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Disambiguation-Free Partial Label Learning
Min-Ling Zhang, Member, IEEE, Fei Yu and Cai-Zhi Tang

Abstract—In partial label learning, each training example is associated with a set of candidate labels among which only one is the
ground-truth label. The common strategy to induce predictive model is trying to disambiguate the candidate label set, i.e. differentiating
the modeling outputs of individual candidate labels. Specifically, disambiguation by differentiation can be conducted either by identifying
the ground-truth label iteratively or by treating each candidate label equally. Nonetheless, the disambiguation strategy is prone to be
misled by the false positive labels co-occurring with ground-truth label. In this paper, a new partial label learning strategy is studied
which refrains from conducting disambiguation. Specifically, by adapting error-correcting output codes (ECOC), a simple yet effective
approach named PL-ECOC is proposed by utilizing candidate label set as an entirety. During training phase, to build binary classifier
w.r.t. each column coding, any partially labeled example will be regarded as a positive or negative training example only if its candidate
label set entirely falls into the coding dichotomy. During testing phase, class label for the unseen instance is determined via loss-based
decoding which considers binary classifiers’ empirical performance and predictive margin. Extensive experiments show that PL-ECOC

performs favorably against state-of-the-art partial label learning approaches.

Index Terms—machine learning, partial label learning, disambiguation, weak supervision, error-correcting output codes
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1 INTRODUCTION

Partial label (PL) learning deals with the problem where
each training example is associated with a set of candi-
date labels, among which only one corresponds to the
ground-truth label [14], [26]. In recent years, the need
to learn from data with partial labels naturally arises in
many real-world applications. For instance, in automatic
face naming (Figure 1(a)), for a news document one
can treat each face detected from the news picture as
an instance and those names extracted from associated
caption as candidate labels, while the actual correspon-
dence between each face and its ground-truth label is
not known [13], [35]; in online object annotation (Figure
1(b)), for a painting image one can treat web users’ free
annotations on its painting style as candidate labels,
while the actual correspondence between the painting
image and its ground-truth label is not known [25].
Successful applications of partial label learning tech-
niques also include object classification [27], facial age
estimation [34], [38], ecoinformatics [7], etc.

Formally, let X = Rd be the d-dimensional instance
space and Y = {y1, y2, . . . , yq} be the label space with q
class labels. In addition, let D = {(xi, Si) | 1 ≤ i ≤ m}
be the training set consisting of m PL training exam-
ples, where each instance xi ∈ X is represented by
a d-dimensional feature vector (xi1, xi2, . . . , xid)

⊤ and
Si ⊆ Y is the set of candidate labels associated with
xi. Then, the task of partial label learning is to induce a
multi-class classifier f : X 7→ Y from D. In partial label
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Reuters News: Angela Merkel and 

Francois Hollande joined Vladimir Putin 

in Moscow to discuss the escalating crisis 

in Ukraine 

(a) automatic face naming

Angela Merkel and Annotation from user A: Picasso style  

Annotation from user B: Monet style 

Annotation from user C: van Gogh style 

(b) online object annotation

Fig. 1. Exemplar applications of partial label learning. (a)
Candidate names can be automatically extracted from the
news caption, while the actual correspondence between
each face and its ground-truth name is unknown [13], [35];
(b) Candidate annotations on the painting style can be
freely provided by web users, while the actual correspon-
dence between the painting image and its ground-truth
annotation is unknown [25].

learning, the ground-truth label ti of xi is assumed to
reside in its candidate label set Si, i.e. ti ∈ Si.1

Evidently, the major difficulty for partial label learning
lies in that the ground-truth label of the PL training
example is concealed in its candidate label set and
thus not directly accessible to the learning algorithm.
Therefore, the common strategy to learn from PL exam-
ples is disambiguation, i.e. differentiating the modeling
outputs of individual candidate labels so as to recover
ground-truth labeling information. To achieve this, one

1. In some literatures, partial label learning is also termed as am-
biguous label learning [10], [24], soft label learning [12], or superset label
learning [27], [28]. Furthermore, there are some studies admitting noisy
candidate label set which might violate the partial label assumption
ti ∈ Si [11].
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way is disambiguation by identification which differenti-
ates individual candidate labels’ modeling outputs in a
competitive manner. Specifically, the ground-truth label
is regarded as a latent variable which is identified via
iterative refining procedure such as EM [22], [26], [27],
[29], [32]. Another way is disambiguation by averaging
which differentiates individual candidate labels’ mod-
eling outputs in a collaborative manner. Specifically,
each candidate label is treated equally where the final
prediction is made by averaging their modeling outputs
[14], [24].

Although disambiguation serves as an intuitive and
practical strategy to learn from PL examples, its effective-
ness is largely affected by the false positive labels which
co-occur with the ground-truth label within candidate
label set (i.e. Si \ {ti}). For disambiguation by ground-
truth label identification, the identified label t̂i refining
in each iteration might turn out to be the false positive
label rather than the ground-truth one. Similarly, for dis-
ambiguation by candidate label averaging, the essential
modeling output yielded by ground-truth label might
be overwhelmed by the modeling outputs yielded by
false positive labels. Furthermore, for either of the two
disambiguation ways, the negative influence introduced
by false positive labels would be more pronounced as
the size of candidate label set increases.

In view of this, a new strategy to learn from PL exam-
ples is proposed in this paper which does not conduct
disambiguation by differentiating individual candidate
labels’ modeling outputs. Specifically, by adapting the
well-known error-correcting output codes (ECOC) tech-
niques [17], [40], a simple yet effective approach named
PL-ECOC is proposed which refrains from conducting
disambiguation by making use of the candidate label set
as an entirety. The key adaptation lies in how the binary
classifiers are trained according to the ECOC coding
matrix. For each column of the binary coding matrix,
one binary classifier is built by utilizing binary training
examples derived from the PL training set. Here, any
PL training example will be used to derive a positive
or negative training example only if its candidate label
set entirely falls into the positive or negative dichotomy
specified by the column coding. During testing phase,
class label of the unseen instance is determined via
loss-based decoding which takes into account binary
classifiers’ empirical performance and predictive margin.

