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Multi-label Classification with High-rank and
High-order Label Correlations

Chongjie Si, Yuheng Jia, Member, IEEE , Ran Wang, Senior Member, IEEE , Min-Ling
Zhang, Senior Member, IEEE , Yanghe Feng, Chongxiao Qu

Abstract—Exploiting label correlations is important to multi-label classification. Previous methods capture the high-order label
correlations mainly by transforming the label matrix to a latent label space with low-rank matrix factorization. However, the label matrix
is generally a full-rank or approximate full-rank matrix, making the low-rank factorization inappropriate. Besides, in the latent space, the
label correlations will become implicit. To this end, we propose a simple yet effective method to depict the high-order label correlations
explicitly, and at the same time maintain the high-rank of the label matrix. Moreover, we estimate the label correlations and infer model
parameters simultaneously via the local geometric structure of the input to achieve mutual enhancement. Comparative studies over
twelve benchmark data sets validate the effectiveness of the proposed algorithm in multi-label classification. The exploited high-order
label correlations are consistent with common sense empirically. Our code is publicly available at
https://github.com/Chongjie-Si/HOMI.

Index Terms—High-rank matrix approximation, high-order label correlations, multi-label classification.
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1 INTRODUCTION

R ECENTLY, multi-label classification has attracted a lot
of attention, aiming to solve real-world tasks with rich

semantics [1], [2], [3], [4]. Specifically, in multi-label classifi-
cation, one instance may be associated with several labels.
For example, an image may be associated with a set of tags
[5], and a piece of news may belong to several topics. Differ-
ent from the traditional single-label classification problem
which can be regarded as a degenerated version of multi-
label classification, the overwhelming size of output space
makes multi-label classification a much more challenging
task.

Exploiting label correlations is of great importance, as
label correlations can provide valuable semantic relation-
ship for the output of multi-label classification. For instance,
if two labels, “rainforest” and “soccer” are assigned to a
sample, then the label “Brazil” may be also assigned to
it. Similarly, if “teacher” and “blackboard” are present, it
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is very likely that label “classroom” will also be present.
Based on how to explore the label correlations, multi-label
classification methods can be roughly divided into three
families: first-order, second-order and high-order. For first-
order methods, the label correlations are not considered. For
example, binary relevance (BR) [5] transformed multi-label
classification into a set of independent binary classification
problems and solved them separately. The second-order
methods take the pairwise relationship of labels into consid-
erations. For example, multi-label classification with Label
specIfic FeaTures (LIFT) [6] employed clustering techniques
to find second-order correlations between labels. However,
in real-world scenarios, the label correlations may be much
more complex than first-order and second-order relations.
To this end, many high-order label correlations exploit-
ing methods were proposed. For example, classifier chains
(CC) [7] transformed the multi-label classification into a
chain of binary classification problems. Random-k-labelsets
(RAKEL) [8] converted multi-label classification into a set of
multi-class classification problems over k randomly-chosen
class labels. Some approaches assumed the labels were
correlated in a hierarchical structure [9]. All the mentioned
approaches specify the high-order correlations of labels
manually, which will depress the classification performance
if the manual setting is inappropriate.

Recently, some high-order approaches were proposed
to automatically explore the high-order label correlations
[10], [11]. They generally decomposed the label matrix to
a latent space by low-rank matrix factorization [12], and
then assumed the latent labels may capture the higher level
semantic concepts [13]. However, as can be seen from Table 1,
the rank of the label matrix usually equals to or approximately
equals to the number of labels, which means the label matrix is
full-rank or approximate full-rank, making the low-rank matrix
assumption inappropriate. Besides, in the latent space, the label
correlations become indirect and semantically unclear.

https://github.com/Chongjie-Si/HOMI
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TABLE 1. The rank of the label matrix on some commonly used multi-label data sets.

Data set mediamill CAL500 emotions enron bibtex delicious language log birds yeast scene corel5k corel16k
Number of labels 101 174 6 53 159 983 75 19 14 6 374 153

Number of samples 43097 502 593 1702 7395 16105 1460 645 2417 2407 5000 13766
Size of label matrix 43907×101 502×174 593×6 1702×53 7395×159 16105×983 1460×75 645×19 2417×17 2407×6 5000×374 13766×153

Rank of label matrix 100 174 6 52 159 983 75 19 14 6 371 153

To solve these issues, in this paper, we propose a novel
approach called HOMI, with High-Rank and High-Order
MultI-Label learning. Specifically, we argue that if a label
is highly correlated to a set of other labels, it can be
easily reconstructed by the linear combination of that set
of labels. Therefore, we propose to use self-representation
to exploit the high-order label correlations for multi-label
classification. Note that it can keep the rank of the label
matrix unchanged and indicate the high-order correlations
among labels explicitly. Moreover, the local geometric struc-
ture is also beneficial to multi-label classification, as if two
samples are similar to each other in the feature space, they
are likely to share similar labels. Here, we adopt an s-
nearest-neighbors (SNN) graph to depict the local geometric
structure of the input samples and incorporate the local
geometric structure by a graph Laplacian regularization.
Besides, the proposed approach naturally unifies high-order
label correlations learning and multi-label prediction into
a joint model via the graph Laplacian regularization, such
that those two separate processes can be well interacted
with each other to achieve mutual enhancement. Compre-
hensive experiments substantiate that HOMI outperforms
the state-of-the-art multi-label classification methods signif-
icantly, and reasonable high-order label correlations can be
constructed by HOMI.

The rest of the paper is organized as follows. We first
review some related works in exploiting label correlations
and explain why the label matrix should be full-rank or
approximate full-rank in multi-label classification in Section
2. Then, we introduce the proposed approach as well as the
numerical solution in Section 3, and present the experimen-
tal results and analysis in Section 4. Finally, conclusion is
given in Section 5.

2 RELATED WORK

2.1 Exploiting Label Correlations in Multi-label Classi-
fication
In multi-label classification, an instance is associated with
a set of labels. In recent years, this new machine learning
paradigm has made great progress and has been widely
used in image classification [14], [15], [16], automatic an-
notation [17], [18], [19], web mining [20], [21], [22], audio
recognition [23], [24], [25], [26] and information retrieval
[27], [28], etc.

However, the task of inducing multi-label classification
functions is challenging, as the classifier’s output space is
exponential in size to the number of possible class labels,
i.e., |2Y |, where Y denotes the number of possible labels.
A useful way to cope with this issue is to exploit label
correlations to simplify the learning procedure. Based on the
degree of label correlations used, the algorithms of multi-
label classification can be divided into three categories [29]:
first-order, second-order and high-order.

First-order methods do not take label correlations into
consideration and assume that all the labels are indepen-
dent. BR [5] is a prevailing first-order approach, transform-
ing the original multi-label classification into a set of inde-
pendent binary classification tasks. ML-KNN [30] is also a
popular first-order algorithm based on k-nearest-neighbour
classification. The major advantage of first-order approaches
is the conceptual simplicity and high efficiency, for they
are easy to understand and operate. Nevertheless, they
ignore the label correlations, which results in performance
degeneration.

Second-order approaches focus on pairwise label re-
lations. For instance, calibrated label ranking (CLR) [31]
and LIFT [6] are two representative approaches, transform-
ing original multi-label classification into pairwise ranking
problems. Second-order approaches are relatively more ef-
fective than first-order ones in exploiting label correlations.
However, in real-world applications, the relationship of
labels may be quite complex and sophisticated, such that the
pairwise relationship cannot describe the real-world label
correlations very well.

High-order approaches aim to dig the high-order la-
bel correlations. CC [7], for instance, converted the multi-
label task into a chain of independent binary classification
problems, with the ground-truth labels decoded into the
features each time. RAKEL [8] reformulated the multi-label
classification into several sets of multi-class classification
tasks.

Recently, some low-rank based approaches proposed to
learn high-order label correlations based on the assumption
that the label matrix is low-rank, for there are correlations
among labels in multi-label classification. For example, Zhu
et al. [10] used low-rank decomposition in multi-label learn-
ing, exploiting global and local label correlations simulta-
neously, through learning a latent label representation and
optimizing label manifolds [32]. Wang et al. [33] controlled
the sparsity of the coefficient matrix to filter out label-
specific features and applied low-rank constraints to the
label matrix to mine the local correlations of class labels.
Xu et al. [34] proposed an integrated framework that learns
the correlations among labels while training the multi-label
model simultaneously, and specifically adopted a low-rank
structure to capture the complex correlations among labels.
Moreover, Yu et al. [35] proposed an approach learning a
linear instance-to-label mapping with low-rank structure,
and implicitly taking advantage of global label correlations.

