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For Virtual Desktop Infrastructure (VDI) system, effective resource management is rather important where
turning off spare virtual machines would help save running cost while maintaining sufficient virtual machines
is essential to secure satisfactory user experience. Current VDI resource management strategy works in a
passive manner by either reactively driving available capacity based on user demands or following manually
configured schedules, which may lead to unnecessary running cost or unsatisfactory user experience. In
this paper, we propose a first attempt towards proactive VDI resource management, where two adaptive
learning approaches for VDI workload prediction are proposed by learning from multi-grained historical
features. For non-persistent desktop pool, based on the aggregation session count of pool-sharing users, the
CAFE approach induces pool-level workload predictive model by utilizing coarse-to-fine historical features
extracted from aggregation workload data. For persistent desktop pool, based on the session connection status
of individual users within the same pool, the SOUP approach induces user-level workload predictive model
by incorporating encoded multi-grained features extracted from logon behavior of individual users into an
aggregation pool-level model. Extensive experiments on data sets of real VDI customers and electricity load
evidently verify the effectiveness of the proposed adaptive approaches for VDI workload prediction as well as
other workload prediction tasks.
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1 INTRODUCTION

Virtual Desktop Infrastructure (VDI) is a desktop virtualization technology to provide and administer
virtual desktops using virtual machines (VMs) hosted on centralized servers. The many benefits
offered by VDI including remote access, cost saving, security and centralized management, which
make VDI widely adopted in enterprise environments such as remote network, bring your own
device (BYOD), task work and shift work. The global VDI market is continuously growing with
a prediction of reaching 15.3 billion dollars in 2023 [36]. Traditionally, VDI solution is mostly
deployed in on-premise environment where the physical servers and data centers are managed
and owned by customers. In recent years, with the maturing of cloud computing, the cloud-based
VDI solution is gaining increasing adoption where the virtual machines are handled by public
cloud vendors. Because of the much lower initial investment, better resilience and scalability,
cloud-based VDI solution is suitable for Small and Midsize Business (SMB) customers and larger
enterprise customers with hybrid cloud infrastructure. One of the biggest advantages of such cloud
infrastructure is cost-efficiency. Modern cloud vendors can charge per second for resource usage.
Therefore, proactive provisioning of resources and power management is of great consequence to
the cost and performance of a VDI system.
Building a proactive VDI resource management system is not an easy job. Virtual desktops are

managed by desktop pools in VDI systems. Regarding the different requirements of user experience
and cost-efficiency, there are usually two kinds of desktop pools: non-persistent pool and persistent
pool. The non-persistent pool shares generic desktops among users where the desktop state is
reset after the user session is logged off. Non-persistent pool is very cost-efficient and is mostly
suitable for repetitive task workers who does not require customized desktop. Currently VDI
admins can setup manual power management schedules and reactive provision policies for resource
optimization purpose but these approaches are usually error-prone, time-consuming and sometimes
cause unnecessary expense and poor user experience. On the contrary, in a persistent pool, each
user is allocated with a dedicated desktop where all the changes will be saved after user session is
logged off. A persistent desktop is just like a physical desktop belonging to the user which ensures
the maximized VDI end user experience but the running cost is higher. Power management of the
persistent pool is more challenging as each desktop is unique and needs its own power policy. This
leads to the situation that most VDI admins are not willing to power off persistent desktops because
its high risk of downgrading user experience due to boot storm and the long time wait for turning
on and preparing desktops. To achieve proactive VDI power management, it is essential to build
adaptive machine learning models to predict the desktop pool workload. Based on the predictive
result of such models, VDI system can always maintain a suitable number of powered-on desktops
to save infrastructure cost and improve user experience.
However, VDI workload prediction is a challenging task. Firstly, VDI resource management