To thoroughly evaluate the effectiveness of the pro-
posed disambiguation-free strategy, extensive experi-
ments over a broad range of controlled UCI data sets
as well as real-world PL data sets are conducted. Exper-
imental results clearly validate the superior performance
of PL-ECOC against several well-established partial label
learning approaches.

The rest of this paper is organized as follows. Section
2 briefly reviews related works on partial label learn-
ing. Section 3 presents technical details of the proposed
PL-ECOC approach. Section 4 reports comparative ex-
perimental results against state-of-the-art partial label

learning approaches. Finally, Section 5 concludes and
indicates several issues for future work.

2 RELATED WORK

As shown in Section 1, supervision information con-
veyed by PL training examples is implicit as the ground-
truth label is hidden within the candidate label set.
Therefore, partial label learning can be regarded as a
weakly-supervised learning framework with implicit la-
beling information. It lies between the two ends of the
supervision spectrum, i.e. supervised learning with ex-
plicit supervision and unsupervised learning with blind
supervision. Partial label learning is related to other
popular weakly-supervised learning frameworks such as
semi-supervised learning, multi-instance learning and multi-
label learning. Nevertheless, the type of weak supervision
information handled by partial label learning is different
to those counterpart frameworks.

In semi-supervised learning, the task is to learn from
few labeled examples along with abundant unlabeled
examples [9], [41]. For either unlabeled example or
PL example, the ground-truth labeling information is
not accessible to the learning system. Nonetheless, for
unlabeled example the ground-truth label assumes the
whole label space while for PL example the ground-
truth label is confined within candidate label set. In
multi-instance learning, the task is to learn from labeled
examples each represented by a bag of instances [3],
[18]. For either multi-instance example or PL example,
the actual correspondence between individual instances
and labels is ambiguous. Nonetheless, for multi-instance
example the ambiguity arises in the bag of instances
while for PL example the ambiguity arises in the set
of candidate labels. In multi-label learning, the task is
to learn from examples each associated with multiple
class labels [21], [39]. For either multi-label example
and PL example, the labeling information available for
the instance is non-unique. Nonetheless, for multi-label
example the associated labels are all valid ones while
for PL example the associated labels are only candidate
ones.

Existing partial label learning approaches aim to fulfill
the learning task by disambiguating the candidate label
set, which can be achieved in two basic ways. Generally,
let F (x, y;Θ) be the modeling output of instance x on
label y ∈ Y . One way towards disambiguation is to treat
the ground-truth label as latent variable which is identi-
fied as: t̂i = argmaxy∈Si F (xi, y;Θ). Here, the model pa-
rameters Θ are iteratively refined by optimizing specific
criterion over PL training examples, such as the maxi-
mum likelihood criterion:

∑m
i=1 log

(∑
y∈Si

F (xi, y;Θ)
)

[10], [22], [26], [27], [32], or the maximum margin crite-
rion:

∑m
i=1

(
maxy∈Si F (xi, y;Θ)−maxy/∈Si

F (xi, y;Θ)
)

[29], [34].
Another way towards disambiguation is to assume e-

qual contribution of each candidate label in the modeling
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Fig. 2. An illustrative example of PL-ECOC’s encoding phase. (a) An exemplar 5 × 6 coding matrix M with each row
corresponding to one class label and each column leading to one binary classifier; (b) An exemplar PL training set
with eight PL training examples; (c) The derived binary training set w.r.t. each column coding.

process. For discriminative models, the averaged out-
put over all candidate labels, i.e. 1

|Si|
∑

y∈Si
F (xi, y;Θ),

is distinguished from outputs over non-candidate la-
bels, i.e. F (xi, y;Θ) (y /∈ Si) [14], [31]. For instance-
based models, class label for unseen instance x∗ is
determined by voting among the candidate labels of
its neighboring examples indexed in N (x∗): f(x∗) =
argmaxy∈Y

∑
j∈N (x∗) I(y ∈ Sj) [24], [37].

For either way of disambiguation, its effectiveness
would be largely affected due to the existence of false
positive labels, i.e. the need to calculate modeling output
F (xi, y;Θ) (y ∈ Si \ {ti}). In the next section, to circum-
vent potential issues encountered during disambigua-
tion, a simple yet effective disambiguation-free partial
label learning approach is proposed.

3 THE PL-ECOC APPROACH

3.1 Binary Decomposition to Multi-Class Classifier
As discussed in Section 1, the ultimate goal of partial
label learning is to induce a multi-class classifier f : X 7→
Y mapping from the instance space to the label space.
For multi-class classifier induction, the arguably most
popular mechanism is to transform the learning task into
a number of binary learning problems via one-vs-rest or
one-vs-one decomposition.

For one-vs-rest decomposition a total of q binary clas-
sifiers are induced, one for each class label yj (1 ≤ j ≤ q).
Here, each binary classifier is built by treating training
examples from yj as positive ones and the remaining
training examples as negative ones. By taking outputs of
binary classifiers as predictive confidence on class labels,
prediction on unseen instance is determined by choosing
the class label with largest classifier output. For one-vs-
one decomposition a total of

(
q
2

)
binary classifiers are

induced, one for each pair of class labels (yj , yk) (1 ≤
j < k ≤ q). Here, each binary classifier is built by
treating training examples from yj as positive ones and
those from yk as negative ones. By taking outputs of
binary classifiers as votes on class labels, prediction on
unseen instance is determined by choosing the class label
receiving maximal votes from all the binary classifiers.