The general strategy of the above mentioned methods to
capture label semantics is to decompose the label matrix to
a latent label space by low-rank matrix factorization, [36],
[37]. Specifically, denote the label matrix Y ∈ Rn×l, with n
and l being the number of samples and labels, respectively.
The low-rank based approaches usually decompose Y into
two smaller matrices U and V, i.e., Y can be written as the
product
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min
UV

∥Y −UV∥2F , (1)

where V ∈ Rh×l is the latent label matrix exploiting higher
level label semantics, and U ∈ Rn×h is a basis matrix
relating the original labels to the latent labels. As h is smaller
than l and n, the rank of UV is smaller than Y, i.e., Eq. (1)
approximates the label matrix by low-rank factorization.

2.2 Why is the label matrix full-rank?

However, we believe that the label matrix is full-rank or ap-
proximately full-rank, and accordingly the low-rank matrix
assumption is not the best choice for multi-label learning.
The reasons are as follows. First, the size of the label matrix
Y is n × l, as l ≪ n in general, the rank of Y is very
likely to be or close to l. Second, although there are some
connections among labels, the connections are usually not
determinated. For example, if label A is related to label B,
in other words, if A appears on a sample, we can infer that
B has high possibility to be also appeared on that sample.
But we cannot conclude that B will absolutely appear, as
there will always be samples that only have label A or
B. Therefore, those connections cannot reduce the rank of
the label matrix, and likewise cannot result in a low-rank
label matrix. Last but not least, as shown in the Table 1, the
commonly used multi-label data sets are always full-rank or
approximately full-rank, which further empirically validates
that the label matrix of multi-label classification should be
high-rank rather than low-rank.

As a summary, the label matrix in multi-label learning
is usually a full-rank matrix, which cannot be well approx-
imated by low-rank decomposition. Besides, in the latent
space, the label correlations become indirect and semanti-
cally unclear. To solve these issues, in the next section, a
new approach named HOMI is proposed, which can keep
the rank of the label matrix unchanged, and indicate label
correlations directly in the label space.

2.3 Deep-learning Based Multi-label Classification

Due to its robust learning capability, deep learning has
emerged as an important technique for achieving multi-
label classification. In those methods, effectively leveraging
deep learning is critical for capturing intricate label depen-
dencies. To exploit the underlying intricate label structure,
Cisse et al. (2016) proposed ADIOS [38], which employs
a novel deep architecture that partitions the labels into
a Markov blanket chain, capitalizing on this partition to
enhance classification performance. Wang et al. (2016) in-
troduced CNN-RNN [39], which leverages recurrent neural
networks (RNNs) to better model higher-order label depen-
dencies. CNN-RNN learns a unified image-label embedding
that encapsulates both semantic label dependencies and
image-label relevance. Notably, this approach enables end-
to-end training from scratch. Moreover, Nam et al. proposed
an alternative technique to the traditional classifier chain
method [40]. Their approach employs RNNs to convert the
MLC problem into a sequential prediction task, with initially
arbitrary label ordering. This method offers the advantage

of focusing on predicting positive labels exclusively, sig-
nificantly reducing the prediction space compared to the
complete set of labels.

These methodologies exemplify diverse strategies for
harnessing deep learning in MLC, each addressing label de-
pendencies through distinctive means. However, different
from these methods, HOMI explicitly reveals the label de-
pendency based on the full-rank assumption, which further
improves the MLC problem.

3 THE PROPOSED APPROACH

Motivated by the fact that the label matrix is generally full-
rank, in this section, we introduce HOMI to exploit the high-
order label correlations for multi-label classification. Prior
to that, we first briefly summarize the notations used in
this paper. Formally, let X = Rm denote the m-dimensional
feature space and Y = {c1, c2, .., cl} denote the label space
of l labels, where ci ∈ {0, 1} stands for the ith label,
multi-label classification learns a function f : X → 2Y

from the training data set D = {(xi,yi)|1 ≤ i ≤ n},
where xi stands for the ith instance and yi stands for the
corresponding label set, and n is the number of instances.
Let X = [x1,x2, ...,xn]

T ∈ Rn×m denote the instance
matrix and Y = [y1,y2, ...,yn]

T ∈ {0, 1}n×l denote the
label matrix with l labels. Note that the value of the labels
is binary, and we have yi = [yi1, yi2, ..., yil] where yij = 1
(resp. yij = 0) if the sample xi has (resp. does not have) the
jth label.

3.1 Basic Model

First, HOMI uses a weight matrix W = [w1,w2, ...,wl] ∈
Rm×l to map the instance to the labels by minimizing the
following least squares loss:

min
W,z

∥Y −XW − 1nz
T∥2F + λ(∥W∥2F + ∥z∥22), (2)

where ∥ · ∥F and ∥ · ∥2 stand for the Frobenius norm
and ℓ2 norm of a matrix and a vector, respectively. z =
[z1, z2, ..., zl]

T ∈ Rl is the bias term and 1n ∈ Rn is an all
one vector. The first term in Eq. (2) measures the predictive
error of the model, and the second term is the regularization
of the weight matrix W and the bias z, trying to control
the complexity of the whole model, and λ ≥ 0 is a hyper-
parameter to balance those two terms.

3.2 Exploiting High-Order Label Information

As mentioned earlier, if a label is highly correlated with
other labels, it can be easily reconstructed by those labels.
Thus, we propose to adopt the self-representation strategy
to dig the high-order correlations between labels, which can
be mathematically formulated as

min
B,t

∥Y −YB− 1nt
T∥2F + λ(∥B∥2F + ∥t∥22), (3)

where B ∈ Rl×l records the high-order label correlations,
and similar to Eq. (2), t ∈ Rl is the bias term for better self-
regression. We also introduce an additional penalty term on



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

B and t to avoid the trivial solution (i.e., B = I with I being
an identity matrix) and over-fitting.

The previous methods use low-rank matrix factoriza-
tion to decompose the label matrix Y to a latent space
to exploit the high-order correlations, however, the label
matrix is usually a full-rank matrix. Technically, this is
because although correlations exist in labels, the correlated
labels also have a chance to exist alone on some sam-
ples. Table 1 also empirically verifies this observation. The
full-rank property of the label matrix makes the low-rank
factorization-based methods unreasonable. Differently, the
adopted self-representation approach can keep the rank of
label matrix unchanged [41]. Moreover, in the latent space,
the label correlations can only be captured implicitly, while
on the contrary, the elements in B can explicitly indicate the
correlations between two labels.

3.3 Incorporating Local Geometric Structure

HOMI also takes the local geometric structure of instances
into consideration, i.e., if xi is similar to xj , the predictive
label sets of them may have some labels in common. Specif-
ically, we first calculate the Pearson correlation coefficient of
samples, i.e.,

Rij =
Cov(xi,xj)

σxi
σxj

,

where Cov(xi,xj) is the covariance of xi and xj , and σxi

is the standard deviation of xi. Afterwards, we construct
an s-nearest-neighbors graph to capture the local geometric
structure of the input, i.e.,

Sij =

{
Rij if(i, j) ∈ Nsi

0 otherwise
, (4)

where Nsi is the set of s nearest instances of the ith instance,
and we choose the ones with the top s values of Rij of
the ith sample as its neighbors. Then, the local geometric
structure is incorporated by minimizing∑

i,j

Sij∥g(xi)− g(xj)∥
2
2 = tr(KTLK), (5)

where L = Q − S is the graph Laplacian matrix with
Q being the diagonal degree matrix of S. In order to
learn the local structural information more reasonably, we
make L symmetric, i.e., L = 1

2 (L + LT). g is the dis-
criminative function, i.e. g(xi) = (xiW + zT)B + tT,
which takes the high-order label correlations into account.
K = [g(x1),g(x2), ...,g(xn)]

T ∈ Rn×l (i.e. K = (XW +
1nz

T)B + 1nt
T). If Eq. (5) is minimized, two similar in-

stances will have similar predictive label sets.

3.4 Model Formulation

Based on the above discussion, the objective function of
HOMI is finally formulated as

min
W,B,z,t

∥Y −XW − 1nz
T∥2F + γtr(KTLK)

+ β∥Y −YB− 1nt
T∥2F + λ(∥W∥2F

+ ∥z∥22 + ∥B∥2F + ∥t∥22),

(6)

where γ, β, and λ denote different hyper-parameters to
balance different terms. As will be illustrated in the exper-
iments, HOMI is quite robust to those hyper-parameters. It
is also worth pointing out that HOMI integrates high-order
correlations exploitation and model prediction into a joint
model via the graph Laplacian regularization term. It is able
to simultaneously enhance those two processes via the joint
learning.

3.5 Prediction

For an unseen instance x, the discriminative function g of
HOMI is obtained by

g(x) = (xW + zT)B+ tT, (7)

and the predictive label set is obtained by

ypre = f(x) = {ci|gi(x) > 0.5, 1 ≤ i ≤ l}, (8)

where gi(x) is the ith element of g(x).