system is complicated where non-persistent pool and persistent pool are managed in different ways.
Accordingly, two different models are needed to handle two types of VDI desktop pools. Secondly,
the workload data of VDI desktop pools has very distinctive characteristics. The customers of VDI
services are from many different industries. Meanwhile, as a cloud service, VDI was originally
designed to provide the maximum flexibility for customer administrators to balance workload
among desktop pools. Thus, the VDI desktop pools usually have frequent fluctuations. Moreover,
according to the simplicity of reconfiguration and resource management, the lifespan of most
VDI desktop pools is usually less than 12 months. So the data size of VDI desktop pool available
for model training is usually between thousands to tens of thousands samples depending on the
workload monitoring interval. Accordingly, it is difficult to achieve good performance with deep
learning techniques. Thirdly, in order to cope with the incoming workload, VDI system needs
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Fig. 1. VDI Non-persistent Pool and Persistent Pool.

about 15 to 30 minutes (the more the better) for preparation in most cases. Therefore, multi-steps
prediction is a must which is much more challenging than normal one step prediction. Lastly, VDI
workload prediction needs domain-specific evaluation metrics. For example, some VDI customers
prefer more over predictions to ensure end user satisfaction rate but others can possible tolerate
more under predictions for more cost saving. These differentiations make VDI workload prediction
more challenging than common cloud workload prediction tasks.
Because of the challenging parts discussed in above section, the state-of-the-art solutions can

not work well on VDI desktop pool workload prediction. In this paper, we introduce CAFE and
SOUP, two adaptive learning approaches based on multi-grained features for VDI desktop pool
workload prediction. Specifically, CAFE is designed for non-persistent pool where the aggregate
session count of the pool is the most effective signal of the workload. Every minute CAFE records
the aggregate session count of each non-persistent pool and leverages coarse-to-fine historical
descriptions of the historical workload to generate multi-grained features. Correspondingly, the
pool workload of the upcoming time span is considered as the target for prediction.1 For persistent
pool workload prediction, aggregate session count is not suitable as every specific user’s dedicated
desktop has to be managed individually. Accordingly, SOUP model is proposed to predict single
user logon behavior accurately by utilizing encoded multi-granularity description. Specifically, we
group all the users in the same pool and build a common model for them. For every single user,
his/her VDI session connection status in one pool is collected per minute and aggregated every
30 minutes. Then, SOUP generates encoded multi-grained feature by employing coarse-to-fine
historical descriptions of the half-hourly session count sequence. Correspondingly, the user’s
session count in the upcoming 30 minutes is regarded as the target for prediction. It is worth noting
that the coarse-to-fine multi-granularity feature extraction used in CAFE and SOUP is an innovative
framework to cope with long-term patterns and short-term fluctuations in the VDI workload data.
Next, the Gradient Boosting Decision Tree (GBDT) [15, 16] regression models based on ensemble
learning techniques are trained from examples formulated by encoded historical sequence with
multi-granularity features. Comparative studies with well-defined domain specific metrics on real
VDI customer data sets evidently verify the validity of coarse-to-fine multi-grained features for
VDI workload prediction. Moreover, extended experiments are conducted on electricity load data
prediction where the superior performance of CAFE demonstrates the potential applicability of

1In this paper, 30 or 60 minutes is used as the next time span which is practical for adaptive VDI resource management.
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coarse-to-fine feature extraction method on other workload prediction and time-series prediction
tasks.

The main contributions of this paper are as follows.

• Formalize the VDI workload prediction problem for VDI non-persistent pool and VDI persis-
tent pool respectively. This problem can be viewed as the VDI domain-specific version of
cloud service workload prediction problem.
• Propose CAFE, an adaptive learning approach based on coarse-to-fine multi-granularity
features for VDI non-persistent pool workload prediction.
• Propose SOUP, an adaptive learning approach based on encoded multi-granularity features
for VDI persistent pool workload prediction.
• Evaluate the effectiveness of CAFE and SOUP models by extensive experiments on real-
world VDI customer workload data with general evaluation metrics as well as well-defined
domain-specific metrics.
• Evaluate the performance of CAFE model on electricity load data and discuss the potential
applicability of CAFE and SOUP models on other time-series data prediction tasks.