Unfortunately, under partial label learning scenario,
neither the one-vs-rest nor the one-vs-one decomposition

mechanism can be employed to induce the multi-class
classifier. As the ground-truth label of the PL training
example is not directly accessible, training examples
needed to build the decomposed binary classifiers can
not be properly derived from the PL training set. In the
following, a new approach named PL-ECOC is proposed
by adapting the ECOC techniques, which is capable of
learning from PL training examples by maintaining the
simplicity merit of binary decomposition mechanism.

3.2 Partial Label Learning with ECOC

As a well-established mechanism towards multi-class
classifier induction, ECOC [17], [40] conducts binary de-
composition based on a coding-decoding procedure. In
the coding phase, a q×L coding matrix M ∈ {+1,−1}q×L

with binary elements is utilized to facilitate the learning
process. Here, each row of the coding matrix M(j, :) cor-
responds to an L-bits codeword for the class label yj (1 ≤
j ≤ q). On the other hand, each column of the coding
matrix M(:, l) specifies a dichotomy over the label space
Y with positive half Y+

l = {yj |M(j, l) = +1, 1 ≤ j ≤ q}
and negative half Y−

l = {yj | M(j, l) = −1, 1 ≤ j ≤ q}.
Accordingly, one binary classifier hl : X 7→ R is built
w.r.t. each column by treating training examples from
Y+
l as positive ones and those from Y−

l as negative ones.
In the decoding phase, given the unseen instance

x∗, an L-bits codeword is generated by concatenat-
ing the (signed) outputs of the L binary classifiers:
h(x∗) = [sign(h1(x

∗)), sign(h2(x
∗)), . . . , sign(hL(x

∗))]⊤.
Here, sign(z) returns +1 if z > 0 and −1 otherwise.
Then, the class label whose codeword is closest to h(x∗)
is returned as the final prediction on x∗:

f(x∗) = argminyj (1≤j≤q) dist(h(x∗),M(j, :)) (1)

Here, the distance function dist(·, ·) can be instanti-
ated in various ways such as Hamming distance [17],
Euclidean distance [30], loss-based distance [2], [19], etc.

In this paper, we show that the ECOC techniques can
be naturally adapted to deal with partial label data.
In the encoding phase, the key adaptation lies in how
to build the binary classifier w.r.t. each column coding.
Specifically, let v = [v1, v2, . . . , vq]

⊤ ∈ {+1,−1}q denote
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TABLE 1
The pseudo-code of PL-ECOC.

Inputs:
D: partial label training set {(xi, Si) | 1 ≤ i ≤ m} (xi ∈ X , Si ⊆ Y, X = Rd, Y = {y1, y2, . . . , yq})
L: ECOC codeword length
L: binary learner for classifier induction
τ : minimum admissible binary training set size
x∗: unseen instance (x∗ ∈ X )

Outputs:
y∗: predicted class label for x∗ (y∗ ∈ Y)

Process:
1: l = 0;
2: while l ̸= L do
3: Randomly generate a q-bits column coding v = [v1, v2, . . . , vq ]⊤ ∈ {+1,−1}q ;
4: Dichotomize the label space into positive half Y+

v and negative half Y−
v according to Eq.(2);

5: Derive a binary training set Bv from the PL training set D according to Eq.(3);
6: if |Bv | ≥ τ then
7: l = l+ 1;
8: Set the l-th column of the coding matrix M to v: M(:, l) = v;
9: Induce the binary classifier hl by invoking L on Bv : hl ← [ L(Bv);

10: end if
11: end while
12: Calculate the q × L performance matrix H according to Eq.(4);
13: Calculate the q × L weight matrix Ĥ according to Eq.(5);
14: Obtain the predictive confidence hl(x

∗) (1 ≤ l ≤ L) of each binary classifier on x∗;
15: Return y∗ = f(x∗) according to Eq.(6).

the q-bits column coding which dichotomizes the label
space into positive half Y+

v and negative half Y−
v :

Y+
v = {yj | vj = +1, 1 ≤ j ≤ q}; (2)
Y−
v = Y \ Y+

v

Given any PL training example (xi, Si), rather than try-
ing to disambiguate the candidate label set Si associated
with xi, PL-ECOC works by regarding Si as an entirety to
help build the binary classifier. Under this perspective,
a binary training set Bv can be derived from the original
PL training set D, where xi is used as a positive or
negative example only if Si entirely falls into Y+

v or Y−
v :

Bv =
{
(xi,+1) | Si ⊆ Y+

v , 1 ≤ i ≤ m
}∪

(3){
(xi,−1) | Si ⊆ Y−

v , 1 ≤ i ≤ m
}

As shown in Eq.(3), PL training examples whose can-
didate label sets fail to fall into either dichotomy won’t
contribute to generate binary training examples for Bv .
To avoid non-informative binary training set with few
examples, PL-ECOC enforces an eligibility condition on
the column coding v by controlling the minimum ad-
missible size of Bv . Accordingly, one binary classifier hl

is induced by invoking the binary learner L on Bv , i.e.
hl ← [ L(Bv).

Figure 2 gives an illustrative example of PL-ECOC’s en-
coding phase. Take the first PL training example (x1, S1)
with S1 = {y1, y3} as an example, x1 will be used as a
negative example to induce h3 as S1 entirely falls into
the negative dichotomy of the third column coding, and

will be used as a positive example to induce h5 as S1

entirely falls into the positive dichotomy of the fifth
column coding. Accordingly, as shown in Figure 2, the
binary training set w.r.t. each column coding naturally
follows from the corresponding coding matrix and PL
training set.

In the decoding phase, the key adaptation lies in
how to make prediction for unseen instance based on
the induced binary classifiers hl (1 ≤ l ≤ L). Among
various decoding strategies, PL-ECOC chooses to adapt
the loss-weighted decoding [19] which generalizes Eq.(1)
by making use of empirical performance as well as
predictive confidence of the induced binary classifiers.
Given the coding matrix M, a q×L performance matrix
H is defined where each element H(j, l) records the
empirical performance of binary classifier hl (1 ≤ l ≤ L)
w.r.t. the class label yj (1 ≤ j ≤ q):

H(j, l) =
1

|Dj |
∑

(xi,Si)∈Dj

[[sign(hl(xi)) = M(j, l)]] (4)

where Dj = {(xi, Si) | yj ∈ Si, 1 ≤ i ≤ m}

Here, | · | returns the cardinality of a set, and [[π]] returns
1 if predicate π holds and 0 otherwise.