3.6 Numerical Solution to Eq. (6)

The problem in Eq. (6) is not convex in all the variables
together, but it is convex to each variable with the remaining
variables fixed. Therefore, we solved it by the following
alternating optimization procedure.
Update W With fixed B, z and t, Eq. (6) becomes:

min
W

∥Y −XW − 1nz
T∥2F + γtr(KTLK) + λ∥W∥2F . (9)

Taking the gradient of Eq. (9) w.r.t. W, we have

∇W = XT(XW + 1nz
T −Y) + λW

+γXTL(XWB+ 1nz
TB+ 1nt

T)BT.
(10)

The optimal solution of Eq. (9) is achieved when ∇W = 0,
and accordingly we have the following Sylvester equation

AW +WE = Q (11)

where A = 1
γ (X

TLX)−1(XTX + λI), E = BBT,

Q = 1
γ (X

TLX)−1(XTY − XT1nz
T − γXTL1nt

TBT −

γXTL1nz
TBBT), which can be efficiently solved according

to [42].
Update B Fixing W,z and t, the B-subproblem becomes

min
B

β∥Y −YB− 1nt
T∥2F + γtr(KTLK) + λ∥B∥2F ,

which is a quadratic optimization problem, and the solution
is obtained by setting its derivative to 0, i.e.,

B =(βYTY + λI+ γ(WTXT + z1n
T)L(XW + 1nz

T))−1

(βYTY − βYT1nt
T − γ(WTXT + z1n

T)L1nt
T).

(12)

Update z With fixed W, B and t, the z-subproblem is re-
written as

min
z

∥Y −XW − 1nz
T∥2F + γtr(KTLK) + λ∥z∥22,
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which is also a quadratic optimization problem, and the op-
timal solution is achieved when the derivative approaches
zero, i.e.,

z = ((n+ λ)I+ γ1n
TL1nBBT)−1(YT1n −WTXT1n

− γB(BTWTXT + t1n
T)L1n).

(13)

Update t With other variables fixed, the t-subproblem is
reformulated as

min
t

β∥Y −YB− 1nt
T∥2F + γtr(KTLK) + λ∥t∥22,

which is also a quadratic optimization problem, and the
solution of it is achieved when ∇t = 0, i.e.,

t =
1

(βn+ γ1n
TL1n + λ)

(βYT1n

− βBTYT1n − γBT(WTXT + z1n
T)L1n).

(14)

In summary, HOMI first randomly initialize W,B, z, t,
and then iteratively and alternatively update these four
variables. The iteration stops when the difference between
two consecutive loss is less than 0.001. Finally the label set
ypre for an unseen x is predicted according to Eq. (8). The
whole schedule is concluded in algorithm 1.

Algorithm 1 HOMI.

Require: Training data set D; s; β; γ; λ, max iteration
number iter; an unseen instance x.

Ensure: Predicted label set ypre for x.
1: Initialize W,B, z, t to 0;
2: Calculate L by Eqs. (4)-(5);
3: Repeat:
4: Update W according to Eq. (11);
5: Update B according to Eq. (12);
6: Update z according to Eq. (13);
7: Update t according to Eq. (14);
8: If number of iteration ≥ iter: break
9: Until Convergence;

10: return ypre according to Eq. (8).

3.7 Complexity Analysis

HOMI iteratively solves four optimization problems. To
solve W, HOMI needs to solve a Sylvester equation, which
can be computed in O(max(m3, l3,mn2,m2n,mnl));
the rest three optimization problems are all quadratic
optimization problems with the complexity of
O(max(l2n, lmn, l3)), O(max(l3, lmn, n2)) and
O(max(l3, lmn, n2)). In summary, the overall complexity of
HOMI is O(max(m3, l3,mn2,m2n,mnl)) in one iteration.

3.8 Convergence Analysis

The proposed numerical solution in Algorithm 1 is
guaranteed to converge theoretically. Specifically, define
the optimal function in Eq. (6) as F , the problem in
Eq. (6) is not convex in all the variables together,
but it is convex to each variable with the remaining
variables fixed. Therefore, we solved it by an alternating
optimization procedure. Specifically, we transform the

original problem into four subproblems, where each
subproblems can be solved efficiently. We need to
minimize F (W,B, z, t) with four variables W,B, z
and t. We transform the original problem into four
subproblems minW F (W,B, z, t), minB F (W,B, z, t),
minz F (W,B, z, t) and mint F (W,B, z, t) and solve
them alternatively and iteratively. When solving the W-
subproblem minW F (Wk−1,Bk−1, zk−1, tk−1) at the kth
iteration, the variables Bk−1, zk−1, tk−1 are fixed, and we
try to find optimal Wk to minimize the corresponding func-
tion value. It is obvious that F (Wk−1,Bk−1, zk−1, tk−1) ≥
F (Wk,Bk−1, zk−1, tk−1). Similarly, when solving the
B-subproblem minB F (Wk,Bk−1, zk−1, tk−1) at the
kth iteration, the variables Wk, zk−1, tk−1 are fixed,
and F (Wk,Bk−1, zk−1, tk−1) ≥ F (Wk,Bk, zk−1, tk−1),
and the same to zk and tk. Therefore, we can get
F (Wk−1,Bk−1, zk−1, tk−1) ≥ F (Wk,Bk, zk, tk), i.e., in
each iteration, the value of the loss function is decreased.
As the loss function has a lower bound (F ≥ 0), the above
alternating algorithm will surely be converged.

4 EXPERIMENTS

4.1 Data Sets
In this section, comparative studies were conducted on
twelve commonly used benchmark multi-label data sets.
Table 2 summarizes the detailed characteristics of each data
set D, with the number of examples (n), the dimension
of features (m), the number of class labels (l), label cardi-
nality, i.e., average number of relevant labels per example
(LCard(D)), label density, i.e. label cardinality over the
number of class labels (LDen(D)), and number of distinct
label sets (DL(D)) in D. Those data sets are publicly avail-
able at https://mulan.sourceforge.net/datasets-mlc.html

4.2 Compared Methods
We compared HOMI with the following ten state-of-the-art
multi-label classification approaches.

• ECC (Ensemble of classifier chains) [7] is an
ensemble-based multi-label classification approach,
building an ensemble of N classifier chains to solve
multi-label classification. [hyper-parameter configu-
ration: N = 5];

• BR [5] is a classical algorithm in multi-label classifi-
cation, trying to decompose the original multi-label
classification task into a set of binary classification
tasks. [hyper-parameter C = 1];

• ML-KNN [30] is a popular first-order multi-label
learning algorithm based on k-nearest-neighbour
classification. [hyper-parameter configuration: k=10];

• WRAP [43] tires to generate label specific features
in an embedded feature space to deal with multi-
label classification. [hyper-parameter configuration:
step size = 1, λ = 0.1, α = 0.9, d = αmin(m, l)];

• MLSF [44] generates label-specific features by ana-
lyzing local and global feature-to-label correlations.
[hyper-parameter configuration: K = l/10, ϵ = 0.01, α
= 0.8, γ = 0.01];

• LFLC [45] generates label tailored features by ana-
lyzing local and global feature-to-label correlations.

https://mulan.sourceforge.net/datasets-mlc.html
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TABLE 2. Characteristics of the experimental data sets.

Data set n m l LCard(D) LDen(D) DL(D) Domain
mediamill 43097 120 101 4.376 0.043 6555 video
CAL500 502 68 174 26.044 0.150 502 music
emotions 593 72 6 1.869 0.311 27 music

enron 1702 1001 53 3.378 0.064 753 text
bibtex 7395 1836 159 2.402 0.015 2856 text

delicious 16105 500 983 19.020 0.019 15806 text
language log 1460 1004 75 1.180 0.016 286 text

birds 645 260 19 1.014 0.053 133 audio
yeast 2417 103 14 4.237 0.303 198 biology
scene 2407 294 6 1.074 0.179 15 images

corel5k 5000 499 374 3.52 0.009 3175 images
corel16k 13766 500 153 2.859 0.019 4803 images

TABLE 3. The comparison of different methods on all the data sets with respect to Hamming Loss. • / ◦ indicates whether HOMI
is superior or same / inferior to the compared algorithm.

