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Multiple-instance learning (MIL) solves the problem where training instances are grouped in bags, and a binary (positive or negative)

label is provided for each bag. Most of the existing MIL studies need fully labeled bags for training an effective classifier, while it could

be quite hard to collect such data in many real-world scenarios, due to the high cost of data labeling process. Fortunately, unlike fully

labeled data, triplet comparison data can be collected in a more accurate and human-friendly way. Therefore, in this paper, we for the

first time investigate MIL from only triplet comparison bags, where a triplet (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) contains the weak supervision information

that bag 𝑋𝑎 is more similar to 𝑋𝑏 than to 𝑋𝑐 . To solve this problem, we propose to train a bag-level classifier by the empirical risk

minimization framework and theoretically provide a generalization error bound. We also show that a convex formulation can be

obtained only when specific convex binary losses such as the square loss and the double hinge loss are used. Extensive experiments

validate that our proposed method significantly outperforms other baselines.
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1 INTRODUCTION

In supervised learning, a large number of fully labeled examples are required for training an effective model. However,

collecting such high-quality data would be laborious and expensive in many real-world scenarios. To alleviate this issue,

various weakly supervised learning problems [50] have been widely studied, including semi-supervised learning [34, 52],

noisy-label learning [18, 40], partial-label learning [45], positive-unlabeled classification [31], positive-confidence
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classification [21], similar-unlabeled classification [5], similarity-confidence classification [8], and unlabeled-unlabeled

classification [26].

This paper focuses on an important weakly supervised learning problem called multiple-instance learning (MIL)

[1, 9, 13, 16]. MIL also has other variant settings, such as multiple-instance regression [25, 39] and multi-instance

multi-label learning [19, 49]. In this paper, we consider the conventional MIL setting for binary classification where

training instances are grouped in bags, and a binary (positive or negative) label is provided for each bag. A positive bag

means that at least one training instance in the bag is positive and a negative bag means that all the training instances

in the bag are negative. MIL aims to learn an effective classifier from labeled bags for accurately predicting the label

of any unseen test bag. Intuitively, MIL is more difficult than ordinary binary classification because the labels of the

instances in each bag are unavailable. So far, MIL has been successfully applied to various real-world problems such as

drug activity prediction [13], visual tracking [4], text categorization [3], and face detection [44].

Up to now, many effective MIL methods have been developed, such as EM-DD [46], MI-SVM [3], MIBoosting [43],

MILES [10], miGraph [51], MIForests [23], and MI-ODM [47]. Although these methods work well, all of them require

fully labeled bags for learning an effective classifier. Unfortunately, it could be quite hard for us to collect such perfect

MIL datasets consisted of fully labeled bags in real-world scenarios. For example, a molecule (bag) may contain many

low-energy shapes (instances), and whether the molecule has some special shapes decides the label of the molecule that

indicates whether the molecule can be used to make the drug. In this example, it could be laborious and expensive

for human experts to accurately figure out all the correct bag labels of all the molecules. On the other hand, humans

generally perform quite well in assessing the similarity on a relative scale (i.e., instance A is more similar to instance B

than to instance C). In image annotation, it was also shown [42] that keeping only the relative comparison information

can help an algorithm be resilient against measurement errors and achieve high accuracy. Another example is text

categorization [49], where a document usually contains multiple sections each of which can be represented as an

instance, and the document can be regarded as belonging to different categories if it is viewed from different aspects. In

this example, it could also be laborious and expensive for annotators to accurately figure out all the correct bag labels of

all the documents. Fortunately, annotators could easily distinguish which two documents in a triplet of documents are

more similar from multiple perspectives. Additionally, the task of identifying proteins [37] is a further example, where

the primary sequence of each protein could be represented as a bag that contains multiple amino acid sequences. It

could be difficult for medical scientists to accurately distinguish identify whether a protein belongs to a certain protein

super-family due to complex and diverse amino acid sequences. Fortunately, it could be easy to distinguish which

two proteins in a triplet of proteins are more similar since the similarity of protein structure could be measured by

comparing different proteins. Inspired by the above examples, one may ask

Whether it is possible for us to successfully conduct multiple-instance learning using only triplet comparison

information?

This paper for the first time provides an affirmative answer to this question. Specifically, we focus on learning an

effective bag-level binary classifier from only triplet comparison bags, where a triplet (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) contains the weak
supervision information that bag 𝑋𝑎 is more similar to 𝑋𝑏 than to 𝑋𝑐 . This learning problem can be encountered in

many real-world scenarios where the relative similarity information of bags could be obtained. For example, in image

annotation, an image represents a bag that contains a set of objects (instances). It could be difficult for us to obtain the

label of each object in the image so that we cannot easily collect the bag label of a specific image. However, it would

be much easier for us to obtain the relative similarity information of bags, thanks to the emergence of image search
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engines. Specifically, when we enquiry an image 𝑋𝑎 from the image search engine, we can obtain an ordered list of

images (including image 𝑋𝑏 and image 𝑋𝑐 ) from the image search engine where the order is determined by the relative

similarity. In this way, we can collect a triplet (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ), which has the meaning that bag 𝑋𝑎 is more similar to 𝑋𝑏

than to 𝑋𝑐 . Therefore, as justified by the above example, our studied learning problem is practically significant in reality.

Our main contributions can be summarized as follows:

• We for the first time investigate MIL from only triplet comparison bags. To solve this new MIL problem, we

propose to learn a bag-level classifier by the empirical risk minimization framework and theoretically provide a

generalization error bound.

• We also show that a convex formulation can be obtained only when specific convex binary losses such as the

square loss and the double hinge loss are used.

• Extensive experiments demonstrate that our proposed method significantly outperforms other baselines.

The rest of this paper is organized as follows. Section 2 introduces related studies and preliminary knowledge. Section

3 presents the technical details and theoretical analysis of our proposed method. Section 4 reports the experimental

results of comparative studies. Section 5 concludes this paper.

2 BACKGROUND

In this section, we introduce related studies and preliminary knowledge. As this paper focuses on learning a bag-level

binary classifier from triplet comparison bags, two of the existing weakly supervised learning problems are highly

related to our work, i.e.,multiple-instance learning [9] and triplet comparison classification [12], where triplet comparison

classification aims to learn an instance-level binary classifier from only triplet comparison data. In what follows, we

will introduce ordinary binary classification, triplet comparison classification, and multiple-instance learning.

2.1 Ordinary Binary Classification

Let the feature space be X ∈ R𝑑 (with 𝑑 dimensions) and the label space be Y = {−1, +1}. Let (𝒙, 𝑦) be an example

composed of an instance 𝒙 and a label 𝑦, and it is generally assumed that each training example (𝒙, 𝑦) is independently
sampled from an unknown data distribution with probability density 𝑝 (𝒙, 𝑦). The goal of ordinary binary classification

is to construct an instance-level binary classifier by minimizing the (expected) classification risk

𝑅(𝑓 ) = E𝑝 (𝒙,𝑦)
[
ℓ (𝑓 (𝒙), 𝑦)

]
,

where E𝑝 (𝒙,𝑦) [·] denotes the expectation over 𝑝 (𝒙, 𝑦) and ℓ : R × Y ↦→ R+ denotes a binary loss. As 𝑝 (𝒙, 𝑦) is
unknown and we only have a limited number of training examples {𝒙𝑖 , 𝑦𝑖 }𝑛𝑖=1 that are independently drawn from

𝑝 (𝒙, 𝑦), a common strategy is to minimize the empirical risk 𝑅(𝑓 ) := 1

𝑛

∑𝑛
𝑖=1 ℓ (𝑓 (𝒙𝑖 ), 𝑦𝑖 ), which is called empirical risk

minimization. As can be easily verified, E𝑝 (𝒙,𝑦) [𝑅(𝑓 )] = 𝑅(𝑓 ). In this case, we call 𝑅(𝑓 ) an unbiased estimator of the

classification risk 𝑅(𝑓 ) (unbiased risk estimator in short).