As shown in Eq.(4), Dj consists of PL training exam-
ples whose candidate label set contains class label yj .
Therefore, H(j, l) records the fraction of examples in Dj

whose binary predictions yielded by hl coincide with
the binary coding M(j, l). For instance, to obtain the
empirical performance H(2, 4) w.r.t. the case shown in
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TABLE 2
Characteristics of the experimental data sets.

Controlled UCI Data Sets
ConfigurationsData set # Examples # Features # Class Labels

Ecoli 336 7 8
Dermatology 364 23 6 (I) r = 1, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 3]

Vehicle 846 18 4
Segment 2,310 18 7 (II) r = 2, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 4]
Abalone 4,177 7 29
Satimage 6,435 36 7 (III) r = 3, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 5]

Usps 9,298 256 10
Pendigits 10,992 16 10 (IV) p = 1, r = 1, ϵ ∈ {0.1, 0.2, . . . , 0.7} [Figure 6]

Letter 20,000 16 26

Real-World Data Sets
Data set # Examples # Features # Class Labels Avg. # CLs Domain

Lost 1,122 108 16 2.23 automatic face naming [14]
MSRCv2 1,758 48 23 3.16 object classification [27]
BirdSong 4,998 38 13 2.18 bird song classification [7]

Soccer Player 17,472 279 171 2.09 automatic face naming [35]
LYN 10 18,313 163 11 2.02

automatic face naming [23]
LYN 20 19,027 163 21 2.01
LYN 50 20,308 163 54 1.97
LYN 100 21,390 163 101 1.94
LYN 200 22,991 163 219 1.91

Figure 2, D2 will consist of three PL training examples
{(x2, S2), (x5, S5), (x6, S6)} whose candidate label set
contains y2. Furthermore, suppose h4 classifies examples
in D2 as follows: h4(x2) = +1, h4(x5) = −1 and
h4(x6) = −1, then the empirical performance H(2, 4)
turns out to be 0.67 (i.e. 2/3) with M(2, 4) = −1.

To account for the relative performance of each binary
classifier, a weight matrix Ĥ can be generated by nor-
malizing each row of H:

Ĥ(j, l) =
H(j, l)∑L
l=1 H(j, l)

(1 ≤ j ≤ q, 1 ≤ l ≤ L) (5)

Given the unseen instance x∗, its class label is predict-
ed by the following loss-weighted decoding rule:

f(x∗) = (6)

argminyj (1≤j≤q)

∑L

l=1
Ĥ(j, l) exp (−hl(x

∗) ·M(j, l))

As shown in Eq.(6), the closeness to each codeword is
measured by the weighted exponential loss between the
binary classifier’s predictive confidence hl(x

∗) and the
codeword bit M(j, l).2

Table 1 summarizes the complete encoding phase
(Steps 1 to 11) and decoding phase (Steps 12 to 15) of
the proposed PL-ECOC approach.3 During the encoding
phase, one potential column coding v is generated at
random (Step 3). Once the eligibility condition is satisfied

2. Compared to the popular decoding rule based on hamming
distance: f(x∗) = argminyj (1≤j≤q)

∑L
l=1 [[hl(x

∗) ̸= M(j, l)]], the
loss-weighted decoding rule given in Eq.(6) aims to exploit empirical
performance of binary classifiers (i.e. H) to yield better decoding
results.

3. Code package for PL-ECOC is publicly-available at: http://cse.seu.
edu.cn/PersonalPage/zhangml/Resources.htm#plecoc

(Step 6), the potential codeword v will be accepted to
instantiate a new column of the coding matrix M (Steps 7
to 8) and then induce the corresponding binary classifier
(Step 9). During the decoding phase, a weight matrix Ĥ
is calculated based on the empirical performance of the
induced binary classifiers (Steps 12 to 13). After that, the
class label for unseen instance is predicted based on the
loss-weighted decoding rule (Steps 14 to 15).

As shown in Table 1, PL-ECOC is free of any dis-
ambiguation operation towards the candidate label set
which instead is treated in an integrative manner. PL-
ECOC inherits the merits of standard ECOC mechanism
for being conceptually simple and amenable to different
choices of the binary learner L. As reported in the
next section, the performance of PL-ECOC is highly
competitive against state-of-the-art partial label learning
approaches.

4 EXPERIMENTS

4.1 Experimental Setup

To thoroughly evaluate the performance of PL-ECOC,
two series of experiments are conducted on controlled
UCI data sets [4] and real-world PL data sets respec-
tively. Characteristics of the experimental data sets are
summarized in Table 2.

Following the controlling protocol widely-used in par-
tial label learning studies [10], [14], [27], [34], [37], an
artificial PL data set can be generated from the multi-
class UCI data set with three controlling parameters p,
r and ϵ. Here, p controls the proportion of examples
which are partially labeled (i.e. |Si| > 1), r controls the
number of false positive labels in the candidate label
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Fig. 3. Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples)
increases (with one false positive candidate label [r = 1]).

set of each partially labeled example (i.e. |Si| = r + 1),
and ϵ controls the co-occurring probability between one
coupling candidate label and the ground-truth label.
As shown in Table 2, for each of the nine multi-class
UCI data sets, a total of 28 (4×7) controlling parameter
configurations have been considered for artificial PL data
set generation.