Hamming loss ↓
Approach mediamill CAL500 emotions enron bibtex delicious language log birds yeast scene corel5k corel16k1

ECC 0.031 ± 0.000 • 0.147 ± 0.002 • 0.226 ± 0.011 • 0.050 ± 0.001 • 0.013 ± 0.000 • 0.019 ± 0.000 • 0.015 ± 0.001 • 0.050 ± 0.004 ◦ 0.211 ± 0.008 • 0.122 ± 0.003 • 0.010 ± 0.000 • 0.020 ± 0.000 •
BR 0.029 ± 0.000 • 0.165 ± 0.005 • 0.207 ± 0.021 • 0.061 ± 0.002 • 0.016 ± 0.000 • 0.018 ± 0.000 • 0.019 ± 0.001 • 0.070 ± 0.010 • 0.202 ± 0.006 • 0.131 ± 0.005 • 0.011 ± 0.000 • 0.019 ± 0.000 •

ML-KNN 0.029 ± 0.001 • 0.147 ± 0.003 • 0.200 ± 0.007 ◦ 0.055 ± 0.002 • 0.015 ± 0.000 • 0.019 ± 0.000 • 0.051 ± 0.003 • 0.051 ± 0.006 • 0.199 ± 0.008 ◦ 0.086 ± 0.005 ◦ 0.010 ± 0.000 • 0.020 ± 0.000 •
WRAP 0.030 ± 0.000 • 0.136 ± 0.002 • 0.200 ± 0.007 ◦ 0.047 ± 0.001 ◦ 0.012 ± 0.000 • 0.019 ± 0.000 • 0.015 ± 0.001 • 0.045 ± 0.048 0.199 ± 0.005 ◦ 0.110 ± 0.006 ◦ 0.009 ± 0.000 • 0.019 ± 0.001 •
MLSF 0.030 ± 0.000 • 0.138 ± 0.004 • 0.224 ± 0.021 • 0.051 ± 0.001 • 0.012 ± 0.000 • 0.028 ± 0.000 • 0.015 ± 0.001 • 0.050 ± 0.003 ◦ 0.210 ± 0.005 • 0.128 ± 0.007 • 0.009 ± 0.000 • 0.019 ± 0.000 •
LFLC 0.030 ± 0.000 • 0.136 ± 0.004 • 0.197 ± 0.004 ◦ 0.046 ± 0.001 ◦ 0.012 ± 0.000 • 0.024 ± 0.000 • 0.015 ± 0.001 • 0.045 ± 0.003 ◦ 0.197 ± 0.004 ◦ 0.107 ± 0.005 ◦ 0.009 ± 0.000 • 0.019 ± 0.000 •
BILAS 0.029 ± 0.001 • 0.138 ± 0.000 • 0.233 ± 0.000 • 0.045 ± 0.000 ◦ 0.011 ± 0.000 • 0.044 ± 0.000 • 0.018 ± 0.002 • 0.052 ± 0.000 • 0.198 ± 0.000 ◦ 0.097 ± 0.000 ◦ 0.009 ± 0.000 • 0.018 ± 0.000 •

GLOCAL 0.045 ± 0.000 • 0.143 ± 0.008 • 0.323 ± 0.020 • 0.064 ± 0.001 • 0.014 ± 0.000 • 0.022 ± 0.002 • 0.018 ± 0.000 • 0.097 ± 0.004 • 0.300 ± 0.003 • 0.179 ± 0.000 • 0.009 ± 0.000 • 0.019 ± 0.001 •
ML-LRC 0.042 ± 0.000 • 0.150 ± 0.003 • 0.273 ± 0.006 • 0.050 ± 0.013 • 0.010 ± 0.000 • 0.019 ± 0.000 • 0.072 ± 0.004 • 0.055 ± 0.006 • 0.296 ± 0.003 • 0.138 ± 0.002 • 0.009 ± 0.000 • 0.019 ± 0.000 •

CLML 0.049 ± 0.001 • 0.192 ± 0.006 • 0.315 ± 0.011 • 0.051 ± 0.002 • 0.016 ± 0.000 • 0.027 ± 0.001 • 0.020 ± 0.002 • 0.046 ± 0.005 ◦ 0.304 ± 0.005 • 0.179 ± 0.003 • 0.015 ± 0.000 • 0.019 ± 0.000 •
HOMI 0.029 ± 0.000 0.135 ± 0.001 0.205 ± 0.023 0.049 ± 0.012 0.009 ± 0.000 0.018 ± 0.000 0.015 ± 0.000 0.051 ± 0.006 0.200 ± 0.005 0.112 ± 0.005 0.009 ± 0.000 0.018 ± 0.000

TABLE 4. The comparison of different methods on all the data sets with respect to Ranking Loss. • / ◦ indicates whether HOMI
is superior or same / inferior to the compared algorithm.

Ranking loss ↓
Approach mediamill CAL500 emotions enron bibtex delicious language log birds yeast scene corel5k corel16k1

ECC 0.092 ± 0.002 • 0.214 ± 0.007 • 0.183 ± 0.017 • 0.088 ± 0.005 • 0.088 ± 0.002 • 0.141 ± 0.002 ◦ 0.112 ± 0.011 ◦ 0.097 ± 0.008 ◦ 0.202 ± 0.009 • 0.138 ± 0.004 • 0.148 ± 0.003 • 0.180 ± 0.002 •
BR 0.036 ± 0.000 ◦ 0.180 ± 0.006 • 0.162 ± 0.014 ◦ 0.085 ± 0.004 • 0.086 ± 0.003 • 0.121 ± 0.001 ◦ 0.113 ± 0.004 ◦ 0.104 ± 0.007 ◦ 0.174 ± 0.011 • 0.115 ± 0.013 • 0.123 ± 0.004 ◦ 0.162 ± 0.002 •

ML-KNN 0.046 ± 0.000 • 0.220 ± 0.005 • 0.214 ± 0.009 • 0.111 ± 0.003 • 0.252 ± 0.006 • 0.166 ± 0.002 0.156 ± 0.006 • 0.125 ± 0.023 • 0.221 ± 0.007 • 0.105 ± 0.007 ◦ 0.149 ± 0.004 • 0.196 ± 0.001 •
WRAP 0.048 ± 0.001 • 0.175 ± 0.006 ◦ 0.157 ± 0.028 ◦ 0.080 ± 0.006 • 0.102 ± 0.003 • 0.118 ± 0.002 ◦ 0.157 ± 0.015 • 0.088 ± 0.011 ◦ 0.170 ± 0.004 ◦ 0.103 ± 0.006 ◦ 0.142 ± 0.004 ◦ 0.145 ± 0.001 ◦
MLSF 0.054 ± 0.005 • 0.204 ± 0.004 • 0.181 ± 0.014 • 0.084 ± 0.005 • 0.092 ± 0.015 • 0.127 ± 0.002 ◦ 0.118 ± 0.019 ◦ 0.107 ± 0.027 ◦ 0.201 ± 0.008 • 0.122 ± 0.010 • 0.143 ± 0.004 ◦ 0.183 ± 0.006 •
LFLC 0.047 ± 0.001 • 0.177 ± 0.004 ◦ 0.170 ± 0.008 • 0.080 ± 0.007 • 0.098 ± 0.003 • 0.169 ± 0.002 • 0.143 ± 0.013 ◦ 0.086 ± 0.010 ◦ 0.171 ± 0.009 • 0.084 ± 0.006 ◦ 0.162 ± 0.008 • 0.171 ± 0.004 •
BILAS 0.048 ± 0.001 • 0.181 ± 0.000 • 0.217 ± 0.000 • 0.065 ± 0.000 ◦ 0.077 ± 0.003 • 0.129 ± 0.001 ◦ 0.166 ± 0.007 • 0.355 ± 0.000 • 0.162 ± 0.000 ◦ 0.075 ± 0.000 ◦ 0.201 ± 0.004 • 0.172 ± 0.004 •

GLOCAL 0.055 ± 0.009 • 0.182 ± 0.016 • 0.260 ± 0.009 • 0.039 ± 0.004 ◦ 0.093 ± 0.010 • 0.243 ± 0.002 • 0.297 ± 0.004 • 0.293 ± 0.021 • 0.362 ± 0.088 • 0.177 ± 0.004 • 0.227 ± 0.010 • 0.189 ± 0.005 •
ML-LRC 0.206 ± 0.002 • 0.485 ± 0.013 • 0.190 ± 0.023 • 0.106 ± 0.024 • 0.257 ± 0.002 • 0.238 ± 0.004 • 0.336 ± 0.015 • 0.145 ± 0.021 • 0.353 ± 0.015 • 0.110 ± 0.011 • 0.314 ± 0.002 • 0.291 ± 0.003 •

CLML 0.449 ± 0.009 • 0.180 ± 0.005 • 0.197 ± 0.014 • 0.082 ± 0.004 • 0.071 ± 0.003 • 0.135 ± 0.002 ◦ 0.128 ± 0.004 ◦ 0.099 ± 0.022 ◦ 0.356 ± 0.012 • 0.111 ± 0.014 • 0.162 ± 0.004 • 0.282 ± 0.005 •
HOMI 0.043 ± 0.001 0.179 ± 0.005 0.169 ± 0.026 0.078 ± 0.015 0.024 ± 0.000 0.170 ± 0.003 0.147 ± 0.002 0.110 ± 0.016 0.171 ± 0.006 0.108 ± 0.012 0.145 ± 0.002 0.155 ± 0.003

TABLE 5. The comparison of different methods on all the data sets with respect to One-error. • / ◦ indicates whether HOMI is
superior or same / inferior to the compared algorithm.