2.2 Triplet Comparison Classification

Triplet comparison classification [12] is an interesting weakly supervised binary classification problem proposed

recently, which aims to train an instance-level binary classifier from triplet comparison examples. A given triplet

comparison example (𝒙𝑎, 𝒙𝑏 , 𝒙𝑐 ) indicates that instance 𝒙𝑎 is more similar to 𝒙𝑏 than to 𝒙𝑐 . To solve this triplet

comparison classification problem, the pioneering work [12] assumes that the generation process of three examples in
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a triplet is independent and derives an unbiased risk estimator accordingly. The given triplet comparison datasets were

assumed to be decomposed into three pointwise sets {(𝒙1
𝑖
)}𝑛1

𝑖=1
, {(𝒙2

𝑖
)}𝑛2

𝑖=1
, and {(𝒙3

𝑖
)}𝑛3

𝑖=1
. The marginal densities of the

three sets can be expressed as 𝑝1 (𝒙), 𝑝2 (𝒙), and 𝑝3 (𝒙) respectively. In this way, we have the following relationships

among these densities: 
𝑝1 (𝒙)
𝑝2 (𝒙)
𝑝3 (𝒙)

 =

𝜋+ 𝜋−
𝐴 𝐵

𝜋− 𝜋+


[
𝑝+ (𝒙)
𝑝− (𝒙)

]
, (1)

where 𝜋+ = 𝑝 (𝑦 = +1), 𝜋− = 𝑝 (𝑦 = −1), 𝑝+ (𝒙) = 𝑝 (𝒙 |𝑦 = +1), 𝑝− (𝒙) = 𝑝 (𝒙 |𝑦 = −1), 𝐴 = (𝜋3+ + 2𝜋2+𝜋−)/(1 − 𝜋+𝜋−),
and 𝐵 = (2𝜋+𝜋2− + 𝜋3−)/(1 − 𝜋+𝜋−). Based on the generation process of triplet comparison data in Eq. (1), Cui et al. [12]

showed that the following proposition holds.

Proposition 1 (Theorem 2 in Cui et al. [12]). The classification risk 𝑅(𝑓 ) can be equivalently represented as

𝑅(𝑓 ) = E𝒙1∼𝑝1 (𝒙 )
[
𝜆1ℓ+ (𝑓 (𝒙1)) + 𝜆2ℓ− (𝑓 (𝒙1))

]
+ E𝒙2∼𝑝2 (𝒙 )

[
𝜆3ℓ+ (𝑓 (𝒙2)) + 𝜆4ℓ− (𝑓 (𝒙2))

]
+ E𝒙3∼𝑝3 (𝒙 )

[
𝜆5ℓ+ (𝑓 (𝒙3)) + 𝜆6ℓ− (𝑓 (𝒙3))

]
,

where

𝜆1 =
𝜋+ (𝑐𝜋+ − 𝑏𝜋−)

𝑎𝑐 − 𝑏2
, 𝜆2 =

𝜋− (𝑎𝜋− − 𝑏𝜋+)
𝑎𝑐 − 𝑏2

, 𝜆3 =
𝜋+ (𝑐𝐴 − 𝑏𝐵)

𝑎𝑐 − 𝑏2
,

𝜆4 =
𝜋− (𝑎𝐵 − 𝑏𝐴)

𝑎𝑐 − 𝑏2
, 𝜆5 =

𝜋+ (𝑐𝜋− − 𝑏𝜋+)
𝑎𝑐 − 𝑏2

, 𝜆6 =
𝜋− (𝑎𝜋+ − 𝑏𝜋−)

𝑎𝑐 − 𝑏2
,

and 𝑎 = 𝜋2+ +𝐴2 + 𝜋2− , 𝑏 = 2𝜋+𝜋− +𝐴𝐵, 𝑐 = 𝜋2− + 𝐵2 + 𝜋2+, ℓ+ (𝑓 (𝒙)) = ℓ (𝑓 (𝒙), 𝑦 = +1), and ℓ− (𝑓 (𝒙)) = ℓ (𝑓 (𝒙), 𝑦 = −1).

As this proposition indicates, we can recover the classification risk 𝑅(𝑓 ) using only triplet comparison data. This

implies that we can learn an instance-level binary classifier by minimizing the empirical approximation of the above

unbiased risk estimator.

2.3 Multiple-Instance Learning

In this paper, we focus on the conventional MIL with binary labels, let {(𝑋𝑖 , 𝑌𝑖 )}𝑛𝑖=1 be the MIL training set with 𝑛

bags, where 𝑋𝑖 = {𝒙𝑖1, . . . , 𝒙𝑖 𝑗 , . . . , 𝒙𝑖𝑏𝑖 } is a bag with 𝒙𝑖 𝑗 ∈ X representing the 𝑗-th instance in the 𝑖-th bag and 𝑏𝑖

denotes the number of instances in the bag 𝑋𝑖 . If 𝑋𝑖 contains at least one positive instance, then 𝑋𝑖 is a positive bag (i.e.,

𝑌𝑖 = +1), otherwise 𝑋𝑖 is a negative bag (i.e., 𝑌𝑖 = −1). In this way, MIL aims to learn a bag-level binary classifier for

accurately predicting the label of any test bag. To achieve this goal, we need to design a function that inputs a bag

(a set of instances) and outputs a real value. Note that we can also achieve this goal by using instance-level methods

that predict the label of each instance in a bag to determine the label of the bag. However, the instance-level methods

are usually worse than the bag-level methods as shown in previous work [9]. Thus, some researchers improve the

performance of the instance-level methods by using various techniques such as instance selection [24] and attention

mechanism [20]. In this paper, we aim to learn a bag-level linear-in-parameter classifier with a specially designed

kernel for MIL: 𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 ), where𝒘 ∈ R𝑑 is a learning parameter and 𝝓 (𝑋 ) ∈ R𝑑 is a vector of basis functions

that transforms a bag into a feature vector. It is noteworthy that if we set𝑤 = [𝒘 𝑏]⊤ and 𝝓̃ (𝑋 ) = [𝝓 (𝑋 ) 1]⊤, we can
recover 𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 ) + 𝑏. In this paper, we construct 𝝓 (𝑋 ) by the statistical kernel [17] associated with the minimax

statistic and polynomial kernel, following the previous studies [6, 15].
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3 MIL FROM TRIPLET COMPARISON BAGS

In this section, we first introduce the generation process of triplet comparison bags and then propose an empirical

risk minimization formulation for MIL from triple comparison bags, finally provide a theoretical guarantee by a

generalization error bound.

3.1 Generation of Triplet Comparison Bags

Following Cui et al. [12], we adopt an analogous generation process of triplet comparison bags. We assume that three

bags in a triplet are sampling independently and the collected training set composed of triplet comparison bags can be

decomposed into three pointwise sets {(𝑋 1

𝑖
)}𝑛1

𝑖=1
, {(𝑋 2

𝑖
)}𝑛2

𝑖=1
, and {(𝑋 3

𝑖
)}𝑛3

𝑖=1
. The marginal densities of the three sets can

be expressed as 𝑝1 (𝑋 ), 𝑝2 (𝑋 ), and 𝑝3 (𝑋 ) respectively. In this way, we have the following relationships among these

densities: 
𝑝1 (𝑋 )
𝑝2 (𝑋 )
𝑝3 (𝑋 )

 =

𝜃+ 𝜃−
𝐶 𝐷

𝜃− 𝜃+


[
𝑝+ (𝑋 )
𝑝− (𝑋 )

]
, (2)

where 𝜃+ = 𝑝 (𝑌 = +1), 𝜃− = 𝑝 (𝑌 = −1), 𝑝+ (𝑋 ) = 𝑝 (𝑋 |𝑌 = +1), 𝑝− (𝑋 ) = 𝑝 (𝑋 |𝑌 = −1), 𝐶 = (𝜃3+ + 2𝜃2+𝜃−)/(1 − 𝜃+𝜃−),
and 𝐷 = (2𝜃+𝜃2− + 𝜃3−)/(1 − 𝜃+𝜃−). As the generation process is quite similar to that of Cui et al. [12], we provided all

the details of this generation process in Appendix A. Given the generation process of triplet comparison bags, we have

the following learning method.