In addition, a number of real-world PL data sets
have been collected from several task domains including
Lost [14], Soccer Player [35], LYN (Labeled Yahoo!
News) [23] from automatic face naming, MSRCv2 [27]
from object classification, and BirdSong [7] from bird
song classification. For the task of automatic face naming,
faces cropped from an image or video are represented
as instances while names extracted from the associated
captions or subtitles are regarded as candidate labels.
Specifically, by retaining top Num frequent names from
the Labeled Yahoo! News data set [23], five versions
of LYN data set have been generated (named as LYN

Num; Num ∈ {10, 20, 50, 100, 200}).4 For the task of object
classification, image segmentations are represented as
instances while objects appearing within the same image
are regarded as candidate labels. For the task of bird
song classification, singing syllables of the birds are rep-
resented as instances while bird species jointly singing
during a 10-seconds period are regarded as candidate
labels. The average number of candidate labels (Avg. #
CLs) for each real-world PL data set is also recorded in
Table 2.5

Four state-of-the-art partial label learning algorithms
are employed for comparative studies, each implement-
ed with parameter setup suggested in respective litera-
tures:

• PL-KNN [24]: A k-nearest neighbor approach to par-
tial label learning which conducts averaging-based

4. In case of ties for the top Num frequent names, all the equally
frequent names are retained in the LYN data set.

5. The real-world PL data sets are publicly available at: http://cse.
seu.edu.cn/PersonalPage/zhangml/Resources.htm#partial data
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Fig. 4. Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples)
increases (with two false positive candidate labels [r = 2]).

disambiguation [suggested setup: k = 10];
• CLPL [14]: A discriminative approach to partial

label learning which conducts averaging-based dis-
ambiguation [suggested setup: SVM with squared
hinge loss];

• PL-SVM [29]: A maximum margin approach to par-
tial label learning which conducts identification-
based disambiguation [suggested setup: regulariza-
tion parameter pool with {10−3, . . . , 103}];

• LSB-CMM [27]: A maximum likelihood approach to
partial label learning which conducts identification-
based disambiguation [suggested setup: # mixture
components = q].

For PL-ECOC, the binary learner L is set to be Libsvm
[8] and the eligibility parameter τ is set to be one-tenth
of the number of PL training examples (i.e. 1

10 · |D|).
Furthermore, the codeword length L for PL-ECOC is set
to be ⌈10 · log2(q)⌉ as usually adopted by ECOC-based

techniques [2], [30], [40].6 In this paper, ten-fold cross-
validation is performed over each artificial as well as
real-world PL data set. Accordingly, the mean predictive
accuracy (along with standard deviation) is recorded for
all comparing algorithms.

4.2 Experimental Results
4.2.1 Controlled UCI Data Sets
Figures 3 to 5 illustrate the mean predictive accuracy
of each comparing algorithm as p varies from 0.1 to
0.7 with step-size 0.1 (r = 1, 2, 3). Along with the
ground-truth label, r additional class labels in Y will be
randomly chosen to instantiate the candidate label set of
each partial label example. Figure 6 illustrates the mean
predictive accuracy of each comparing algorithm as ϵ
varies from 0.1 to 0.7 with step-size 0.1 (p = 1, r = 1).
For any ground-truth label y ∈ Y , one extra label y′ ̸= y

6. Sensitivity analysis on PL-ECOC’s parameters L and τ is reported
in Subsection 4.3.1.
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Fig. 5. Classification accuracy of each comparing algorithm changes as p (proportion of partially labeled examples)
increases (with three false positive candidate labels [r = 3]).

is designated as the coupling label which co-occurs with
y in the candidate label set with probability ϵ. Otherwise,
any other class label will be randomly chosen to co-occur
with y.

As shown in Figures 3 to 6, the performance of PL-
ECOC is highly competitive to the comparing algorithms.
Based on Wilcoxon signed ranks test [16], [33] at 0.05
significance level, Table 3 summarizes the win/tie/loss
outcomes between PL-ECOC and each comparing algo-
rithm. Here, each statistical test is performed w.r.t. the 7
configurations within each figure for each data set. Based
on results of 36 statistical tests (4 figures × 9 UCI data
sets), the following observations can be made:

• Across all the controlling parameter configurations
and artificial PL data sets, none of the comparing al-
gorithms have outperformed PL-ECOC significantly;

• Comparing to averaging-based disambiguation ap-
proaches (in total), PL-ECOC achieves superior per-
formance against PL-KNN and CLPL in 100% cases

(36 out of 36) and 83.3% cases (30 out of 36) respec-
tively;

• Comparing to identification-based disambiguation
approaches (in total), PL-ECOC achieves superior
performance against PL-SVM and LSB-CMM in 77.8%
cases (28 out of 36) and 86.1% cases (31 out of 36)
respectively.

4.2.2 Real-World Data Sets
Table 4 reports the performance of each comparing algo-
rithm on the real-world PL data sets, where the outcomes
of pairwise t-test at 0.05 significance level are recorded
as well. As shown in Table 4, it is impressive to observe
that:

• On the BirdSong, LYN 50 and LYN 200 data sets,
the performance of PL-ECOC is superior to all the
comparing algorithms;

• On the Soccer Player, LYN 20 and LYN 100 da-
ta sets, the performance of PL-ECOC is comparable
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Fig. 6. Classification accuracy of each comparing algorithm changes as ϵ (co-occurring probability of the coupling
label) increases from 0.1 to 0.7 (with 100% partially labeled examples [p = 1] and one false positive candidate label
[r = 1]).

to LSB-CMM and superior to the other comparing al-
gorithms. On the MSRCv2 data set, the performance
of PL-ECOC is comparable to PL-SVM and superior
to the other comparing algorithms;

• On the Lost data set, the performance of PL-ECOC
is inferior to CLPL, comparable to PL-SVM and LSB-
CMM, and superior to PL-KNN. On the LYN 10 data
set, the performance of PL-ECOC is inferior to LSB-
CMM, comparable to PL-SVM, and superior to PL-
KNN and CLPL.

4.3 Further Analysis
4.3.1 Parameter Sensitivity
In this subsection, performance sensitivity of the pro-
posed PL-ECOC approach w.r.t. its parameters will be
further analyzed.