One-error ↓
Approach mediamill CAL500 emotions enron bibtex delicious language log birds yeast scene corel5k corel16k1

ECC 0.176 ± 0.005 • 0.299 ± 0.042 • 0.312 ± 0.033 • 0.267 ± 0.026 • 0.402 ± 0.015 • 0.467 ± 0.010 ◦ 0.750 ± 0.016 ◦ 0.712 ± 0.035 • 0.262 ± 0.023 • 0.338 ± 0.018 • 0.757 ± 0.014 • 0.693 ± 0.003 •
BR 0.162 ± 0.006 ◦ 0.119 ± 0.045 • 0.268 ± 0.024 ◦ 0.271 ± 0.015 • 0.399 ± 0.011 • 0.343 ± 0.008 ◦ 0.750 ± 0.008 ◦ 0.712 ± 0.045 • 0.233 ± 0.033 0.317 ± 0.030 • 0.667 ± 0.017 ◦ 0.738 ± 0.010 •

ML-KNN 0.182 ± 0.004 • 0.158 ± 0.014 • 0.372 ± 0.004 • 0.468 ± 0.018 • 0.837 ± 0.006 • 0.573 ± 0.012 • 0.905 ± 0.016 • 0.837 ± 0.029 • 0.254 ± 0.023 • 0.317 ± 0.013 • 0.791 ± 0.009 • 0.805 ± 0.007 •
WRAP 0.156 ± 0.003 ◦ 0.113 ± 0.033 • 0.265 ± 0.025 ◦ 0.220 ± 0.021 • 0.363 ± 0.012 • 0.340 ± 0.010 ◦ 0.730 ± 0.032 ◦ 0.660 ± 0.031 ◦ 0.223 ± 0.008 ◦ 0.272 ± 0.008 ◦ 0.621 ± 0.032 ◦ 0.635 ± 0.005 ◦
MLSF 0.193 ± 0.008 • 0.128 ± 0.040 • 0.319 ± 0.021 • 0.283 ± 0.028 • 0.402 ± 0.013 • 0.358 ± 0.009 ◦ 0.755 ± 0.012 ◦ 0.701 ± 0.055 • 0.261 ± 0.022 • 0.345 ± 0.010 • 0.667 ± 0.010 ◦ 0.743 ± 0.019 •
LFLC 0.158 ± 0.004 ◦ 0.120 ± 0.022 • 0.227 ± 0.031 ◦ 0.231 ± 0.009 • 0.351 ± 0.007 • 0.343 ± 0.008 ◦ 0.721 ± 0.025 ◦ 0.656 ± 0.037 ◦ 0.225 ± 0.025 ◦ 0.250 ± 0.023 ◦ 0.631 ± 0.018 ◦ 0.645 ± 0.010 ◦
BILAS 0.166 ± 0.003 • 0.115 ± 0.000 • 0.357 ± 0.000 • 0.233 ± 0.000 • 0.361 ± 0.006 • 0.543 ± 0.013 ◦ 0.877 ± 0.015 • 0.868 ± 0.000 • 0.223 ± 0.000 ◦ 0.229 ± 0.000 ◦ 0.776 ± 0.000 • 0.724 ± 0.003 •

GLOCAL 0.171 ± 0.005 • 0.118 ± 0.001 • 0.432 ± 0.000 • 0.077 ± 0.010 ◦ 0.433 ± 0.031 • 0.672 ± 0.003 • 0.881 ± 0.004 • 0.684 ± 0.008 ◦ 0.319 ± 0.040 • 0.479 ± 0.021 • 0.670 ± 0.220 ◦ 0.644 ± 0.070 ◦
ML-LRC 0.322 ± 0.008 • 0.603 ± 0.048 • 0.291 ± 0.036 • 0.141 ± 0.034 ◦ 0.141 ± 0.007 • 0.403 ± 0.018 ◦ 0.879 ± 0.017 • 0.719 ± 0.031 • 0.368 ± 0.009 • 0.285 ± 0.022 • 0.683 ± 0.015 ◦ 0.674 ± 0.012 •

CLML 0.305 ± 0.011 • 0.115 ± 0.026 • 0.286 ± 0.007 • 0.220 ± 0.014 • 0.348 ± 0.006 • 0.386 ± 0.005 ◦ 0.697 ± 0.015 ◦ 0.721 ± 0.023 • 0.382 ± 0.013 • 0.294 ± 0.020 • 0.635 ± 0.005 ◦ 0.695 ± 0.031 •
HOMI 0.165 ± 0.001 0.099 ± 0.035 0.276 ± 0.052 0.183 ± 0.035 0.132 ± 0.000 0.571 ± 0.002 0.873 ± 0.003 0.699 ± 0.022 0.242 ± 0.016 0.284 ± 0.026 0.691 ± 0.038 0.651 ± 0.009

TABLE 6. The comparison of different methods on all the data sets with respect to Marco-averaging AUC. • / ◦ indicates whether
HOMI is superior or same / inferior to the compared algorithm.

Macro-averaging AUC ↑
Approach mediamill CAL500 emotions enron bibtex delicious language log birds yeast scene corel5k corel16k1

ECC 0.776 ± 0.004 • 0.497 ± 0.013 • 0.815 ± 0.013 ◦ 0.650 ± 0.019 • 0.870 ± 0.004 • 0.702 ± 0.002 • 0.544 ± 0.052 • 0.732 ± 0.050 • 0.650 ± 0.017 • 0.878 ± 0.004 • 0.531 ± 0.018 • 0.658 ± 0.005 •
BR 0.839 ± 0.004 • 0.502 ± 0.007 • 0.826 ± 0.023 ◦ 0.619 ± 0.028 • 0.874 ± 0.003 • 0.738 ± 0.003 • 0.553 ± 0.020 • 0.718 ± 0.051 • 0.629 ± 0.013 • 0.886 ± 0.011 • 0.524 ± 0.015 • 0.673 ± 0.003 •

ML-KNN 0.933 ± 0.000 • 0.691 ± 0.020 • 0.802 ± 0.010 ◦ 0.836 ± 0.032 • 0.938 ± 0.002 • 0.918 ± 0.002 • 0.703 ± 0.027 • 0.847 ± 0.004 • 0.709 ± 0.008 • 0.938 ± 0.007 ◦ 0.790 ± 0.023 • 0.922 ± 0.001 •
WRAP 0.851 ± 0.003 • 0.555 ± 0.011 • 0.835 ± 0.029 ◦ 0.635 ± 0.014 • 0.870 ± 0.004 • 0.755 ± 0.004 • 0.540 ± 0.040 • 0.815 ± 0.041 • 0.688 ± 0.008 • 0.906 ± 0.005 ◦ 0.581 ± 0.010 • 0.744 ± 0.008 •
MLSF 0.842 ± 0.003 • 0.528 ± 0.012 • 0.816 ± 0.020 ◦ 0.503 ± 0.024 • 0.873 ± 0.006 • 0.730 ± 0.004 • 0.558 ± 0.036 • 0.660 ± 0.038 • 0.631 ± 0.008 • 0.892 ± 0.010 ◦ 0.520 ± 0.004 • 0.669 ± 0.007 •
LFLC 0.832 ± 0.007 • 0.553 ± 0.010 • 0.834 ± 0.013 ◦ 0.686 ± 0.028 • 0.875 ± 0.005 • 0.757 ± 0.003 • 0.557 ± 0.004 • 0.835 ± 0.040 • 0.684 ± 0.009 • 0.924 ± 0.005 ◦ 0.568 ± 0.012 • 0.726 ± 0.004 •
BILAS 0.889 ± 0.006 • 0.533 ± 0.000 • 0.758 ± 0.000 • 0.844 ± 0.000 • 0.920 ± 0.004 • 0.796 ± 0.005 • 0.559 ± 0.006 • 0.495 ± 0.000 • 0.650 ± 0.000 • 0.920 ± 0.000 ◦ 0.655 ± 0.037 • 0.686 ± 0.024 •

GLOCAL 0.605 ± 0.009 • 0.509 ± 0.030 • 0.750 ± 0.032 • 0.787 ± 0.022 • 0.825 ± 0.021 • 0.637 ± 0.004 • 0.613 ± 0.023 • 0.513 ± 0.027 • 0.732 ± 0.040 • 0.826 ± 0.004 • 0.518 ± 0.043 • 0.581 ± 0.032 •
ML-LRC 0.957 ± 0.003 • 0.849 ± 0.003 • 0.726 ± 0.006 • 0.949 ± 0.013 • 0.989 ± 0.000 • 0.980 ± 0.001 • 0.927 ± 0.004 • 0.944 ± 0.006 • 0.704 ± 0.000 • 0.861 ± 0.002 • 0.990 ± 0.000 • 0.981 ± 0.000 •