3.2 Formulation

Motivated by Proposition 1, we propose to learn a bag-level classifier by minimizing the following empirical risk:

𝑅Trip (𝑔) =
1

𝑛1

∑︁𝑛1

𝑖=1

(
𝜆1ℓ+ (𝑔(𝑋 1

𝑖 )) + 𝜆2ℓ− (𝑔(𝑋 1

𝑖 ))
)
+ 1

𝑛2

∑︁𝑛2

𝑖=1

(
𝜆3ℓ+ (𝑔(𝑋 2

𝑖 )) + 𝜆4ℓ− (𝑔(𝑋 2

𝑖 ))
)

+ 1

𝑛3

∑︁𝑛3

𝑖=1

(
𝜆5ℓ+ (𝑔(𝑋 3

𝑖 )) + 𝜆6ℓ− (𝑔(𝑋 3

𝑖 ))
)
, (3)

where

𝜆1 =
𝜃+ (𝑐𝜃+ − 𝑏𝜃−)

𝑎𝑐 − 𝑏2
, 𝜆2 =

𝜃− (𝑎𝜃− − 𝑏𝜃+)
𝑎𝑐 − 𝑏2

, 𝜆3 =
𝜃+ (𝑐𝐶 − 𝑏𝐷)

𝑎𝑐 − 𝑏2
,

𝜆4 =
𝜃− (𝑎𝐷 − 𝑏𝐶)

𝑎𝑐 − 𝑏2
, 𝜆5 =

𝜃+ (𝑐𝜃− − 𝑏𝜃+)
𝑎𝑐 − 𝑏2

, 𝜆6 =
𝜃− (𝑎𝜃+ − 𝑏𝜃−)

𝑎𝑐 − 𝑏2
,

and 𝑎 = 𝜃2+ +𝐶2 + 𝜃2− , 𝑏 = 2𝜃+𝜃− +𝐶𝐷 , 𝑐 = 𝜃2− +𝐷2 + 𝜃2+. It is worth noting that when 𝜃+ > 0.5, we have 𝜆2 < 0, 𝜆4 < 0,

and 𝜆5 < 0. This implies that minimizing Eq. (3) may not be a convex problem even if a convex binary loss (e.g., the

hinge loss) is used, which could make the problem difficult to solve. Therefore, we need to think about how we can make

the problem convex so that we can easily solve this problem. Fortunately, as showed by previous studies [5, 15, 36], if

the used binary loss satisfies the condition ℓ+ (𝑔(𝑋 )) − ℓ− (𝑔(𝑋 )) = −𝑔(𝑋 ), Eq. (3) becomes a convex objective function,

and thus minimizing Eq. (3) is a convex problem. When we choose ℓ that satisfies the above condition, 𝑅Trip (𝑔) can be
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equivalently expressed as

𝑅Trip (𝑔) =
1

𝑛1

∑︁𝑛1

𝑖=1

(
(𝜆1 + 𝜆2)ℓ+ (𝑔(𝑋 1

𝑖 )) + 𝜆2𝑔(𝑋 1

𝑖 )
)
+ 1

𝑛2

∑︁𝑛2

𝑖=1

(
(𝜆3 + 𝜆4)ℓ+ (𝑔(𝑋 2

𝑖 )) + 𝜆4𝑔(𝑋 2

𝑖 )
)

+ 1

𝑛3

∑︁𝑛3

𝑖=1

(
(𝜆5 + 𝜆6)ℓ− (𝑔(𝑋 3

𝑖 )) − 𝜆5𝑔(𝑋 3

𝑖 )
)
. (4)

Here, because only triplet comparison bags are available, for the vector of basis function 𝝓 (from 𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 )), we
have 𝝓 (𝑋 ) ∈ R𝑑 where 𝑑 = 𝑛1 + 𝑛2 + 𝑛3.

Now we need to consider a convex binary loss ℓ used in Eq. (4), which satisfies the condition ℓ+ (𝑔(𝑋 )) − ℓ− (𝑔(𝑋 )) =
−𝑔(𝑋 ) for practical implementation. In this paper, we consider the square loss and the double hinge loss [14].

3.3 Practical Implementation

Let us first introduce the following symbols for convenience:

𝑿1 = [𝒙̃1
1
, . . . , 𝒙̃1𝑖 , . . . , 𝒙̃

1

𝑛1

]⊤ ∈ R𝑛1×𝑑 ,

𝑿2 = [𝒙̃2
1
, . . . , 𝒙̃2𝑖 , . . . , 𝒙̃

2

𝑛2

]⊤ ∈ R𝑛2×𝑑 ,

𝑿3 = [𝒙̃3
1
, . . . , 𝒙̃3𝑖 , . . . , 𝒙̃

2

𝑛3

]⊤ ∈ R𝑛3×𝑑 ,

where 𝒙̃1𝑖 = 𝜙 (𝑋 1

𝑖
), 𝒙̃2𝑖 = 𝜙 (𝑋 2

𝑖
), and 𝒙̃3

𝑖
= 𝜙 (𝑋 3

𝑖
). Then, we can insert the square loss and the double hinge loss into

Eq. (4) for practical implementation. We also adopt the widely used 𝐿2 regularization to restore stability and ensure

generalization. In what follows, we present the technical details of the solution when we use the square loss and the

double hinge loss in Eq. (4).

Square Loss. By inserting the square loss ℓSQ (𝑧, 𝑡) = 1

4
(𝑡𝑧 − 1)2 into Eq. (4), we have the following objective function:

𝐽SQ (𝒘) =
1

𝑛1

∑︁𝑛1

𝑖=1

[𝜆1 + 𝜆2

4

(𝒙̃1⊤𝑖 𝒘 − 1)2 + 𝜆2𝒙̃
1⊤
𝑖 𝒘

]
+ 1

𝑛2

∑︁𝑛2

𝑖=1

[𝜆3 + 𝜆4

4

(𝒙̃2⊤𝑖 𝒘 − 1)2 + 𝜆4𝒙̃
2⊤
𝑖 𝒘

]
+ 1

𝑛3

∑︁𝑛3

𝑖=1

[𝜆5 + 𝜆6

4

(−𝒙̃3⊤𝑖 𝒘 − 1)2 − 𝜆5𝒙̃
3⊤
𝑖 𝒘

]
+ 𝛾

2

∥𝒘 ∥2
2

=
1

𝑛1

∑︁𝑛1

𝑖=1

[𝜆1 + 𝜆2

4

(𝒘⊤𝒙̃1𝑖 𝒙̃
1⊤
𝑖 𝒘 + 1) − 𝜆1 − 𝜆2

2

𝒙̃1⊤𝑖 𝒘
]
+ 1

𝑛2

∑︁𝑛2

𝑖=1

[𝜆3 + 𝜆4

4

(𝒘⊤𝒙̃2𝑖 𝒙̃
2⊤
𝑖 𝒘 + 1) − 𝜆3 − 𝜆4

2

𝒙̃2⊤𝑖 𝒘
]

+ 1

𝑛3

∑︁𝑛3

𝑖=1

[𝜆5 + 𝜆6

4

(𝒘⊤𝒙̃3𝑖 𝒙̃
3⊤
𝑖 𝒘 + 1) − 𝜆5 − 𝜆6

2

𝒙̃3⊤𝑖 𝒘
]
+ 𝛾

2

∥𝒘 ∥2
2

= 𝒘⊤ (𝛾
2

𝐼𝑑×𝑑 + 𝜆1 + 𝜆2

4𝑛1
𝑿1⊤𝑿1 + 𝜆3 + 𝜆4

4𝑛2
𝑿2⊤𝑿2 + 𝜆5 + 𝜆6

4𝑛3
𝑿3⊤𝑿3)𝒘 − ( 𝜆1 − 𝜆2

2𝑛1
1⊤𝑛1

𝑿1 + 𝜆3 − 𝜆4

2𝑛2
1⊤𝑛2

𝑿2

+ 𝜆5 − 𝜆6

2𝑛3
1⊤𝑛3

𝑿3)𝒘 + constant.