The rest of this paper is organized as follows. Section 2 gives technical details of the proposed
CAFE and SOUP learning approaches. Section 3 discusses related work. Section 4 introduces
the collected data sets in real VDI systems for workload prediction and the experimental results
of comparative studies. Section 5 discusses the potential applicability of coarse-to-fine feature
extraction method to other time-series tasks. Finally, we conclude the paper in Section 6.

2 THE PROPOSED APPROACHES

To provide accurate prediction of VDI workload, the deep understanding of VDI workload is very
critical [4]. There are various perspectives to measure the VDI workload and in this paper we
interpret the VDI workload from the desktop usage perspective which reflects the actual resource
utilization of the customer deployment. Specifically, we use the user session count aggregately or
individually to measure the VDI workload and build different predictive models for different types
of desktop pools.

2.1 The CAFE Approach

The CAFE approach is designed to predict the workload of non-persistent pool where we choose
to use the aggregate session count as the VDI workload indicator based on two considerations.
Firstly, the data noise can be mitigated statistically by the effect of aggregating a great deal of
individual sessions which could help improve the effectiveness of the learning model. According
to [28, 46] and [42], there are similar characteristics in the time-series analysis of smart meter
data and tourism data. Secondly, aggregate session count can be modeled only once for each VDI
non-persistent pool which is very cost-efficient in view of model training.

2.1.1 Formulation. Firstly, we define the non-persistent pool’s workload sequence as 𝒙𝑡,𝑛 =

(𝑥𝑡 ; . . . ;𝑥𝑡−𝑛+1). Here, 𝑥𝑡 denotes the value of the non-persistent pool workload at time 𝑡 (in
minute) and 𝑛 denotes the workload sequence length. The workload to be predicted at time 𝑡 + Δ𝑡
is denoted as 𝑥𝑡+Δ𝑡 . The target is to train a predictive model 𝑓Δ𝑡 : 𝒙𝑡,𝑛 ↦→ R with which we can
acquire the prediction of the future workload 𝑥𝑡+Δ𝑡 at time 𝑡 + Δ𝑡 as :

𝑥𝑡+Δ𝑡 = 𝑓Δ𝑡 (𝒙𝑡,𝑛) (1)
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Fig. 2. Schematic diagram of multi-grained feature representation

Moreover, given the the feature vector 𝝁𝑡 generated from 𝒙𝑡,𝑛 and a regression function 𝑔(·), the
predictive model 𝑓Δ𝑡 can be instantiated by:

𝑓Δ𝑡 = 𝑔(𝝁𝑡 ) (2)

In a manner similar to [20], 𝝁𝑡 is designed to embody three feature vectors:

𝝁𝑡 = (𝒉𝑡 ; 𝒔𝑡 ; 𝒄𝑡 ) (3)

Here, 𝒉𝑡 denotes the historical features in a multi-grained representation. To formulate 𝒉𝑡 , a coarse-
to-fine description transformation 𝜆 : 𝒙𝑡,𝑛 ↦→ 𝒉𝑡 is employed by CAFE. Furthermore, 𝒔𝑡 is the
seasonal features obtained from 𝒙𝑡,𝑛 whilst 𝒄𝑡 denotes a set of contextual features.
Formally speaking, given the historical workload sequence of a non-persistent desktop pool:

𝑺 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 }, we can define the training data set D = {(𝝁𝑡 , 𝑥𝑡+Δ𝑡 ) | 𝑙 ≤ 𝑡 ≤ 𝑇 − Δ𝑡} where 𝑙
denotes the minimum feasible starting time of 𝒙𝑡,𝑛 and𝑇 denotes the sequence ending time. Finally,
by invoking specified regression learning method L on D, i.e. 𝑔 ← [ L(D), we can induce the
regressor 𝑔 : 𝝁𝑡 ↦→ R.