CLML 0.950 ± 0.008 • 0.534 ± 0.010 • 0.684 ± 0.019 • 0.664 ± 0.031 • 0.990 ± 0.000 • 0.980 ± 0.000 • 0.905 ± 0.041 • 0.944 ± 0.008 • 0.695 ± 0.004 • 0.820 ± 0.003 • 0.892 ± 0.014 • 0.981 ± 0.000 •
HOMI 0.969 ± 0.000 0.865 ± 0.006 0.795 ± 0.023 0.950 ± 0.012 0.990 ± 0.000 0.981 ± 0.002 0.985 ± 0.001 0.948 ± 0.006 0.800 ± 0.004 0.887 ± 0.005 0.991 ± 0.000 0.981 ± 0.000

[hyper-parameter configuration: grid search for λ ∈ {1, 3, ..., 19} with step-size 2, η ∈ {1e−10, ..., 1e−5}
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with a multiple of e at each step, β = 104];
• BILAS [46] generates a group of tailored features

for a pair of class labels with heuristic prototype
selection and embedding. [hyper-parameter config-
uration: t=0.1, ratio=0.5];

• GLOCAL [10] uses low-rank factorization to dig the
global and local label correlations at the same time,
through learning a latent label representation and
optimizing label manifolds. [hyper-parameter con-
figuration: λ = 1];

• ML-LRC [33] is a low-rank approach apply-
ing low-rank constraints to the label matrix to
mine the local correlations of class labels. [hyper-
parameter configuration: grid search for α, β ∈
{2−10, 2−9, 2−8, ..., 210}, γ = 0.1 and τ = 0.5];

• CLML [47] is a approach that learns common
and label-specific features based on the cor-
relation information from labels and instances.
[hyper-parameter configuration: grid search for
α, β, λ1, λ2 ∈ {2−10, 2−9, 2−8, ..., 210} with step 22].

In brief, BR [5] and ML-KNN [30] belong to first-order
approaches, BILAS [46] is a second-order approach, and
WRAP [43], ECC [7], GLOCAL [10] and CLML [47] are
high-order approaches. Particularly, GLOCAL and ML-LRC
[33] are two low-rank based approaches. MLSF [44] and LFLC
[45] are two label-specific approaches. The hyper-parameter
configurations for different methods are suggested by their
original papers.

4.3 Experimental Settings
The hyper parameters of HOMI are set as follows: β = 2,
γ = 1, λ = 1, iter = 100 and s = 101. Following [43], five-
fold cross-validation is performed on each data set, with
mean metric and standard deviation recorded.

4.4 Evaluation Metrics
Let C+

i , C−
i be the sets of positive and negative labels

corresponding to the ith instance, and T+
i , T−

i be the sets
of positive and negative instances corresponding to the ith
label, p is the number of the test instances. We chose the fol-
lowing four popular metrics to evaluate the performance of
the proposed method and the methods under comparison.

• Hamming loss (Hloss) evaluates the rate of the mis-
took labels. Hloss = 1

p

∑
i f(xi)∆yi, ∆ stands for the

symmetric difference between two sets, i.e., a∆b = 1
(resp. 0) if a = b (resp. a ̸= b).

• Ranking loss (Rloss) calculates the fraction that a
negative label is ranked higher than a positive
label. Specifically, for instance i, suppose Mi =
{(j′

, j
′′
)|gj′ (xi) ≤ gj′′ (xi), (j

′
, j

′′
) ∈ C+

i × C−
i },

Rloss = 1
p

∑p
i=1

|Mi|
|C+

i ∥C−
i | .

• One-error evaluates the fraction of examples whose
top-ranked label is not in the relevant label set. One-
error = 1

p

∑p
i=1[cargmaxjfj(xi) /∈ yi].

• Average Area Under the ROC Curve (Macro-
averaging AUC) denotes the fraction that a posi-
tive instance is ranked higher than a negative in-
stance averaged over all labels. Suppose Ni =

1. For emotions and bibtex, s is set to be 2.

{(i′ , i′′)|gj(xi′ ) ≥ gj(xi′′ ), (xi′ , xj′′ ∈ T+
j × T−

j )},
Macro-averaging AUC = 1

l

∑l
j=1

|Ni|
|T+

i ∥T−
i | .

For hamming loss, ranking loss and one-error, the lower
the better, while for macro-averaging AUC, the higher the
better. All the metrics lie in the range of [0, 1].

4.5 Experimental Analysis
Tables 3-6 show the experimental results of the proposed
method and the compared baselines on twelve data sets
with respect to four metrics. Additionally, the widely-used
Friedman test [48] is used for statistical analysis of the
performance among all the methods on the benchmark
data sets. Suppose k denotes the number of comparing
algorithms, N denotes the number of data sets and rji
denotes the rank of the jth approach on the ith data set.
Suppose Rj = 1

N

∑N
i=1 r

j
i denotes the average rank of the

jth method on all the data sets. The Friedman statistic FF ,
which is distributed according to the F -distribution with
(k − 1) numerator degrees of freedom and (k − 1)(N − 1)
denominator degrees of freedom, is defined as

FF =
(N − 1)X 2

F

N(k − 1)−X 2
F

,

where

X 2
F =

12N

k(k + 1)
(

k∑
j=1

R2
j −

k(k + 1)2

4
).

Table 7 reports the detailed statistics over all evalua-
tion metrics as well as the related critical value at 0.05
significance level for HOMI (k = 11, N = 12). We can
observe that the FF value is larger than the critical value
w.r.t. all evaluation metrics. Therefore, the null hypothesis of
equal performance among comparing approaches is clearly
rejected.

Evaluation Metric FF Critical Value
Hamming Loss 6.0589

1.9178
Ranking Loss 6.8014

One-error 7.2527
Macro-averaging AUC 10.1662

TABLE 7. Friedman test statistics over each evaluation metrics
and the critical value at 0.05 significance level (k = 11, N = 12).

In order to verify whether HOMI significantly outper-
forms other algorithms, we employ Holm’s procedure [48] as
the post-hoc test by treating HOMI as the control approach.
Without loss of generality, we take HOMI as the first com-
paring approach A1, and for the other k− 1 approaches, we
let Aj (2 ≤ j ≤ k) denote the one with the (j − 1)th largest
average rank. Then, the test statistic for comparing A1 and
Aj is defined as follows:

zj = (R1 −Rj)/

√
k(k + 1)

6N
(2 ≤ j ≤ k),

Accordingly, let pj denote the p-value of zj under normal
distribution, and the Holm’s procedure sequentially checks
whether pj is below α/(k − j + 1) in ascending order of
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j at significance level α. Specifically, the Holm’s procedure
is supposed to terminate at j∗ where j∗ is the first j that
satisfying pj ≥ α/(k − j + 1)2. Then HOMI is deemed to
perform significantly different compared with Aj where j ∈
{2, ..., j∗ − 1}.

Table 8 reports the statistics by taking Holm’s procedure
as post-hoc test at 0.05 significance level, where HOMI is
treated as the control approach. We can have the following
observations based on the experimental results:

TABLE 8. Comparison of HOMI against other comparing ap-
proaches with Holm’s procedure w.r.t. all evaluation metrics at
significance level α = 0.05

Hamming Loss
j approach zj pj α/k − j + 1
2 CLML -4.801 1.582e-6 0.005
3 GLOCAL -4.308 1.645e-4 0.006
4 BR -3.261 1.106e-3 0.006
5 ML-LRC -3.200 1.372e-3 0.007
6 ECC -3.077 2.088e-3 0.008
7 ML-KNN -2.646 8.133e-3 0.010
8 MLSF -2.646 8.133e-3 0.013
9 WRAP -1.600 1.095e-1 0.017
10 BILAS -1.538 1.238e-1 0.025
11 LFLC -0.677 4.984e-1 0.050

Ranking Loss
j approach zj pj α/k − j + 1
2 ML-LRC -4.185 2.850e-5 0.005
3 GLOCAL -3.508 4.513e-4 0.006
4 ML-KNN -2.646 8.133e-3 0.006
5 CLML -1.846 6.483e-2 0.007
6 ECC -1.784 7.428e-1 0.008
7 MLSF -1.354 1.757e-1 0.010
8 BILAS -1.107 2.679e-1 0.013
9 LFLC -0.430 6.665e-1 0.017
10 BR 0.123 1.000 0.025
11 WRAP 0.492 1.000 0.050

One-error
j approach zj pj α/k − j + 1
2 ML-KNN -3.754 1.738e-4 0.005
3 ECC -2.277 2.277e-2 0.006
4 MLSF -2.154 3.123e-2 0.006
5 GLOCAL -1.907 5.641e-2 0.007
6 ML-LRC -1.723 8.483e-1 0.008
7 BILAS -1.354 1.757e-1 0.010
8 CLML -0.861 3.889e-1 0.013
9 BR -0.800 4.237e-1 0.017
10 LFLC 1.107 1.000 0.025
11 WRAP 1.538 1.000 0.050

Macro-averaging AUC
j approach zj pj α/k − j + 1
2 GLOCAL -5.046 4.494e-7 0.005
3 ECC -5.046 4.494e-7 0.006
4 BR -4.615 3.913e-6 0.006
5 MLSF -4.554 5.254e-6 0.007
6 WRAP -3.200 1.372e-3 0.008
7 BILAS -3.077 2.089e-3 0.010
8 LFLC -2.831 4.638e-3 0.013
9 CLML -2.154 3.123e-2 0.017
10 ML-KNN -1.354 1.757e-1 0.025
11 ML-LRC -1.292 1.962e-1 0.050

• HOMI performs better than all the first-order and
second-order methods. For example, HOMI per-
forms significantly better than BR according to Table
8. It performs nearly 2 times better than BR on bibtex
in average with respect to hamming loss, 1.6 times
better than BILAS with respect to macro-averaging

2. If pj < α/(k − j + 1) holds for all j, j∗ is set to be k + 1.

AUC on CAL500, and more than 6 times better
than ML-KNN on bibtex with respect to one-error,
which validates the importance of involving high-
order information.