By setting the derivative with respect to𝒘 to zero, we can obtain the following analytical solution:

𝒘 =

(
𝛾 𝑰𝑑×𝑑 + 𝜆1 + 𝜆2

2𝑛1
𝑿1⊤𝑿1 + 𝜆3 + 𝜆4

2𝑛2
𝑿2⊤𝑿2 + 𝜆5 + 𝜆6

2𝑛3
𝑿3⊤𝑿3

)−1 (𝜆1 − 𝜆2

2𝑛3
𝑿1⊤1𝑛1

+ 𝜆3 − 𝜆4

2𝑛2
𝑿2⊤1𝑛2

+ 𝜆5 − 𝜆6

2𝑛3
𝑿3⊤

1𝑛3

)
, (5)

where 𝑰𝑑×𝑑 denotes the 𝑑 × 𝑑 identity matrix and 1𝑛1
denotes the 𝑛1 × 1 vector whose elements are all ones.
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Double Hinge Loss. By inserting the double hinge loss ℓDH (𝑧, 𝑡) = max(−𝑡𝑧,max(0, 1
2
− 1

2
𝑡𝑧)) into Eq. (4), we have

the following objective function:

𝐽DH (𝒘) =
𝛾

2

∥𝒘 ∥2
2
+
[𝜆1 + 𝜆2

𝑛1
1⊤𝑛1

𝝃 + 𝜆2

𝑛1
1⊤𝑛1

𝑿1𝒘
]
+
[𝜆3 + 𝜆4

𝑛2
1⊤𝑛2

𝜼 + 𝜆4

𝑛2
1⊤𝑛2

𝑿2𝒘
]
+
[𝜆5 + 𝜆6

𝑛3
1⊤𝑛3

𝜻 − 𝜆5

𝑛3
1⊤𝑛3

𝑿3𝒘
]

s.t. 𝝃 ≥ 0𝑛1
, 𝝃 ≥ 1

2

(1𝑛1
− 𝑿1𝒘), 𝝃 ≥ −𝑿1𝒘,

𝜼 ≥ 0𝑛2
, 𝜼 ≥ 1

2

(1𝑛2
− 𝑿2𝒘), 𝜼 ≥ −𝑿2𝒘,

𝜻 ≥ 0𝑛3
, 𝜻 ≥ 1

2

(1𝑛3
+ 𝑿3𝒘), 𝜻 ≥ 𝑿3𝒘,

where ≥ for vectors means the element-wise inequality. Below, we rewrite the above optimization problem into a

standard quadratic programming form. We denote 𝜶 = [𝒘⊤𝝃⊤𝜼⊤𝜻⊤] ∈ R(𝑑+𝑛1+𝑛2+𝑛3 )
as a new variable and we also

introduce the following notations:

𝑃 =


𝛾𝐼𝑑×𝑑 0𝑑×𝑛1

0𝑑×𝑛2
0𝑑×𝑛3

0𝑛1×𝑑 0𝑛1×𝑛1
0𝑛1×𝑛2

0𝑛1×𝑛3

0𝑛2×𝑑 0𝑛2×𝑛1
0𝑛2×𝑛2

0𝑛2×𝑛3

0𝑛3×𝑑 0𝑛3×𝑛1
0𝑛3×𝑛2

0𝑛3×𝑛3


, 𝒒 =


𝜆2
𝑛1

𝑿1⊤1𝑛1
+ 𝜆4

𝑛2

𝑿2⊤1𝑛2
− 𝜆5

𝑛3

𝑿3⊤1𝑛3

𝜆1+𝜆2
𝑛1

1𝑛1

𝜆3+𝜆4
𝑛2

1𝑛2

𝜆5+𝜆6
𝑛3

1𝑛3


,

𝐺 =



0𝑛1×𝑑 −𝐼𝑛1×𝑛1
0𝑛1×𝑛2

0𝑛1×𝑛3

− 1

2
𝑿1 −𝐼𝑛1×𝑛1

0𝑛1×𝑛2
0𝑛1×𝑛3

−𝑿1 −𝐼𝑛1×𝑛1
0𝑛1×𝑛2

0𝑛1×𝑛3

0𝑛2×𝑑 0𝑛2×𝑛1
−𝐼𝑛2×𝑛2

0𝑛2×𝑛3

− 1

2
𝑿2 0𝑛2×𝑛1

−𝐼𝑛2×𝑛2
0𝑛1×𝑛3

−𝑿2 0𝑛2×𝑛1
−𝐼𝑛2×𝑛2

0𝑛1×𝑛3

0𝑛3×𝑑 0𝑛3×𝑛1
0𝑛3×𝑛2

−𝐼𝑛3×𝑛3

1

2
𝑿3 0𝑛3×𝑛1

0𝑛3×𝑛2
−𝐼𝑛3×𝑛3

𝑿3 0𝑛3×𝑛1
0𝑛3×𝑛2

−𝐼𝑛3×𝑛3



, 𝒉 =



0𝑛1

− 1

2
1𝑛1

0𝑛1

0𝑛2

− 1

2
1𝑛2

0𝑛2

0𝑛3

− 1

2
1𝑛3

0𝑛3



,

Then, the optimization objective becomes:

min

𝜶

1

2

𝜶⊤𝑃𝜶 + 𝒒⊤𝜶 s.t. 𝐺𝜶 ≤ 𝒉, (6)

which is the standard quadratic programming form and can be easily solved by any off-the-shelf quadratic programming

toolbox.

3.4 Generalization Error Bound

Here, we theoretically provide a generalization error bound for our proposed formulation. Let X be the bag-level

domain set and G = {𝑔(𝑋 ) = 𝒘⊤𝝓 (𝑋 ) be a function class with ∥𝒘 ∥ ≤ 𝐶𝒘 and sup𝑋 ∈X ∥𝝓 (𝑋 )∥ ≤ 𝐶𝝓 }. In our analysis,

we simply adopt the double hinge loss as the used loss function ℓ because it is 1-Lipschitz, and this loss function is also

used in our experiments. In contrast to the empirical risk 𝑅Trip (𝑔), we denote the expected risk of a bag-level classifier
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𝑔 (with triplet comparison bags) as

𝑅Trip (𝑔) = E𝑋 1∼𝑝1 (𝑋 )
[
𝜆1ℓ+ (𝑔(𝑋 1)) + 𝜆2ℓ− (𝑔(𝑋 1

𝑖 ))
]
+ E𝑋 2∼𝑝2 (𝑋 )

[
𝜆3ℓ+ (𝑔(𝑋 2)) + 𝜆4ℓ− (𝑔(𝑋 2))

]
+ E𝑋 3∼𝑝3 (𝑋 )

[
𝜆5ℓ+ (𝑔(𝑋 3)) + 𝜆6ℓ− (𝑔(𝑋 3))

]
.

Then we analyze the generalization error bound based on the widely used Rademacher complexity [7].

Definition 1. Let 𝑛 be a positive integer, 𝑋1, . . . , 𝑋𝑛 be independent and identically distributed random variables drawn

from a probability distribution with density 𝜇, G = 𝑔 : X ↦→ R be a class of measurable functions, and 𝝈 = (𝜎1, . . . , 𝜎𝑛)
be Rademacher variables that take value only from {+1,−1} with even probabilities. Then, the (expected) Rademacher

complexity of G is defined as

ℜ𝑛 (G) := E
𝑋1,...,𝑋𝑛

i.i.d.∼ 𝜇
E𝝈

[
sup𝑔∈G

1

𝑛

∑︁𝑛

𝑖=1
𝜎𝑖ℎ(𝑋𝑖 )

]
.