As shown in Table 1, the codeword length L stands
as a crucial parameter for ECOC-based learning ap-

proach. Figure 7(a) illustrates how the performance of
PL-ECOC changes under varying codeword length (L =
⌈k ·log2(q)⌉, k ∈ {1, 2, . . . , 15}). For the sake of simplicity,
MSRCv2, BirdSong and LYN 100 are employed here
for illustrative purpose while similar observations can
be made on other data sets. As shown in Figure 7(a),
the performance of PL-ECOC improves as the code-
word length L increases while becomes stable with L
approaching ⌈10 · log2(q)⌉. Accordingly, the parameter
configuration specified for PL-ECOC in Subsection 4.1
corresponds to L = ⌈10 · log2(q)⌉.

Furthermore, according to Eq.(3), any PL training
example will be excluded from generating the binary
training set w.r.t. each column coding if its candidate
label set doesn’t entirely fall into the positive or negative
dichotomy. Let Sa ⊆ Y denote a candidate label set
consisting of a candidate labels, and Y+

v (Y−
v ) denote

the positive (negative) dichotomy over Y w.r.t. to a q-
bits column coding v ∈ {+1,−1}q . Suppose that both
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TABLE 3
Win/tie/loss outcomes (Wilcoxon signed ranks test at 0.05 significance level) on the classification performance of

PL-ECOC against each comparing algorithm on the controlled UCI data sets.

Data Sets (names in abbreviation)
PL-ECOC against Eco. Der. Veh. Seg. Aba. Sat. Usp. Pen. Let. Subtotal In Total

PL-KNN

[Figure 1] win win win win win win win win win 9/0/0

36/0/0[Figure 2] win win win win win win win win win 9/0/0
[Figure 3] win win win win win win win win win 9/0/0
[Figure 4] win win win win win win win win win 9/0/0

CLPL

[Figure 1] tie win win win win win win win win 8/1/0

30/6/0[Figure 2] tie win win win win win win win win 8/1/0
[Figure 3] tie tie win win win win win win win 7/2/0
[Figure 4] tie win tie win win win win win win 7/2/0

PL-SVM

[Figure 1] tie tie win win win win win win win 7/2/0

28/8/0[Figure 2] tie tie win win win win win win win 7/2/0
[Figure 3] tie tie win win win win win win win 7/2/0
[Figure 4] tie tie win win win win win win win 7/2/0

LSB-CMM

[Figure 1] win tie win win tie win win win win 7/2/0

31/5/0[Figure 2] win tie win win win win win win win 8/1/0
[Figure 3] win tie win win win win win win win 8/1/0
[Figure 4] win tie win win win win win win win 8/1/0

TABLE 4
Predictive accuracy (mean±std) of each comparing algorithm on the real-world PL data sets. In addition, •/◦

indicates whether the performance of PL-ECOC is statistically superior/inferior to the comparing algorithm on each
data set (pairwise t-test at 0.05 significate level).

PL-ECOC PL-KNN CLPL PL-SVM LSB-CMM

Lost 0.703±0.052 0.424±0.041• 0.742±0.038◦ 0.729±0.040 0.707±0.055
MSRCv2 0.505±0.027 0.448±0.037• 0.413±0.039• 0.482±0.043 0.456±0.031•
BirdSong 0.740±0.016 0.614±0.024• 0.632±0.017• 0.663±0.032• 0.717±0.024•

Soccer Player 0.537±0.020 0.497±0.014• 0.368±0.010• 0.443±0.014• 0.525±0.015
LYN 10 0.694±0.010 0.460±0.012• 0.605±0.013• 0.692±0.009 0.703±0.010◦
LYN 20 0.697±.0.012 0.469±0.015• 0.585±0.010• 0.686±0.011• 0.702±0.011
LYN 50 0.694±0.008 0.472±0.014• 0.540±0.012• 0.666±0.002• 0.679±0.007•
LYN 100 0.680±0.012 0.459±0.010• 0.507±0.011• 0.655±0.010• 0.673±0.010
LYN 200 0.662±0.010 0.457±0.014• 0.462±0.009• 0.636±0.010• 0.648±0.007•

Sa and v are generated with uniform distribution, then
the probability of Sa entirely falling into either the
positive dichotomy Y+

v or the negative dichotomy Y−
v

corresponds to:

P
(
(Sa ⊆ Y+

v ) ∨ (Sa ⊆ Y−
v )

)
= 1− P

(
(Sa ∩ Y+

v ̸= ∅) ∧ (Sa ∩ Y−
v ̸= ∅)

)
= 1− 1

2q ·
(
q
a

) q∑
t=0

(
q

t

) min(a−1,t)∑
u=max(1,a−(q−t))

(
t

u

)(
q − t

a− u

)
(7)

Here, among the 2q ·
(
q
a

)
possible joint setups for Sa and

v, the sum term in Eq.(7) counts the number of joint
setups where Sa intersects with both Y+

v and Y−
v . Based

on the combinatorial fact that
(
n
k

)
= n!

k! (n−k)! , Eq.(7) can
be simplified as follows:

P
(
(Sa ⊆ Y+

v ) ∨ (Sa ⊆ Y−
v )

)
= 1− 1

2q

∑q

t=0

∑min(a−1,t)

u=max(1,a−(q−t))

(
a

u

)(
q − a

t− u

)
(8)

Specifically, the probability P ((Sa ⊆ Y+
v ) ∨ (Sa ⊆ Y−

v ))
takes the maximum value of 1 with a = 1 and the

minimum value of 21−q with a = q.

