ , where ĵ = argmax
1≤j≤N

θTj x∗ (28)

As P (cj | x∗) ∈ [0, 1] and θTj x∗ ∈ R, thus we set frj (x∗)
to the latter real-valued inner product instead of the former
normalized probability, i.e., frj (x∗) = θ

T
j x∗.

To estimate the instance-specific empirical accuracy of the
l-th binary classifier fl (1 ≤ l ≤ N ) for unseen instance x∗,
the binary prediction for training samples in its K nearest
neighbors should be determined. Let (xl

ik
, ylik) be the k-th

nearest neighbor (1 ≤ k ≤ K), we determine its binary
prediction as f bl (x

l
ik
) = sign(frl (x

l
ik
)) with the sign function.

With the above adaptions, we can apply instance-specific
loss-weighted decoding in Section IV for softmax regression.

B. Experiments

1) Experimental Setup: Following the experimental setup
in Section IV-B1, we also employ the fifteen datasets in
Table II to construct the testbed and the two evaluation metrics
defined in Eq.(22) and Eq.(23) to measure one multi-class
classifier’s performance.
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(a) satimage (binary ECOC) (b) protein (binary ECOC) (c) shuttle (binary ECOC)

(d) satimage (ternary ECOC) (e) protein (ternary ECOC) (f) shuttle (ternary ECOC)

Fig. 2. Parameter sensitivity analysis w.r.t. the number of nearest neighbors for instance-specific loss-weighted decoding.

TABLE XI
EXPERIMENTAL RESULTS (MEAN±STD.) FOR SOFTMAX REGRESSION WHERE THE BEST PERFORMANCE FOR EACH DATASET IS HIGHLIGHTED IN

BOLDFACE.

Accuracy Average-F1
Dataset Max. Conf. ILW-0/1 ILW-Exp Max. Conf. ILW-0/1 ILW-Exp
iris 0.933±0.070 0.940±0.066 0.940±0.066 0.930±0.070 0.939±0.065 0.939±0.065
wine 0.983±0.027 0.949±0.049 0.977±0.039 0.977±0.037 0.943±0.055 0.972±0.048
glass 0.603±0.108 0.648±0.132 0.649±0.094 0.528±0.123 0.565±0.170 0.576±0.143
svmguide2 0.826±0.049 0.762±0.080 0.829±0.055 0.745±0.104 0.664±0.138 0.743±0.111
vowel 0.635±0.061 0.585±0.053 0.708±0.045 0.599±0.061 0.557±0.053 0.674±0.035
dna 0.937±0.016 0.916±0.016 0.937±0.016 0.928±0.019 0.899±0.021 0.928±0.019
segment 0.932±0.020 0.927±0.024 0.948±0.015 0.932±0.017 0.925±0.023 0.947±0.012
satimage 0.860±0.021 0.869±0.018 0.872±0.020 0.812±0.025 0.821±0.024 0.828±0.026
usps 0.953±0.008 0.938±0.009 0.962±0.008 0.947±0.009 0.932±0.010 0.958±0.010
pendigits 0.959±0.008 0.977±0.004 0.978±0.004 0.959±0.007 0.977±0.004 0.977±0.004
letter 0.767±0.014 0.813±0.016 0.864±0.015 0.762±0.014 0.809±0.015 0.861±0.015
protein 0.684±0.013 0.625±0.014 0.682±0.013 0.665±0.014 0.612±0.014 0.665±0.014
poker 0.500±0.010 0.501±0.007 0.524±0.007 0.082±0.008 0.128±0.014 0.129±0.013
shuttle 0.966±0.002 0.998±0.001 0.997±0.001 0.602±0.068 0.817±0.100 0.770±0.097
mnist 0.915±0.003 0.907±0.003 0.933±0.002 0.914±0.003 0.905±0.003 0.932±0.002

TABLE XII
WILCOXON SIGNED-RANKS TEST FOR SOFTMAX REGRESSION

(SIGNIFICANCE LEVEL α = 0.1; p-VALUES SHOWN IN THE BRACKETS)

Accuracy Average-F1
ILW-0/1 vs.
Max. Conf. tie[5.24e-01] tie[9.78e-01]
ILW-Exp vs.
Max. Conf. win[1.16e-03] win[2.62e-03]
ILW-0/1 win[6.10e-04] win[5.25e-03]

We aim to compare the vanilla softmax regression that
determines the final prediction via Eq.(27) and the improved
softmax regression that determines the final prediction via

instance-specific loss-weighted decoding. Zero-one loss and
exponential loss are also investigated as loss function. For
convenience, the vanilla softmax regression is denoted as
“Max. Conf.”. Following the notations in previous section, the
two improved softmax regression versions are also denoted as
ILW-0/1 and ILW-Exp, respectively.

2) Experimental Results: Table XI reports the detailed ex-
perimental results. To facilitate comparison, we also highlight
the best performance for each dataset in boldface. Moreover,
to compare the overall performance over benchmark datasets,
Wilcoxon signed-ranks test [8] is employed as the statistical
tool. Table XII summarizes the corresponding test results,
where the win/tie/loss in each cell for “A vs. B” means that
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the decoding strategy A achieves superior/comparable/inferior
performance against the decoding strategy B.

According to the reported experimental results, we can make
the following observations:
• According to Theorem 2 in Section III-C, “Max. Conf.”

is equivalent to LB-Exp because exponential loss is
monotonically decreasing. As shown in Table XII, ILW-
Exp achieves superior performance against “Max. Conf.”
in terms of both evaluation metrics. These experimen-
tal results further validate the effectiveness of instance-
specific loss-weighted decoding.

• As discussed in Section III-C, Hamming decoding (i.e.,
LB-0/1) is not suitable for OvR decomposition. With
the help of our decoding strategy, the improved version
ILW-0/1 of Hamming decoding can achieve compara-
ble performance against “Max. Conf.” in terms of both
evaluation metrics. These experimental results can also
be regarded as another evidence for the effectiveness of
instance-specific loss-weighted decoding.

• It is also worth noting that ILW-Exp achieves supe-
rior performance against ILW-0/1. As discussed in Sec-
tion IV-B2, loss function generally has no significant
influence on the final performance for different ECOC
versions. But for softmax regression in this section, zero-
one loss is not recommended.

VI. CONCLUSION

In this paper, we propose to consider the instance-specific
generalization performance of each decomposed binary clas-
sifier for loss-weighted decoding, leading to the instance-
specific loss-weighted decoding strategy. Experiments validate
the effectiveness of the proposed decoding strategy, when
loss function is exponential loss that is the most commonly-
used in loss-based decoding as well as the zero-one loss
which is also commonly used (i.e., Hamming decoding) but
is rarely mentioned explicitly. We also propose to apply the
proposed instance-specific loss-weighted decoding for softmax
regression which can be regarded as working based on OvR
decomposition. Experiments show that the performance of
softmax regression can indeed be further improved with our
proposed decoding strategy.

There are at least two issues that can be further explored.
From the algorithm level, one limitation of the proposed
decoding strategy is that the instance-specific generalization
performance is still estimated with binary-valued prediction
for the proposed decoding strategy. In the future, real-valued
predicted confidences can be exploited for the estimation.
From the application level, we are in the era of deep learn-
ing, since the output layer in neural networks for multi-
class classification usually takes the same working mechanism
with softmax regression, it is very interesting to investigate
whether the proposed decoding strategy can still improve the
performance of neural network-based models.
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