• HOMI also significantly outperforms all the high-
order methods including the low-rank based ap-
proaches. Specifically, the improvements of HOMI
over GLOCAL and ML-LRC are significant accord-
ing to Table 8, which are two state-of-the-art multi-
label classification methods based on low-rank fac-
torization. For example, HOMI performs nearly 2
times better than GLOCAL on corel16k001 regarding
macro-averaging AUC and nearly 4 times better w.r.t.
ranking loss on bibtex. It outperforms ML-LRC more
than 2 times on CAL500 w.r.t. ranking loss. This
observation verifies the rationality of our basic assumption
that the label matrix of multi-label classification should be
high-rank rather than low-rank.

• LFLC and BILAS perform well on scene, while they
are not apt to deal with enron and bibtex. Besides,
LFLC performs well on emotions, but does not on
mediamill. However, HOMI is adept in almost all
kinds of data set especially on text and image data
sets, which validates the robustness of HOMI to
different types of data sets.

• HOMI is also robust to different evaluation met-
rics compared with the other approaches. HOMI
achieves especially outstanding performance on
macro-averaging AUC, for it enables positive labels
to rank higher than negative ones effectively.

• The performance of WRAP and LFLC seems com-
parable to HOME with respect to the Hamming
Loss and the One-error, while HOMI is obvious
superior to the other methods with respect to the
Macro-averaging AUC. The reason is that HOMI
uses self-representation to exploit the high-order la-
bel correlations while keeping the label matrix full-
rank, leading to more effective label-wise discrimina-
tion and aggregation. Therefore, HOMI outperforms
the other two methods significantly w.r.t. Macro-
averaging AUC.

• In general, HOMI performs superior or at least com-
parable to the other algorithms in 85%, 71.7%, 65.8%,
90.8% cases in terms of hamming loss, ranking loss,
one-error and macro-averaging AUC which validates
that HOMI is a promising approach in multi-label
classification.

The success of HOMI is partially credited to the infor-
mation of high-order label correlations exploited from label
space, and partially credited to the incorporation of the local
geometric structure of instances to achieve joint learning of
high-order label correlations and model prediction.

4.6 Further Analysis

4.6.1 High-order correlations exploited by HOMI

HOMI exploits high-order information during the training
process. In order to know what information HOMI has
learned, we recorded the high-order correlation matrix B
trained on emotions. Emotions is a multi-label data set that
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Fig. 1: (a) The normalized matrix B learned by HOMI on emotions data set. Redder color block represents larger value, while
greener color block represents smaller value. (b) Label correlations based on matrix B. The green line between two labels indicates
that the two labels are negatively correlated, while red one indicates those are positively related, and yellow one means that the
correlation is uncertain or very weak. (c) Russell’s emotion circumplex [49]. The large solid circles represent the labels in data set
emotions, and the small dotted circles represent other representative emotions do not exist in the emotions data set.
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Fig. 2: Usefulness of high-order information. The bar in each sub-figure stands for the value of each metric on different data sets
based on the left y-axis. The black vertical line on the top of the bars denotes the standard deviation on each metric. The green
line in each sub-figure stands for the proportion of improvement based on the right y-axis.
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Fig. 3: Effectiveness of joint learning. The bar in each sub-figure stands for the value of each metric on different data sets based
on the left y-axis. The black vertical line on the top of the bars denotes the standard deviation on each metric. The green line in
each sub-figure stands for the proportion of improvement based on the right y-axis.

describes the emotions of different music. It contains six
common emotions, such as happy, relaxing and angry.

Fig. 1(a) shows the matrix B that HOMI learns. The
value of each column represents the contribution of the
corresponding row label to the column label. In order to
better display the learned high-order label correlations,
the matrix is normalized, and the relationships among
labels extracted from B is visually represented in Fig.
1(b). It is obvious that the diagonal element of B is
large, which means in prediction, a label should be dom-
inated by itself. Moreover, it should also be influenced

by correlated labels. We can clearly observe that label
“relaxing/calm” and “quiet/still” are positively related,
while “amazed/surprised” and “sad/lonely” are nega-
tively correlated, and “happy/pleased” and “sad/lonely”
are negatively correlated, too. Additionally, label “an-
gry/aggressive” has negative contribution to all the other
labels except “amazed/surprised”. Those label correlations
learned by HOMI are consistent with common sense.

We can further verify the correctness and validity of
the excavated higher-order information based on the Rus-
sell’s emotion circumplex theory [49]. Russell thought that
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Fig. 4: Usefulness of local geometric structure. The bar in each sub-figure stands for the value of each metric on different data sets
based on the left y-axis. The black vertical line on the top of the bars denotes the standard deviation on each metric. The green
line in each sub-figure stands for the proportion of improvement based on the right y-axis.
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Fig. 5: Sensitivity analysis. The value of macro-averaging AUC is based on the right y-axis, while the other three metrics are based
on the left one.
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Fig. 6: Convergence Curve.

emotions can be measured in two dimensions, i.e., plea-
sure–displeasure and degree-of-arousal. We show a sim-
plified Russell’s emotion circumplex in Fig. 1(c). We as-
sume that the correlations between two emotions can be
determined by their cosine similarity, i.e, if the similarity
is larger than 0, the two emotions are positively connected
and a larger cosine similarity means more correlation; ;
otherwise, they are negatively correlated. From Fig. 1(c), it
can be observed that “happy/pleased” and “sad/lonely”are
negatively related, while “angry” and “relaxing/calm” are
negatively correlated, which is also learned by HOMI.

We can conclude that the correlations exploited by
HOMI are reasonable as they are confirmed by both com-
mon sense and the Russell’s emotion circumplex theory.

4.6.2 Usefulness of High-order Information

In order to validate the effectiveness of using high-order
information, we compared HOMI with its degenerated ver-
sion that makes predictions without considering the high-
order label correlations, i.e., g(x) = xW + 1nz

T on all
the twelve data sets with respect to hamming loss, ranking
loss, one-error and macro-averaging AUC. The detailed
comparisons are shown in Fig. 2.

From Fig. 2 we can observe that the performance of
HOMI with high-order information outperforms its degen-
erated version in 83.3%, with total 48 cases (12 data sets ×
4 evaluation metrics). Especially on the data set bibtex with
respect to the one-error, HOMI performs 5 times better than
its degenerated version. As the matrix B captures the high-
order correlations among labels, it is effective in improving
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prediction accuracy. We thus can conclude that considering
high-order label information when making predictions en-
able HOMI to perform better and more stable in general.

4.6.3 Effectiveness of Joint Learning

HOMI exploits the high-order label correlations and make
predictions in a joint manner. To show the effectiveness
of joint learning, we also designed a compared method
with a step-wise learning fashion that first learns high-order
information by minimizing ∥Y − YB − 1nt

T∥2F and then
makes predictions by (xW + 1nz

T)B+ 1nt
T.

The comparison between joint learning and step-wise
learning is shown in Fig. 3, where we can observe that the
joint learning manner outperforms the step-wise learning
significantly. Specifically, the performance of joint learning
model is relatively superior to step-wise learning in 85.4%,
with total 48 cases (12 data sets × 4 evaluation metrics).
Especially on the data set mediamill, the Ranking Loss of
joint learning manner is 20 times lower than that of the step-
wise one.

4.6.4 Usefulness of Local Geometric Structure

Aiming to validate the effectiveness of local geometric struc-
ture, we evaluated the performance of HOMI without local
geometric structure (i.e., γ = 0) in Fig. 4, where we can
find that the local geometric structure is important to the
proposed approach. For example, HOMI performs 13 times
better than its simplified version on bibtex with respect
to ranking loss. Generally, the one with local geometric
structure significantly outperforms the one without that in
95.9% cases.