As shown in Table 1, to account for the possibility
of candidate label set not entirely falling into either
dichotomy, PL-ECOC employs an eligibility parameter
τ to avoid deriving non-informative binary training set
with few examples. Table 5 reports the performance of
PL-ECOC on the MSRCv2, BirdSong and LYN 100 data
sets with τ taking fractional size of the training set, i.e.
τ = η · |D| (η ∈ {0.1, 0.2, 0.3, 0.4}). As shown in Table 5,
the performance of PL-ECOC is generally not sensitive
to varying value of τ . Accordingly, the other parameter
configuration specified for PL-ECOC in Subsection 4.1
corresponds to τ = 0.1 · |D|.

Once the eligibility condition |Bv| ≥ τ is satisfied
(Table 1, Step 6), the size of binary training set would
be proportional to the size of original PL training set.
To show how PL-ECOC performs under different train-
ing set sizes, Table 6 reports the performance of each
comparing algorithm on sampled subset of MSRCv2,
BirdSong and LYN 100 with sampling rate r (r ∈
{30%, 45%, 60%, 75%, 90%}). As shown in Table 6, PL-
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Fig. 7. Classification accuracy of PL-ECOC changes as: (a) L (codeword length) increases from ⌈log2(q)⌉ to ⌈15 ·
log2(q)⌉ with step-size ⌈log2(q)⌉; (b) α (fraction of filtered PL examples with least candidate set size) increases from
0.1 to 0.7 with step-szie 0.1.

TABLE 5
Predictive accuracy (mean±std) of PL-ECOC with the

eligibility parameter τ set to be η · |D|
(η ∈ {0.1, 0.2, 0.3, 0.4}).

MSRCv2 BirdSong LYN 100
η = 0.1 0.505±0.027 0.740±0.016 0.680±0.012
η = 0.2 0.486±0.038 0.723±0.012 0.679±0.010
η = 0.3 0.479±0.037 0.730±0.020 0.678±0.010
η = 0.4 0.487±0.035 0.730±0.019 0.674±0.008

ECOC maintains its performance advantage against the
comparing algorithms under different sampling rates.
Specifically, there is a general trend that the advantage
becomes more pronounced as the sampling rate increas-
es (from r = 45% on).

4.3.2 Algorithmic Properties
In this subsection, several algorithmic properties of the
proposed PL-ECOC approach will be further analyzed.

As shown in Figures 3 to 5, it is somewhat surpris-
ing that in some cases the performance of comparing
algorithms on controlled UCI data sets doesn’t decrease
as expected when p (proportion of partially labeled
examples) increases. Correspondingly, similar observa-
tions have also been reported in related literatures [27],
[34]. One reason underlying this counter-intuitive trend
might lie in the controlling protocol used for UCI data
sets, where the (1 − p) × 100% training examples with
unique labeling play major role in contributing to the
generalization ability of induced predictive model. Fur-
thermore, it is worth noting that the controlled UCI
data sets are generated artificially whose characteristics
won’t be as representative as real-world PL data sets.
Figure 7(b) illustrates how the performance of PL-ECOC
changes when α × 100% PL examples with least can-
didate label set size are filtered out from the data set

(α ∈ {0.1, 0.2, . . . , 0.7}). It is obvious that as the difficulty
of the resulting PL learning task increases (i.e. with larger
number of average candidate labels for the filtered data
set), the performance of PL-ECOC decreases as expected
on the MSRCv2, BirdSong and LYN 100 data sets.

PL-ECOC can be regarded as an ensemble learning
approach which leverages a number of base binary
classifiers induced w.r.t. each column coding to yield
the predictive model. Interestingly, one can also apply
ensemble learning techniques to PL-ECOC by treating
the proposed approach as the base learner. Specifically,
Table 7 reports the performance of PL-ECOC ensemble
based on the popular bagging techniques [5], [40], where
the predictive model is built by ensembling N PL-ECOC
classifiers each induced from one bootstrapped sampling
of original training set (N ∈ {5, 10, 15, 20, 25}). As shown
in Table 7, on the MSRCv2, BirdSong and LYN 100 data
sets, the performance of PL-ECOC ensemble doesn’t have
significant changes with varying ensemble sizes, which
is also comparable to the plain PL-ECOC as shown in
Table 4. These results indicate that PL-ECOC serves as a
stable learner [6], [40] whose learning procedure is less
sensitive to the perturbation over training set.

Table 8 also reports the running time (in seconds) of
PL-ECOC as well as the comparing algorithms, measured
within Matlab environment equipped with Intel i7-6700
CPU. As shown in Table 8, the computational complex-
ity of PL-ECOC is close or less than most comparing
algorithms (CLPL, PL-SVM, LSB-CMM) on medium-scale
data sets MSRCv2 and BirdSong, while significantly
increases on large-scale data set LYN 100 due to longer
codeword length and larger binary training set size.

4.3.3 Binary Learner
Among the four comparing algorithms given in Sub-
section 4.1, three of them are tailored towards concrete
learning techniques. Specifically, PL-KNN, PL-SVM and
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TABLE 6
Predictive accuracy (mean±std) of each comparing algorithm on sampled subset of MSRCv2, BirdSong and LYN
100 (sampling rate r ∈ {30%, 45%, 60%, 75%, 90%}). In addition, •/◦ indicates whether the performance of PL-ECOC

is statistically superior/inferior to the comparing algorithm on each sampled data set (pairwise t-test at 0.05
significate level).