For the function class G and any probability density 𝜇, ℜ𝑛 (G) can be normally bounded by ℜ𝑛 (G) ≤ 𝐶G/
√
𝑛, where

𝐶G is a positive constant. This condition holds for many model classes including the used model class G = {𝑔(𝑋 ) =
𝒘⊤𝝓 (𝑋 )}.

Theorem 1. With the introduced definitions and conditions above, for any 𝛿 > 0, with probability at least 1 − 𝛿 , we

have the following generalization error bound:

sup𝑔∈G
���𝑅Trip (𝑔) − 𝑅Trip (𝑔)

��� ≤ 𝐶 (2𝐶G +𝐶𝒘𝐶𝝓

√︃
log

6

𝛿

2
),

where

𝐶 =
|𝜆1 | + |𝜆2 |√

𝑛1
+ |𝜆3 | + |𝜆4 |√

𝑛2
+ |𝜆5 | + |𝜆6 |√

𝑛3
.

The proof is provided in Appendix B. This theorem shows that our proposed formulation is consistent, i.e., 𝑅Trip (𝑔) →
𝑅Trip (𝑔) as 𝑛1 → ∞, 𝑛2 → ∞, and 𝑛3 → ∞. Therefore, it is clear that increasing the number of triplet bags can decrease

the generalization error. In addition, the convergence rate of our proposed formulation is O(1/√𝑛1 + 1/√𝑛2 + 1/√𝑛3),
where O denotes the order in probability. It is also noteworthy that this order is the optimal parametric rate for empirical

risk minimization without additional assumptions [29].

4 EXPERIMENTS

In this section, we evaluate our proposed method by extensive experiments on both benchmark datasets and text

categorization datasets. The compared methods in the experiments are listed as follows:

• TC-SQ (ours): An ERM-basedmethod proposed in this paper using the square loss for MIL from triplet comparison

bags. The closed-form solution is reported in Eq. (5).

• TC-DH (ours): Another ERM-based method proposed in this paper using the double hinge loss for MIL from

triplet comparison bags. For TC-DH, we solve the standard quadratic programming problem in Eq. (6) using the

off-the-shelf optimization toolbox CVXOPT [2].

• SD-SQ & SD-DH [15]: Two convex learning formulations for MIL from similar and dissimilar bags. SD-SQ

employs the square loss and SD-DH employs the double hinge loss. For a triplet comparison bag (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ), we
can regard (𝑋𝑎, 𝑋𝑏 ) as a similar pair and (𝑋𝑎, 𝑋𝑐 ) as a dissimilar pair, since 𝑋𝑎 is more similar to 𝑋𝑏 than to 𝑋𝑐 .
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• KM [27]: The 𝑘-means clustering method with 𝑘 = 2 on all the triplet comparison bags while ignoring all the

comparison information.

• CKM [38]: The constrained 𝑘-means clustering method with 𝑘 = 2. CKM uses pairwise similar (dissimilar)

information as must-link (cannot-link) constraints. We extract the pairwise relationship in the same manner as

adopted by SD-SQ and SD-DH.

• TL [35]: This is a triplet loss proposed to learn a metric directly from triplet comparison bags. Using the learned

metric, we conduct 𝑘-means clustering on test bags.

For all the above methods, we employ 𝝓 (𝑋 ) to transform each bag into a feature vector so that we can directly

employ KM, CKM, and TL as baselines for MIL from triplet comparison bags. Note that the degree of the polynomial

kernel is simply fixed at 1. For TC-SQ, TC-DH, SD-SQ, and SD-DH, the regularization parameter 𝛾 is selected from

{100, 101, . . . , 106}. For TL, the number of training epochs is set to 200 with full batch size, the learning rate is set to 10
−3

,

the weight decay is selected from {10−3, 10−2, 10−1}, the embedding dimension is set to 128, and the parameter 𝛼 is

selected from {100, 101, 102}. For KM and CKM, performances are measured by the clustering accuracy 1−min(𝑟, 1− 𝑟 )
where r is the error rate.

In the training process, we do not need to know the value of the bag-level class prior 𝜃+ in advance, since we are

able to empirically estimate 𝜃+ according to our introduced data generation process of triplet bags. Specifically, we

can exactly obtain the equation 𝑛2/(𝑛2 + 𝑛3) = 1 − 𝜃+ (1 − 𝜃+) following Cui et al. [12]. Then, we also assume that the

positive class prior should be larger than the negative class prior, i.e. 𝜃+ > 0.5. Note that if 𝜃+ < 0.5, we can switch the

role of positive class and negative class. Thus, the bag-level positive class prior can be estimated as

𝜃+ =

1 +
√︃
1 − 4(1 − 𝑛2

𝑛2+𝑛3

)

2

.

Since 𝜃+ is assumed to be larger than 0.5, we select 𝜃+ only from {0.6, 0.7, 0.8} for performance evaluation under

different bag-level class priors. For the used benchmark datasets and text categorization datasets, we sample 600 bags

for 𝜃+ = 0.6, 540 bags for 𝜃+ = 0.7, and 480 bags for 𝜃+ = 0.8, following the introduced generation process of triplet

comparison bags. For image datasets, we sample 1500 bags for training for all different 𝜃+ in {0.6, 0.7, 0.8}. We repeat

the sampling-and-training process 10 times and record mean classification accuracy with standard deviation.

4.1 Experiments on Benchmark Datasets

We first conduct performance evaluation on five benchmark datasets, including Musk1, Musk2, Elephant, Fox, and

Tiger1. For these datasets, Musk1 contains 47 positive bags and 45 negative bags. Musk2 contains 39 positive bags and

63 negative bags. The other three datasets contain 100 positive bags and 100 negative bags. Obviously, these datasets

are not large enough to be used for generating the triplet comparison bags, since a triplet comparison bag contains

three common bags. Therefore, it is needed to augment datasets and we follow Bao et al. [6] to do data augmentation

for increasing the number of training bags. Specifically, we first make copies of bags chosen randomly from the original

datasets and then add Gaussian noise with mean zero and variance 0.01 to each dimension of instances in the copied

bags. In this way, the number of bags in Musk1 and Musk2 is expanded to 10 times and the number of bags in Fox,

Elephant, and Tiger is expanded to 5 times. Table 1 reports the characteristics of these benchmark datasets after

preprocessing. Table 2 shows the classification accuracy of each method on these benchmark datasets. As shown in

1
http://www.cs.columbia.edu/~andrews/mil/datasets.html
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Table 1. The characteristics of the used benchmark datasets. The last two columns indicate the average number (mean±std) of
positive and negative instances per bag.

Dataset # Features # Positive bags # Negative bags # Avg. Pos. Ins. per bag # Avg. Neg. Ins. per bag

Musk1 166 475 445 2.2±2.5 2.9±7.0
Musk2 166 413 607 8.9±22.7 49.9±169.7
Elephat 230 504 496 3.9±4.2 3.2±3.6
Fox 230 498 502 3.2±3.6 3.4±3.8
Tiger 230 506 494 2.8±3.1 3.4±3.9

Table 2. Classification accuracy on the benchmark datasets. The best performance is highlighted in bold.