2.1.2 Coarse-to-fine Feature Extraction. As mentioned above, feature vector 𝒉𝑡 is used to repre-
sent the historical pattern of the pool workload sequence 𝒙𝑡,𝑛 . We define a coarse-to-fine multi-
granularity representation model 𝜆 : 𝒙𝑡,𝑛 ↦→ 𝒉𝑡 to describe 𝒙𝑡,𝑛 in a coarse-to-fine form.
Specifically, let 𝒌 = (𝑘1, . . . , 𝑘𝛼 ) and 𝜸 = (𝛾1, . . . , 𝛾𝛼 ) be the granularities and corresponding

action scopes in multi-grained representation where 𝛼 denotes the total number of transformation
layer in 𝜆. Each transformation layer contains 𝑚𝑖 granules of length 𝑘𝑖 and its action scope 𝛾𝑖
is defined by 𝛾𝑖 = 𝑘𝑖 ∗𝑚𝑖 . Given the input sequence 𝒙𝑡,𝑛 , the historical feature vector 𝒉𝑡 can be
formulated as:

𝒉𝑡 = 𝜆(𝒙𝑡,𝑛, 𝒌,𝜸 ) = (𝑳1, 𝑳2, . . . , 𝑳𝛼 )𝑇𝒙𝑡,𝑛,where 𝑳𝑖 = [𝑙𝑖𝑝𝑞]𝑛×𝑚𝑖
, 𝑚𝑖 =

𝛾𝑖

𝑘𝑖
. (4)
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Table 1. 𝒌 and 𝒎 in coarse-granularity description

𝑖 1 2 3 4
𝑘𝑖 𝑛 𝑛

2
𝑛
6

𝑛
8

𝑚𝑖 1 1 1 1

Table 2. 𝒌 and 𝒎 in fine-granularity description

𝑖 5 6 7
𝑘𝑖

Δ𝑡
3

Δ𝑡
15 1

𝑚𝑖 6 15 1

Here, 𝑳𝑖 = [𝑙𝑖𝑝𝑞]𝑛×𝑚𝑖
is the transformation matrix of the 𝑖𝑡ℎ grain-layer where its elements are

defined by mean aggregation as follows:

𝑙𝑖𝑝𝑞 =


1
𝑘𝑖
, (𝑞 − 1)𝑘𝑖 + 1 ≤ 𝑝 ≤ 𝑞𝑘𝑖 ,

1 ≤ 𝑞 ≤ 𝑚𝑖 .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5)

Figure 2 shows a toy example of the multi-grained feature representation. For the ancient
historical data, two coarse granularities (𝑘 = 180𝑚𝑖𝑛 and 𝑘 = 240𝑚𝑖𝑛) are used to extract features.
For the recent historical data, two fine granularities (𝑘 = 2𝑚𝑖𝑛 and 𝑘 = 10𝑚𝑖𝑛) are used respectively.
In this paper, seven coarse-to-fine grain-layer transformations (𝛼 = 7) are applied to the

pool workload sequence to generate the historical feature vector 𝒉𝑡 . CAFE employs four coarse-
granularity layer transformations based on hour-level aggregations. The intent is to eliminate the
less-relevant minor fluctuation in the ancient data and focus more on macro pattern extraction to
minimize the noise impact during formulating regression model. In these four transformations, we
enforce𝑚 = 1 so that the workload trend is described by a consistent average manner in the whole
action scope. Table 1 summarizes the corresponding setting of 𝑘𝑖 and 𝛾𝑖 .