4.6.5 Sensitivity Analysis

In Fig. 5, we investigate the sensitivity of HOMI with respect
to β, γ, λ and the number of nearest instances (s) on
emotions. It is evident that the performance of HOMI is
relatively stable and excellent as the value of the parame-
ters change within a reasonable wide range, validating the
robustness of HOMI to the hyper-parameters, which serves
as a desirable property in practice.

4.6.6 Convergence Analysis

Fig. 6 shows the convergence property of the proposed
approach on twelve data sets where we can observe that
the objective function decreases significantly and converges
in about 50 iterations on nearly all the data sets.

4.6.7 Running time

We also compare the running time of each algorithm on each
data set, which is shown in Fig. 7. It is obvious that HOMI
is usually faster than BILAS, WRAP and ECC. Additionally,
the running speed of HOMI is also comparable to other
methods, which is also a promising property in practice.

5 CONCLUSION

In this paper, we have presented an effective multi-label
classification approach. Different from the traditional low-
rank based methods, we argue that the label matrix of multi-
label classification is full-rank or approximately full-rank,
and thus we propose to keep the rank of label matrix un-
changed by self-representation. Moreover, by incorporating
the local geometric structure of the input, the proposed
method can simultaneously make predictions and exploit
high-order label correlations. Extensive experiments vali-
date the effectiveness of the proposed approach in learning
high-order label correlations, and in incorporating the local
geometric structure. As the proposed model can explicitly
indicate the high-order label correlations, we have verified
HOMI can learn meaningful label correlations. Besides,
HOMI also significantly outperforms the state-of-the-art
multi-label classification approaches, serving as a promising
solution for multi-label classification. In the future, it is
interesting to investigate how to extend HOMI to a non-
linear version.

APPENDIX A
THE MATRIX B HOMI HAS LEARNED

In section 4.6.1, we have recorded the normalized matrix
B trained by HOMI on emotions. The original value of the
matrix B is shown in Fig. 8.

REFERENCES

[1] T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers, “Statistical
topic models for multi-label document classification,” Machine
learning, vol. 88, no. 1-2, pp. 157–208, 2012.

[2] F. Sun, J. Tang, H. Li, G.-J. Qi, and T. S. Huang, “Multi-label
image categorization with sparse factor representation,” IEEE
Transactions on Image Processing, vol. 23, no. 3, pp. 1028–1037, 2014.

[3] X. Wang and G. Sukthankar, “Multi-label relational neighbor
classification using social context features,” in Proceedings of the
19th ACM SIGKDD international conference on Knowledge discovery
and data mining, 2013, pp. 464–472.

[4] R. Wang, S. Kwong, X. Wang, and Y. Jia, “Active k-labelsets
ensemble for multi-label classification,” Pattern Recognition, vol.
109, p. 107583, 2021.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

amazed/surprise
d

happy/pleased

relaxing/calm
quiet/sti

ll

sad/lonely

angry/aggressiv
e

amazed/surprise
d

happy/pleased

relaxing/calm

quiet/sti
ll

sad/lonely

angry/aggressiv
e

0.63 -0.0086 -0.079 -0.019 -0.042 0.033

-0.0093 0.59 0.063 -0.043 -0.084 -0.08

-0.072 0.056 0.61 0.06 0.036 -0.077

-0.016 -0.041 0.062 0.49 0.092 -0.039

-0.041 -0.081 0.041 0.096 0.55 -0.049

0.029 -0.076 -0.079 -0.038 -0.045 0.63

Label Correlation Heat Map

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fig. 8: Matrix B learned by HOMI on the emotion data set.

[5] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown, “Learning multi-
label scene classification,” Pattern recognition, vol. 37, no. 9, pp.
1757–1771, 2004.

[6] M.-L. Zhang and L. Wu, “Lift: Multi-label learning with label-
specific features,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 37, no. 1, pp. 107–120, 2015.

[7] J. Read, B. Pfahringer, G. Holmes, and E. Frank, “Classifier chains
for multi-label classification,” in Proceedings of the European Confer-
ence on Machine Learning and Knowledge Discovery in Databases: Part
II, 2009.

[8] G. Tsoumakas, I. Katakis, and I. Vlahavas, “Random k-labelsets
for multilabel classification,” IEEE Transactions on Knowledge and
Data Engineering, vol. 23, no. 7, pp. 1079–1089, 2011.

[9] K. Punera, S. Rajan, and J. Ghosh, “Automatically learning docu-
ment taxonomies for hierarchical classification,” in Special interest
tracks and posters of the 14th international conference on World Wide
Web, 2005, pp. 1010–1011.

[10] Y. Zhu, J. T. Kwok, and Z.-H. Zhou, “Multi-label learning with
global and local label correlation,” IEEE Transactions on Knowledge
and Data Engineering, vol. 30, no. 6, pp. 1081–1094, 2018.

[11] L. Feng, B. An, and S. He, “Collaboration based multi-label learn-
ing,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, 2019, pp. 3550–3557.

[12] Y. Jia, H. Liu, J. Hou, S. Kwong, and Q. Zhang, “Multi-view
spectral clustering tailored tensor low-rank representation,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 12, pp. 4784–4797, 2021.

[13] J. K. Valadi, P. T. Ovhal, and K. J. Rathore, “A simple method of so-
lution for multi-label feature selection,” in 2019 IEEE International
Conference on Electrical, Computer and Communication Technologies
(ICECCT), 2019, pp. 1–4.

[14] Z.-H. Zhou and M.-L. Zhang, “Multi-instance multi-label learning
with application to scene classification,” in Advances in neural
information processing systems, 2006, pp. 1609–1616.

[15] L. Yong, T. Liu, D. Tao, and X. Chao, “Multi-view matrix com-
pletion for multi-label image classification,” IEEE Transactions on
Image Processing, vol. 24, no. 8, pp. 2355–2368, 2015.

[16] M. Wang, X. Zhou, and T. S. Chua, “Automatic image annotation
via local multi-label classification,” in ACM, 2008, p. 17.

[17] C. Wang, S. Yan, Z. Lei, and H. J. Zhang, “Multi-label sparse
coding for automatic image annotation,” in IEEE Computer Society
Conference on Computer Vision Pattern Recognition, 2009.

[18] W. Fei, Y. Han, T. Qi, and Y. Zhuang, “Multi-label boosting for
image annotation by structural grouping sparsity,” in Proceedings
of the 18th International Conference on Multimedea 2010, Firenze, Italy,
October 25-29, 2010, 2010.

[19] S. Feng and D. Xu, “Transductive multi-instance multi-label learn-
ing algorithm with application to automatic image annotation,”
Expert Systems with Applications, vol. 37, no. 1, pp. 661–670, 2010.

[20] X. Tao, Y. Li, R. Lau, and W. Hua, “Unsupervised multi-label text
classification using a world knowledge ontology,” in Proceedings of

the 16th Pacific-Asia conference on Advances in Knowledge Discovery
and Data Mining - Volume Part I, 2012.

[21] K. M. Ozonat and D. Young, “Towards a universal market-
place over the web: Statistical multi-label classification of service
provider forms with simulated annealing.” ACM, 2009.

[22] B. Parlak and A. K. Uysal, “Classification of medical documents
according to diseases,” in 2015 23nd Signal Processing and Commu-
nications Applications Conference (SIU), 2015, pp. 1635–1638.

[23] B. Wu, E. Zhong, A. Horner, and Q. Yang, “Music emotion
recognition by multi-label multi-layer multi-instance multi-view
learning,” in Proceedings of the 22nd ACM international conference on
Multimedia, 2014, pp. 117–126.

[24] H.-Y. Lo, J.-C. Wang, H.-M. Wang, and S.-D. Lin, “Cost-sensitive
stacking for audio tag annotation and retrieval,” in 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2011, pp. 2308–2311.

[25] F. Pachet and P. Roy, “Improving multilabel analysis of music
titles: A large-scale validation of the correction approach,” IEEE
Transactions on Audio Speech & Language Processing, vol. 17, no. 2,
pp. 335–343, 2009.

[26] A. Wieczorkowska, P. Synak, and Z. W. Ra, “Multi-label classifi-
cation of emotions in music,” Intelligent Information Processing and
Web Mining, 2006.

[27] Y. Yang and S. Gopal, “Multilabel classification with meta-level
features in a learning-to-rank framework,” Machine Learning,
vol. 88, no. 1-2, pp. 47–68, 2012.

[28] H. Elghazel, A. Aussem, O. Gharroudi, and W. Saadaoui, “En-
semble multi-label text categorization based on rotation forest and
latent semantic indexing,” Expert Systems With Applications, vol. 57,
no. Sep., pp. 1–11, 2016.

[29] M. L. Zhang and K. Zhang, “Multi-label learning by exploiting
label dependency,” ACM, 2010.

[30] M.-L. Zhang and Z.-H. Zhou, “Ml-knn: A lazy learning approach
to multi-label learning,” Pattern recognition, vol. 40, no. 7, pp. 2038–
2048, 2007.
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