Datasets 𝜃+
Our Proposed Baselines

TC-SQ TC-DH SD-SQ SD-DH TL KM CKM

Musk1

0.6

0.710 0.696 0.627 0.626 0.545 0.528 0.533

(0.095) (0.078) (0.087) (0.091) (0.027) (0.034) (0.033)

0.7

0.844 0.817 0.751 0.746 0.600 0.563 0.560

(0.032) (0.047) (0.053) (0.034) (0.041) (0.049) (0.037)

0.8

0.898 0.881 0.816 0.819 0.622 0.603 0.613

(0.033) (0.035) (0.012) (0.011) (0.036) (0.036) (0.045)

Musk2

0.6

0.755 0.753 0.659 0.633 0.584 0.593 0.518

(0.080) (0.086) (0.058) (0.033) (0.073) (0.061) (0.086)

0.7

0.828 0.805 0.737 0.735 0.584 0.561 0.491

(0.047) (0.050) (0.045) (0.064) (0.072) (0.076) (0.076)

0.8

0.881 0.881 0.824 0.817 0.610 0.593 0.538

(0.037) (0.035) (0.036) (0.016) (0.127) (0.081) (0.119)

Elephant

0.6

0.695 0.636 0.599 0.594 0.540 0.591 0.494

(0.057) (0.073) (0.050) (0.011) (0.041) (0.009) (0.016)

0.7

0.799 0.776 0.698 0.701 0.630 0.690 0.591

(0.061) (0.078) (0.005) (0.000) (0.053) (0.007) (0.027)

0.8

0.871 0.850 0.801 0.801 0.739 0.794 0.684

(0.019) (0.033) (0.000) (0.000) (0.027) (0.007) (0.042)

Fox

0.6

0.606 0.601 0.603 0.603 0.558 0.604 0.584

(0.024) (0.012) (0.012) (0.004) (0.038) (0.003) (0.033)

0.7

0.711 0.707 0.706 0.705 0.570 0.680 0.645

(0.018) (0.010) (0.007) (0.005) (0.053) (0.041) (0.053)

0.8

0.807 0.807 0.805 0.806 0.628 0.770 0.666

(0.007) (0.007) (0.011) (0.009) (0.055) (0.068) (0.096)

Tiger

0.6

0.682 0.688 0.544 0.600 0.448 0.597 0.439

(0.071) (0.068) (0.052) (0.009) (0.069) (0.006) (0.081)

0.7

0.763 0.744 0.699 0.699 0.578 0.652 0.538

(0.044) (0.067) (0.002) (0.002) (0.092) (0.087) (0.087)

0.8

0.841 0.832 0.804 0.804 0.637 0.786 0.606

(0.035) (0.020) (0.003) (0.002) (0.090) (0.029) (0.096)

Table 2, the baseline achieves decent performance, while our proposed methods TC-SQ and TC-DH are even better. In

addition, TC-SQ achieves the best performance in most cases.

4.2 Experiments on Text Categorization

We also conduct experiments on three datasets for the task of biocreative text categorization [32, 33]. In this task, we

aim to decide whether a given <protein, document> pair should be annotated with some Gene Ontology (GO) codes.

The given inputs are some documents (bags) composed of paragraphs (instances), and each paragraph is represented by
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Table 3. The characteristics of the used datasets for the biocreative text categorization task.

Dataset # Features # Positive bags # Negative bags # Avg. Pos. Ins. per bag # Avg. Neg. Ins. per bag

Component 200 423 2707 2.9±8.7 8.9±7.6
Function 200 443 4799 1.8±6.8 8.8±7.0
Process 200 757 10961 1.4±6.0 8.7±6.9

Table 4. Classification accuracy on the biocreative text categorization datasets. The best performance is highlighted in bold.

Datasets 𝜃+
Our Proposed Baselines

TC-SQ TC-DH SD-SQ SD-DH TL KM CKM

Component

0.6

0.784 0.766 0.610 0.602 0.771 0.776 0.782

(0.053) (0.089) (0.137) (0.000) (0.028) (0.011) (0.024)

0.7

0.835 0.831 0.721 0.711 0.790 0.787 0.797

(0.044) (0.044) (0.030) (0.018) (0.040) (0.039) (0.047)

0.8

0.862 0.875 0.800 0.800 0.830 0.833 0.807

(0.032) (0.047) (0.000) (0.000) (0.040) (0.027) (0.039)

Function

0.6

0.846 0.840 0.678 0.657 0.802 0.798 0.819

(0.032) (0.068) (0.075) (0.074) (0.033) (0.022) (0.026)

0.7

0.854 0.852 0.736 0.715 0.813 0.818 0.827

(0.041) (0.040) (0.028) (0.039) (0.044) (0.037) (0.033)

0.8

0.890 0.890 0.800 0.800 0.859 0.858 0.853

(0.029) (0.036) (0.000) (0.000) (0.032) (0.023) (0.037)

Process

0.6

0.877 0.879 0.707 0.694 0.802 0.788 0.834

(0.012) (0.014) (0.058) (0.074) (0.014) (0.022) (0.015)

0.7

0.888 0.881 0.739 0.725 0.847 0.832 0.855

(0.014) (0.025) (0.030) (0.045) (0.021) (0.023) (0.015)

0.8

0.900 0.901 0.802 0.801 0.888 0.878 0.857

(0.015) (0.014) (0.003) (0.000) (0.017) (0.017) (0.017)

a feature vector. The used features are word occurrence frequencies and some statistics about the nature of the protein-

GO code interaction for each paragraph. The GO consists of three hierarchical domains of standardized biological

terms referring to cellular components, biological processes, and molecular functions. A <protein, document> pair is

labeled with a GO code if the document contains some paragraphs that link the protein to the component, process, or

function described by the GO code. Thus, there are three datasets in this biocreative text categorization task: Component,

Function, and Process2. Table 3 reports the detailed information of the three datasets. Table 4 shows the classification

accuracy of each method on the three datasets. From Table 4, we can also observe that our proposed methods TC-SQ

and TC-DH are clearly superior to other compared baselines. In addition, TC-DH achieves similar performance as

TC-SQ in the task of biocreative text categorization.

4.3 Experiments on Image Datasets

We further conduct experiments on MNIST
3
[22], Fashion

4
[41] and KMNIST

5
[11]. Since the three datasets are not

multi-instance datasets, we follow [48] to do the bag construction procedure on the three datasets. Specifically, the

multi-instance MNIST-bags, in which each bag contains several images and its bag size is drawn from a Gaussian

distribution with fixed mean and variance. The bag is positive if it contains a target digit, otherwise negative. Using 10

2
https://figshare.com/articles/dataset/MIProblems_A_repository_of_multiple_instance_learning_datasets/6633983?file=12144479

3
http://yann.lecun.com/exdb/mnist/

4
https://github.com/zalandoresearch/fashion-mnist

5
http://codh.rois.ac.jp/kmnist/
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Table 5. The characteristics of the used image datasets.

Dataset # Features # Positive bags # Negative bags # Avg. Pos. Ins. per bag # Avg. Neg. Ins. per bag

MNIST Bags 784 1,750 1,750 10±2 10±2
Fashion Bags 784 1,750 1,750 10±2 10±2
KMNIST Bags 784 1,750 1,750 10±2 10±2

Table 6. Classification accuracy on the image datasets. The best performance is highlighted in bold.

Datasets 𝜃+
Our Proposed Baselines

TC-SQ TC-DH SD-SQ SD-DH TL KM CKM

MNIST Bags

0.6

0.624 0.633 0.570 0.567 0.537 0.555 0.558

(0.018) (0.024) (0.009) (0.013) (0.013) (0.012) (0.013)

0.7

0.734 0.747 0.700 0.690 0.569 0.555 0.569

(0.018) (0.021) (0.008) (0.005) (0.011) (0.013) (0.012)

0.8

0.822 0.816 0.801 0.800 0.587 0.555 0.587

(0.016) (0.018) (0.001) (0.000) (0.015) (0.008) (0.018)

Fashion Bags

0.6

0.670 0.667 0.633 0.587 0.531 0.548 0.553

(0.024) (0.017) (0.017) (0.007) (0.006) (0.007) (0.007)

0.7

0.762 0.753 0.708 0.708 0.555 0.562 0.551

(0.019) (0.024) (0.006) (0.006) (0.012) (0.012) (0.008)

0.8

0.828 0.815 0.800 0.800 0.577 0.578 0.551

(0.013) (0.021) (0.000) (0.000) (0.008) (0.011) (0.007)

KMNIST Bags

0.6

0.641 0.640 0.552 0.560 0.528 0.545 0.540

(0.014) (0.013) (0.014) (0.013) (0.006) (0.007) (0.008)