On the other hand, fine-granularity description excels in grasping the frequent unexpected change
in the more recent periods. In this paper, we use three fine-granularity layer transformations by
utilizing minute-level aggregations. It is worth noting that, the value of granularity 𝑘𝑖 and scope
𝛾𝑖 become smaller when the more recent periods are considered and the prediction time span
Δ𝑡 (Δ𝑡 ≥ 30) is used as the basic unit to calculate 𝛾𝑖 . The configurations of all three fine-granularity
transformations can be found in Table 2.
Seasonal features and contextual features are also important for model learning. From the

visualization of training data in Figure 4, the weekly and daily seasonal patterns can be easily
captured. This reflects the domain knowledge that the VDI workload pattern could change every
few weeks. For example, in the retail domain, the VDI workload climbs in the holiday seasons and
drops in the slack seasons. Let 𝑑 and𝑤 denote the maximum days and weeks for seasonal features
extraction2 respectively, we can define the seasonal feature vector 𝒔𝑡 as:

𝒔𝑡 = (𝑠𝑡−1440∗1; . . . , 𝑠𝑡−1440∗𝑑 ; 𝑠𝑡−1440∗7∗1; . . . ; 𝑠𝑡−1440∗7∗𝑤),where 𝑠𝑎 =

∑Δ𝑡
𝑖=1 𝑥𝑎+𝑖
Δ𝑡

. (6)

Finally, two static contextual features are considered in CAFE. We use 𝑚𝑖𝑛𝑢𝑡𝑒_𝑜 𝑓 _𝑡ℎ𝑒_𝑑𝑎𝑦 ∈
2In this paper, we set 𝑑 = 6 and 𝑤 = 5.
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{1, 2, . . . , 1440} to represent the index of the current minute in a day and 𝑑𝑎𝑦_𝑜 𝑓 _𝑡ℎ𝑒_𝑤𝑒𝑒𝑘 ∈
{1, 2, . . . , 7} to indicate the day of the week. The contexture features can be defined as follows:

𝒄𝑡 = (𝑚𝑖𝑛𝑢𝑡𝑒_𝑜 𝑓 _𝑡ℎ𝑒_𝑑𝑎𝑦,𝑑𝑎𝑦_𝑜 𝑓 _𝑡ℎ𝑒_𝑤𝑒𝑒𝑘). (7)

2.1.3 Learning Method. We choose GBDT as our learning method L for following reasons. Firstly,
most VDI desktop pools have a medium-length lifespan which is usually less than 12 months. So the
available workload data points for training are limited. As a widely used prediction model, GBDT
has recorded good performance as well as generalization ability on middle size data set which is a
perfect fit for VDI workload data. Secondly, the training time of GBDT is much shorter than deep
learning methods. This provides the flexibility of model re-training with newly collected data on
demand to increase the prediction accuracy. Last but not least, GBDT has less hype parameters
which can save a lot of model tuning effort.

2.2 The SOUP Approach

As discussed in Section 1, VMs in the persistent pool are usually kept running all the time to
avoid user’s wait for desktop launch, which results in enormous cost for public cloud customers.
However, it is not possible to manage the persistent pool wisely without the ability of controlling
each VM’s power in an adaptive manner. In this subsection, we propose SOUP, a single user logon
model which aims to predict whether the specific user will logon in the near future. Based on the
prediction results of SOUP, the persistent pool can power on specific desktops for specific users on
demand. Consequently, VMs can be shut down safely to save cost with no fear of sacrificing user
experience. Intuitively, different models should be built for every individual user for the purpose of
logon prediction. However, it is found that a huge amount of VDI users have very limited logons
which is inadequate and highly noise sensitive for building an accurate model. To cope with this
characteristic of the VDI use logon data, SOUP adopts a group-based model for all the users in
one persistent pool. Specifically, the data of users in the same pool are grouped together to build
a common model, which coincides with the fact that the users assigned to the same pool have
similar behavior patterns. This method can be regarded as a special case of cluster-based aggregate
forecasting of time-series data which has been proven that the impact of noise can be mitigated
statistically [27]. Furthermore, employing a general model for all the users in a pool is much more
efficient and can also deal with the problem of insufficient logon samples.