PL-ECOC PL-KNN CLPL PL-SVM LSB-CMM win/tie/loss counts

r = 30%
MSRCv2 0.426±0.095 0.433±0.054 0.374±0.046• 0.445±0.064 0.320±0.051•

9/3/0BirdSong 0.652±0.049 0.536±0.035• 0.589±0.058• 0.621±0.054 0.585±0.043•
LYN 100 0.566±0.023 0.413±0.016• 0.469±0.026• 0.548±0.028• 0.556±0.020•

r = 45%
MSRCv2 0.422±0.046 0.414±0.046 0.382±0.043• 0.438±0.040 0.390±0.036•

7/4/1BirdSong 0.692±0.027 0.583±0.029• 0.618±0.029• 0.641±0.037• 0.662±0.023
LYN 100 0.593±0.025 0.433±0.015• 0.484±0.012• 0.612±0.012◦ 0.598±0.016

r = 60%
MSRCv2 0.455±0.051 0.423±0.033 0.410±0.044• 0.448±0.038 0.390±0.042•

8/4/0BirdSong 0.701±0.032 0.594±0.039• 0.627±0.033• 0.660±0.034• 0.633±0.031•
LYN 100 0.634±0.015 0.442±0.012• 0.503±0.011• 0.635±0.009 0.636±0.012

r = 75%
MSRCv2 0.460±0.045 0.439±0.038 0.386±0.044• 0.451±0.045 0.401±0.032•

8/4/0BirdSong 0.717±0.022 0.613±0.028• 0.629±0.026• 0.657±0.020• 0.643±0.023•
LYN 100 0.663±0.013 0.455±0.011• 0.508±0.014• 0.645±0.014 0.647±0.012

r = 90%
MSRCv2 0.500±0.039 0.440±0.036• 0.416±0.048• 0.466±0.032 0.430±0.030•

10/2/0BirdSong 0.741±0.018 0.615±0.019• 0.634±0.024• 0.664±0.021• 0.632±0.030•
LYN 100 0.675±0.012 0.459±0.017• 0.507±0.012• 0.650±0.010• 0.668±0.010

TABLE 7
Predictive accuracy (mean±std) of an ensemble of
PL-ECOC with N times of bootstrapped samplings

(N ∈ {5, 10, 15, 20, 25}).

MSRCv2 BirdSong LYN 100
N = 5 0.488±0.032 0.737±0.013 0.673±0.011
N = 10 0.495±0.032 0.740±0.013 0.678±0.009
N = 15 0.497±0.023 0.743±0.013 0.679±0.010
N = 20 0.504±0.024 0.744±0.010 0.677±0.009
N = 25 0.502±0.031 0.746±0.008 0.678±0.008

TABLE 8
Running time (in seconds) of the comparing algorithms

on the MSRCv2, BirdSong and LYN 100 data sets.

MSRCv2 BirdSong LYN 100
PL-ECOC 19.153 86.560 78610.266
PL-KNN 0.609 1.643 103.035
CLPL 20.449 143.355 7136.593
PL-SVM 37.051 96.387 875.185
LSB-CMM 1078.023 1648.418 12786.078

LSB-CMM are adapted from k-nearest neighbor [1], sup-
port vector machines [15], and nonparametric Bayesian [20]
respectively to fit the partial label training examples.
On the other hand, CLPL works in similar way as PL-
ECOC by transforming the original partial label learning
problem into binary learning problem such that any
binary learner can be applied thereafter. Specifically,
CLPL transforms each PL training example (xi, Si) ∈ D
into one positive example by aggregating all candidate
labels, and q − |Si| negative examples each for one non-
candidate label.

Considering that both PL-ECOC and CLPL rely on the
choice of binary learner L to instantiate the learning
algorithms, Table 9 reports the performance of PL-ECOC

TABLE 9
Predictive accuracy (mean±std) of PL-ECOC and CLPL
instantiated with different binary learner L (L ∈{SVM,

Logistic Regression (LR), Perceptron (PT)}). In addition,
•/◦ indicates whether the performance of PL-ECOC is
statistically superior/inferior to CLPL on each data set

(pairwise t-test at 0.05 significate level)

MSRCv2 BirdSong LYN 100

L=SVM PL-ECOC 0.505±0.027 0.740±0.016 0.680±0.012
CLPL 0.413±0.039• 0.632±0.017• 0.507±0.011•

L=LR PL-ECOC 0.312±0.051 0.598±0.044 0.468±0.025
CLPL 0.408±0.039◦ 0.646±0.023◦ 0.579±0.012◦

L=PT PL-ECOC 0.458±0.045 0.711±0.025 0.463±0.012
CLPL 0.334±0.030• 0.331±0.045• 0.282±0.008•

and CLPL on the MSRCv2, BirdSong, and LYN 100 data
sets instantiated with different choices of base learner L
(L ∈{SVM, Logistic Regression (LR), Perceptron (PT)}).
As shown in Table 9, the choice of base learner does
have significant influence on the performance of both
algorithms. Furthermore, PL-ECOC performs significant-
ly better than CLPL with base learners SVM and Percep-
tron while is inferior to CLPL with base learner Logistic
Regression.

Summary: As analyzed in Subsections 4.3.1 to 4.3.3,
the following observations on the effectiveness of PL-
ECOC can be made: (a) PL-ECOC is not sensitive w.r.t.
to the codeword length parameter L (Figure 7(a)) and
the eligibility parameter τ (Table 5); (b) The performance
advantage of PL-ECOC against the comparing algorithms
is more pronounced with larger training set size (Table
6); (c) PL-ECOC is a stable learner whose performance is
robust to the perturbation over training set (Table 7); (d)
The choice of base learner has significant effects on the
performance of PL-ECOC (Table 9).
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5 CONCLUSION

Existing partial label learning approaches aim to learn
from PL training examples by trying to disambiguate
their candidate label sets. In this paper, an extension
to our preliminary research [36] is presented which
learns from PL training examples in a disambiguation-
free manner. Specifically, by adapting the popular E-
COC techniques, a novel partial label learning approach
named PL-ECOC is proposed by making use of the
candidate label set as an entirety. Comprehensive exper-
imental studies show that disambiguation-free strategy
is a promising direction for learning from partial label
data.

For each column coding, there are some PL training
examples which will be excluded from generating the
corresponding binary training set (Eq.(3)). Therefore, it is
interesting to investigate effective ways to make full use
of those excluded PL training examples. Furthermore,
coding strategies other than the random one need to be
investigated when the partial label sets of PL training
examples exhibit certain structures (e.g. ordinal structure
over class labels [34]). In the future, it is also important to
explore other techniques to enable disambiguation-free
partial label learning.
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