0.7

0.733 0.725 0.682 0.700 0.556 0.555 0.543

(0.008) (0.007) (0.007) (0.002) (0.011) (0.007) (0.007)

0.8

0.815 0.809 0.801 0.800 0.571 0.571 0.539

(0.005) (0.006) (0.002) (0.000) (0.011) (0.008) (0.009)
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Fig. 1. Classification accuracy of each method when the number of triplet bags increases.
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Fig. 2. Classification accuracy of TC-SQ and TC-DH by varying 𝛾 .

different digits as targets, we obtain 10 different multi-instance MNIST-bag datasets. In the same way, we can obtain 10

Fashion-bag datasets and 10 KMNIST-bag datasets. Table 5 reports the detailed information of those datasets. Table 6

reports the macro averaged classification accuracy over 10 one-vs-rest datasets, respectively. From Table 6, we can also

observe that our proposed methods TC-SQ and TC-DH are clearly superior to other compared baselines.
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4.4 Further Analysis

Performance of Increasing Triplet Bags. As shown in Theorem 1, the performance of our methods is expected to be

improved if more triplet comparison bags are provided. To empirically validate this theoretical finding, we conduct

experiments on two benchmark datasets (Musk1 and Musk2) and two biocreative text classification datasets (Component

and Process) with class prior 𝜃+ = 0.7 by varying the number of triplet comparison bags (100% means that all the bags

are used for training). As shown in Figure 1, the classification accuracy of our proposed methods generally increases

given more triplet comparison bags. This observation is clearly in accordance with our derived generalization error

bound in Theorem 1, since the generalization error decreases as the number of triplet bags increases. In addition, our

proposed methods (TC-SQ and TC-DH) generally outperform SD-SQ and SD-DH when different numbers of training

bags are provided.

Influence of regularization. To show the effect of the regularization on the proposed methods, we perform MIL

from triplet comparison bags using our proposed methods on the above four datasets (Musk1, Musk2, Component, and

Process) with 𝜃+ = 0.7 and 𝛾 is selected from {100, . . . , 106}. We show the classification accuracy in Figure 2. From

Figure 2, we can find that the best performance is achieved at some intermediate value of 𝛾 , which suggests that the

regularization term plays an important role.

5 CONCLUSION

Most of the existing multiple-instance learning studies need fully labeled bags for training an effective classifier, while it

could be hard to collect such data in real-world scenarios. Therefore, we investigated a novel weakly supervised learning

problem called multiple-instance learning from triplet comparison bags, where we aim to train a bag-level binary

classifier from only triplet comparison bags. A triplet (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) contains the weak supervision information that bag

𝑋𝑎 is more similar to 𝑋𝑏 than to 𝑋𝑐 . To the best of our knowledge, this paper provided the first attempt to study this

problem. To solve this new MIL problem, we proposed to train a bag-level classifier by the empirical risk minimization

framework and theoretically provided a generalization error bound. Extensive experiments clearly demonstrated that

our proposed method significantly outperforms other baselines. In future work, we will investigate multiple-instance

learning with other types of weak supervision.

A GENERATION PROCESS OF TRIPLET COMPARISON BAGS

Recall the assumption that three bags in a triplet are sampling independently. Therefore, for a triplet (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ), the
bag labels (𝑌𝑎, 𝑌𝑏 , 𝑌𝑐 ) can only appear to be one of the following cases:

Y1 = {(+1, +1, +1), (+1, +1,−1), (+1,−1,−1), (−1, +1, +1), (−1,−1, +1), (−1,−1,−1)}.

Otherwise, the first bag is more similar to the third bag than to the second bag, and in this case, (𝑌𝑎, 𝑌𝑏 , 𝑌𝑐 ) appears to
be one of the following cases:

Y2 = {(+1,−1, +1), (−1, +1,−1)}.

According to the above distributions Y1 and Y2, we can actually collect two distinct types of datasets as follows:

D1 = {(𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) | (𝑌𝑎, 𝑌𝑏 , 𝑌𝑐 ) ∈ Y1}, D2 = {(𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) | (𝑌𝑎, 𝑌𝑏 , 𝑌𝑐 ) ∈ Y2}.
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The two types of datasets D1 and D2 can be considered to be generated from the following underlying distributions:

𝑝1 (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) =
𝑝 (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 , (𝑌𝑎, 𝑌𝑏 , 𝑌𝑐 ) ∈ Y1)

𝜃𝑇
,

𝑝2 (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) = 𝜃+𝑝+ (𝑋 )𝑝+ (𝑋 )𝑝− (𝑋 ) + 𝜃−𝑝− (𝑋 )𝑝+ (𝑋 )𝑝− (𝑋 ),

where 𝜃𝑇 = 1 − 𝜃+𝜃− , 𝜃+ = 𝑝 (𝑦 = +1) and 𝜃− = 𝑝 (𝑦 = −1) and 𝑝+ (𝑋 ) = 𝑝 (𝑋 |𝑦 = +1) and 𝑝− (𝑋 ) = 𝑝 (𝑋 |𝑦 = −1). Then
we have

D1 = {(𝑋1,𝑎, 𝑋1,𝑏 , 𝑋1,𝑐 )}𝑚1 ∼ 𝑝1 (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ), D2 = {(𝑋2,𝑎, 𝑋2,𝑏 , 𝑋2,𝑐 )}𝑚2 ∼ 𝑝2 (𝑋𝑎, 𝑋𝑏 , 𝑋𝑐 ) .

Furthermore, we denote the pointwise data collected from D1 and D2 by ignoring the triplet comparison relation as

D1,𝑎 = {𝑋1,𝑎}𝑚1
, D

1,𝑏 = {𝑋
1,𝑏 }𝑚1

, D1,𝑐 = {𝑋1,𝑐 }𝑚1
, D2,𝑎 = {𝑋2,𝑎}𝑚2

, D
2,𝑏 = {𝑋

2,𝑏 }𝑚2
and D2,𝑐 = {𝑋2,𝑐 }𝑚2

. From

Theorem 1 in Cui et al. [12], samples in D1,𝑎 , D1,𝑐 , D2,𝑎 and D2,𝑐 are independently drawn from

𝑝1 (𝑋 ) = 𝜃+𝑝+ (𝑋 ) + 𝜃−𝑝− (𝑋 ),

samples in D
1,𝑏 are independently drawn from

𝑝2 (𝑋 ) =
(𝜃3+ + 2𝜃2+𝜃−)𝑝+ (𝑋 ) + (2𝜃+𝜃2− + 𝜃3−)𝑝− (𝑋 )

𝜃𝑇
,

and samples in D
2,𝑏 are independently drawn from

𝑝3 (𝑋 ) = 𝜃−𝑝+ (𝑋 ) + 𝜃+𝑝− (𝑋 ).

Those indicate that from triplet comparison data, we can essentially obtain samples that can be drawn independently

from three different distributions. Then we denote the three aggregated datasets (from respective distributions) as

˜D1 = {𝑋̃ 1

𝑖 }
𝑛1

𝑖=1
= D1,𝑎 ∪ D1,𝑐 ∪ D2,𝑎 ∪ D2,𝑐 , ˜D2 = {𝑋̃ 2

𝑖 }
𝑛2

𝑖=1
= D

1,𝑏 ,
˜D3 = {𝑋̃ 3

𝑖 }
𝑛3

𝑖=1
= D

2,𝑏 ,

where

˜D1 ∼ 𝑝1 (𝑋 ), ˜D2 ∼ 𝑝2 (𝑋 ), ˜D3 ∼ 𝑝3 (𝑋 ).

Let 𝐶 =
𝜃 3

++2𝜃 2

+𝜃−
𝜃𝑇

and 𝐷 =
2𝜃+𝜃 2

−+𝜃 3

−
𝜃𝑇

, we can express the relationship between these densities as
𝑝1 (𝑋 )
𝑝2 (𝑋 )
𝑝3 (𝑋 )

 =

𝜃+ 𝜃−
𝐶 𝐷

𝜃− 𝜃+


[
𝑝+ (𝑋 )
𝑝− (𝑋 )

]
.