2.2.1 Formulation. Single user logon prediction is the process of using historical user connection
status to predict if this user will logon in the future period. Formally speaking, let Δ𝑡 be the
granularity interval (in minute, Δ𝑡 ≤ 60) and 𝑥𝑡 ∈ {0, 1} indicate if user session has ever connected
at time range [𝑡 − Δ𝑡, 𝑡). Similar to the CAFE model, the user connection status sequence can be
represented as 𝒙𝑡,𝑛 = (𝑥𝑡 ; . . . ;𝑥𝑡−𝑛+1) with sequence length 𝑛. Let 𝑥𝑡+1 be the user logon status
we want to predict at the future period [𝑡, 𝑡 + Δ𝑡). The aim is to learn the predictive model
𝑓Δ𝑡 : 𝒙𝑡,𝑛 ↦→ {0, 1}, where the future connection status 𝑥𝑡+1 during time [𝑡, 𝑡 + Δ𝑡) can be obtained
as follows:

𝑥𝑡+1 = 𝑓Δ𝑡 (𝒙𝑡,𝑛) (8)

Furthermore, the predictive model 𝑓Δ𝑡 is instantiated as:
𝑓Δ𝑡 = 𝑔(𝝁𝑡 ) (9)

where 𝝁𝑡 is the feature vector generated from 𝒙𝑡,𝑛 and 𝑔(·) is a classification function. Speficically,
𝝁𝑡 is composed of components from different categories including historical, seasonal and contextual
features:

𝝁𝑡 = (𝒉𝑡 ; 𝒔𝑡 ; 𝒄𝑡 ) (10)
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Here, 𝒉𝑡 is the historical features extracted from user connection status sequence, 𝒔𝑡 denotes the
seasonal representation of the data and 𝒄𝑡 is the contextual feature vector.

2.2.2 Encoded Multi-grained Features. Different from the practice in CAFE, where historical fea-
ture granularity is set according to the time remoteness, SOUP employs coarse-to-fine feature
in describing time-series seasonal pattern. Moreover, encoding is applied on the multi-grained
description to improve the prediction accuracy.
Let 𝑺 𝑗 = {𝑥1, 𝑥2, . . . , 𝑥𝑇 } be the full-length connection status sequence of one user 𝑗 , which in

turn leads to data set D𝑗 = {(𝝁𝑡 , 𝑥𝑡+1) | 𝑙 ≤ 𝑡 ≤ 𝑇 − 1}. Here, 𝑙 is the minimum feasible starting
time of 𝒙𝑡,𝑛 and 𝑇 is the ending time of the sequence. Based on training data set D = ∪𝛿

𝑗=1D𝑗 ,
where 𝛿 is the total number of users in one VDI pool, the classifier 𝑔 : 𝝁𝑡 ↦→ {0, 1} can be derived
by invoking some classification learning method L on D, i.e. 𝑔← [ L(D).

Following the above explanations, 𝒔𝑡 is defined as the seasonal representation of user connection
status. From the real customer data, we observe two major seasonal patterns with different intervals:
daily and weekly. Let 𝜻𝑑

𝜓
be the d𝑎𝑖𝑙𝑦 feature vector where 𝜓 indicates the seasonal timing with

𝜓 = 𝑡 − 1440∗𝑑𝑎𝑦𝑠
Δ𝑡 and 𝜻𝑤

𝜓
be the w𝑒𝑒𝑘𝑙𝑦 feature vector of seasonal timing𝜓 with𝜓 = 𝑡 − 1440∗7∗𝑤𝑒𝑒𝑘𝑠

Δ𝑡 .