B PROOF OF THEOREM 1

Recall that by using the loss function that satisfies the linear-odd condition, 𝑅Trip (𝑔) can be also represented as:

𝑅Trip (𝑔) =
1

𝑛1

∑︁𝑛1

𝑖=1

(
(𝜆1 + 𝜆2)ℓ+ (𝑔(𝑋 1

𝑖 )) + 𝜆2𝑔(𝑋 1

𝑖 )
)
+ 1

𝑛2

∑︁𝑛2

𝑖=1

(
(𝜆3 + 𝜆4)ℓ+ (𝑔(𝑋 2

𝑖 )) + 𝜆4𝑔(𝑋 2

𝑖 )
)

+ 1

𝑛3

∑︁𝑛3

𝑖=1

(
(𝜆5 + 𝜆6)ℓ− (𝑔(𝑋 3

𝑖 )) − 𝜆5𝑔(𝑋 3

𝑖 )
)
.
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In this way, we can represent 𝑅Trip (𝑔) as

𝑅Trip (𝑔) = E𝑝1 (𝑋 )
[
(𝜆1 + 𝜆2)ℓ+ (𝑔(𝑋 1)) + 𝜆2𝑔(𝑋 1)

]
+ E𝑝2 (𝑋 )

[
(𝜆3 + 𝜆4)ℓ+ (𝑔(𝑋 2)) + 𝜆4𝑔(𝑋 2)

]
+ E𝑝3 (𝑋 )

[
(𝜆5 + 𝜆6)ℓ− (𝑔(𝑋 3)) − 𝜆5𝑔(𝑋 3)

]
,

where we assumed that the collected data {𝑋 1

𝑖
}𝑛1

𝑖=1
are independently sampled from 𝑝1 (𝑋 ), the collected data {𝑋 2

𝑖
}𝑛2

𝑖=1

are independently sampled from 𝑝2 (𝑋 ) and the collected data {𝑋 3

𝑖
}𝑛3

𝑖=1
are independently sampled from 𝑝3 (𝑋 ). Let us

further introduce

𝑅1 (𝑔) =
1

𝑛1

∑︁𝑛1

𝑖=1

(
(𝜆1 + 𝜆2)ℓ+ (𝑔(𝑋 1

𝑖 )) + 𝜆2𝑔(𝑋 1

𝑖 )
)
, 𝑅1 (𝑔) = E𝑝1 (𝑋 )

[
(𝜆1 + 𝜆2)ℓ+ (𝑔(𝑋 1)) + 𝜆2𝑔(𝑋 1)

]
,

𝑅2 (𝑔) =
1

𝑛2

∑︁𝑛2

𝑖=1

(
(𝜆3 + 𝜆4)ℓ+ (𝑔(𝑋 2

𝑖 )) + 𝜆4𝑔(𝑋 2

𝑖 )
)
, 𝑅2 (𝑔) = E𝑝2 (𝑋 )

[
(𝜆3 + 𝜆4)ℓ+ (𝑔(𝑋 2)) + 𝜆4𝑔(𝑋 2)

]
,

𝑅3 (𝑔) =
1

𝑛3

∑︁𝑛3

𝑖=1

(
(𝜆5 + 𝜆6)ℓ− (𝑔(𝑋 3

𝑖 )) − 𝜆5𝑔(𝑋 3

𝑖 )
)
, 𝑅3 (𝑔) = E𝑝3 (𝑋 )

[
(𝜆5 + 𝜆6)ℓ− (𝑔(𝑋 3)) − 𝜆5𝑔(𝑋 3)

]
.

In this way, we have:

𝑅Trip (𝑔) = 𝑅1 (𝑔) + 𝑅2 (𝑔) + 𝑅3 (𝑔), 𝑅Trip (𝑔) = 𝑅1 (𝑔) + 𝑅2 (𝑔) + 𝑅3 (𝑔) .

Thus,

sup

𝑔∈G

���𝑅Trip (𝑔) − 𝑅Trip (𝑔)
��� ≤ sup

𝑔∈G

���𝑅1 (𝑔) − 𝑅1 (𝑔)
��� + sup

𝑔∈G

���𝑅2 (𝑔) − 𝑅2 (𝑔)
��� + sup

𝑔∈G

���𝑅3 (𝑔) − 𝑅3 (𝑔)
��� .

Hence the problem becomes how to find an upper bound of each term in the right hand size of the inequality.

Lemma 1. With the introduced definitions and conditions in Theorem 1, for any 𝛿 > 0, with probability at least 1 − 𝛿 , we

have

sup

𝑔∈G

���𝑅1 (𝑔) − 𝑅1 (𝑔)
��� ≤(|𝜆1 | + |𝜆2 |)

(
2𝐶G√
𝑛1

+𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛1

)
.

Proof. Firstly, it is easy to verify that the double hinge loss ℓDH is 1-Lipschitz. Suppose an example in𝑅1 (𝑔) is replaced
by another arbitrary example, then the change of sup𝑔∈G

(
𝑅1 (𝑔) −𝑅1 (𝑔)

)
is no greater than ( |𝜆1 | + |𝜆2 |)𝐶𝒘𝐶𝝓/𝑛1. Then,

by applying McDiarmid’s inequality [28], for any 𝛿 > 0, with probability at least 1 − 𝛿
2
,

sup

𝑔∈G

(
𝑅1 (𝑔) − 𝑅1 (𝑔)

)
≤ E

[
sup

𝑔∈G

(
𝑅1 (𝑔) − 𝑅1 (𝑔)

) ]
+ (|𝜆1 | + |𝜆2 |)𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛1
.

Besides, it is routine [30] to show

E
[
sup

𝑔∈G

(
𝑅1 (𝑔) − 𝑅1 (𝑔)

) ]
≤ 2( |𝜆1 | + |𝜆2 |)ℜ𝑛1

(G),

where we have used the Talagrand’s lemma (Lemma 4.2 in Mohri et al. [30]), i.e., ℜ𝑛 (ℓ ◦ G) ≤ 𝜌ℜ𝑛 (G) if ℓ is a
𝜌-Lipschitz loss function. By considering ℜ𝑛 (G) ≤ 𝐶G/

√
𝑛, we have

sup

𝑔∈G

(
𝑅1 (𝑔) − 𝑅1 (𝑔)

)
≤(|𝜆1 | + |𝜆2 |)

(
2𝐶G√
𝑛1

+𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛1

)
.
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By further taking into account the other side sup𝑔∈G
(
𝑅1 (𝑔) − 𝑅1 (𝑔)

)
, we have for any 𝛿 > 0, with probability at least

1 − 𝛿 ,

sup

𝑔∈G

���𝑅1 (𝑔) − 𝑅1 (𝑔)
��� ≤(|𝜆1 | + |𝜆2 |)

(
2𝐶G√
𝑛1

+𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛1

)
,

which completes the proof of Lemma 1. □

Lemma 2. With the introduced definitions and conditions in Theorem 1, for any 𝛿 > 0, with probability at least 1 − 𝛿 , we

have

sup

𝑔∈G

���𝑅2 (𝑔) − 𝑅2 (𝑔)
��� ≤(|𝜆3 | + |𝜆4 |)

(
2𝐶G√
𝑛2

+𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛2

)
.

Lemma 3. With the introduced definitions and conditions in Theorem 1, for any 𝛿 > 0, with probability at least 1 − 𝛿 , we

have

sup

𝑔∈G

���𝑅2 (𝑔) − 𝑅2 (𝑔)
��� ≤(|𝜆5 | + |𝜆6 |)

(
2𝐶G√
𝑛3

+𝐶𝒘𝐶𝝓

√︄
log

2

𝛿

2𝑛3

)
.

Lemma 2 and Lemma 3 can be proved similarly as Lemma 1, hence we omit the proof. By combining Lemma 1,

Lemma 2 and Lemma 3 together, Theorem 1 is immediately proved. □
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