If we use 𝛼 and 𝛽 to denote the day and week count respectively3 where 1440∗(7𝛽+1)
Δ𝑡 ≤ 𝑛, the seasonal

feature vector 𝒔𝑡 can be specified as:

𝒔𝑡 = (𝜻𝑑𝑡− 1440
Δ𝑡
; . . . ; 𝜻𝑑

𝑡− 1440∗𝛼
Δ𝑡

; 𝜻𝑤

𝑡− 1440∗7
Δ𝑡

; . . . ; 𝜻𝑤

𝑡− 1440∗7∗𝛽
Δ𝑡

). (11)

To generate the feature vector 𝜻𝑑
𝜓
and 𝜻𝑤

𝜓
from input connection status sequence 𝒙𝑡,𝑛 , we introduce

model 𝜆𝑑
𝜓
: 𝒙𝑡,𝑛 ↦→ 𝜻𝑑

𝜓
and 𝜆𝑤

𝜓
: 𝒙𝑡,𝑛 ↦→ 𝜻𝑤

𝜓
to depict the daily and weekly characteristic in coarse-

to-fine manner. The transformation defined in these two models follows similar form with diverse
parameters. Specifically, we define the common model as 𝜆𝜓 . Figure 3 gives the concrete example
for the model. Let 𝑘𝑖 be the length of granule,𝑚𝑖 be the number of granules that are taken into
account and 𝒆𝑖 be the encoding vector of𝑚𝑖 dimensions which transforms the 𝑖𝑡ℎ granularity layer
feature vector into a numerical value. With the granularity vector 𝒌 = (𝑘1, . . . , 𝑘𝛾 ), granule number
vector 𝒎 = (𝑚1, . . . ,𝑚𝛾 ), and the encoding vectors (𝒆1, . . . , 𝒆𝛾 ), the seasonal feature vector 𝒔𝑡 can
be generated from 𝒙𝑡,𝑛 as follows:

𝒔𝑡 = 𝜆𝜓 (𝒙𝑡,𝑛, 𝒌,𝒎, 𝒆1, . . . , 𝒆𝛾 )

= (𝒆1𝑇 𝐼 (𝑳1𝜓
𝑇
𝒙𝑡,𝑛); . . . ; 𝒆𝛾𝑇 𝐼 (𝑳𝛾𝜓

𝑇
𝒙𝑡,𝑛)),where 𝑳𝑖𝜓 = [𝑙𝑖,𝜓𝑝𝑞 ]𝑛×𝑚𝑖

.
(12)

𝑳𝑖
𝜓
denotes the 𝑖𝑡ℎ grain-layer transformation performed on the input sequence 𝒙𝑡,𝑛 around

seasonal time𝜓 . Here, we utilize sum aggregation with elements of 𝑳𝑖
𝜓
specified as follows:

𝑙
𝑖,𝜓
𝑝𝑞 =


1, 𝑧 + (𝑞 − 1)𝑘𝑖 + 1 ≤ 𝑝 ≤ 𝑧 + 𝑞𝑘𝑖 ,

1 ≤ 𝑞 ≤ 𝑚𝑖 ,

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

where 𝑧 = 𝜓 − ⌊𝑚𝑖

2
⌋𝑘𝑖

(13)

𝐼 is an element-wise indicator function (defined in Eq.(14)) transforming each resulting multi-
grained feature 𝑣𝜉 into an indicator value {0, 1}, describing whether user is connected in the
granule scope.

3In this paper, we set 𝛼 = 7 and 𝛽 = 4.
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Fig. 3. SOUP seasonal multi-grained feature extraction example for previous 1 day (𝛼 = 1) of layer 4 (𝑖 = 4)
with granular parameter 𝑘 = 4,𝑚 = 3 and central-spread encoding 𝑒𝑐𝑡𝑟

Table 3. 𝒌𝑑 , 𝒎𝑑
and 𝒆𝑑

𝑖
in daily description with 𝛾𝑑 = 6

𝑖 1 2 3 4 5 6
𝑘𝑑𝑖 1 2 3 4 8 1
𝑚𝑑

𝑖 3 3 3 3 3 ⌈ 2∗𝑚𝑒𝑎𝑛 (𝑠𝑡𝑑𝑢𝑠𝑒𝑟_𝑙𝑜𝑔𝑜𝑛_𝑡𝑖𝑚𝑒 )
Δ𝑡 ⌉

𝒆𝑑𝑖 𝒆𝑐𝑡𝑟 𝒆𝑐𝑡𝑟 𝒆𝑐𝑡𝑟 𝒆𝑐𝑡𝑟 𝒆𝑐𝑡𝑟 𝒆𝑠𝑒𝑞

𝐼 (𝒗) = (1𝑣≠0 (𝑣1);1𝑣≠0 (𝑣2); . . . ;1𝑣≠0 (𝑣𝑚𝑖
))

where 1𝑣≠0 (𝑣𝜉 ) =
{
1, 𝑖 𝑓 𝑣𝜉 ≠ 0,
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(14)

The encoding transformation vector 𝒆𝑖 has two types: central-spread encoding (𝒆𝑐𝑡𝑟 ) and sequential
encoding (𝒆𝑠𝑒𝑞). The central-spread encoding, which is given in "Encoding" section in Figure 3,
emphasizes the grain value at the particular seasonal timing𝜓 while sequential encoding focuses
on the sequential correlation of features generated with the same granularity. These two encodings
introduce the temporal correlation of neighboring granularity features from different perspectives,
which make the feature more informative. Given the grain number𝑚𝑖 , the two types of encoding
vector are customized as follows:

𝒆𝑐𝑡𝑟 (𝑚𝑖 ) = (. . . ; 2𝑚𝑖−3; 2𝑚𝑖−1; 2𝑚𝑖−2; . . .) (15)

𝒆𝑠𝑒𝑞 (𝑚𝑖 ) = (20; 21; . . . ; 2𝑚𝑖−1) (16)
A concrete example of the process of calculating a central-spread encoding feature (𝑒 = 𝑒𝑐𝑡𝑟 , 𝑘 =

4,𝑚 = 3, 𝛼 = 1) is illustrated in Figure 3. Firstly, the data in one granule with length of 120 minutes
(4 × 30𝑚𝑖𝑛) are transformed to the indicator values as in Eq.(14). Then we calculate the dot product
of the indicator value vector (formed by 3 indicator values around time 𝑡 − 𝛼 𝑑𝑎𝑦) and the weight
vector of the central-spread encoding 𝑒𝑐𝑡𝑟 . The final result is the encoded multi-grained feature
value of this layer (𝑖 = 4).
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Table 4. 𝒌𝑤 , 𝒎𝑤
and 𝒆𝑤

𝑖
in weekly description with 𝛾𝑤 = 2

𝑖 1 2

𝑘𝑤
𝑖

1 1440
Δ𝑡

𝑚𝑤
𝑖

⌈ 2∗𝑚𝑒𝑎𝑛 (𝑠𝑡𝑑𝑢𝑠𝑒𝑟_𝑙𝑜𝑔𝑜𝑛_𝑡𝑖𝑚𝑒 )
Δ𝑡 ⌉ 1

𝒆𝑤
𝑖

𝒆𝑠𝑒𝑞 𝒆𝑠𝑒𝑞

Table 5. Contextual feature list for SOUP

Feature Description
ℎ𝑜𝑢𝑟_𝑖𝑛𝑑𝑒𝑥 index of current hour within day
𝑑𝑎𝑦_𝑖𝑛𝑑𝑒𝑥 index of current day within week
ℎ𝑎𝑠_𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑑𝑎𝑦 if user has session this day
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡 user’s session count in last minute
𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑐𝑜𝑢𝑛𝑡_𝑚𝑒𝑎𝑛 user’s average session count of day
𝑙𝑎𝑠𝑡_𝑛𝑜_𝑠𝑒𝑠𝑠𝑖𝑜𝑛_𝑑𝑢𝑟 user’s last no session duration in pool

For the daily pattern representation, SOUP employs six coarse-to-fine grain-layer transforma-
tions with both central spread and sequential encoding. Firstly, we utilize multi-grained layer
transformations with central spread encoding. The aim is to retrieve the elaborate daily pattern of
connection status as well as avoid the randomness of user logon time. In addition, we make use
of one more fine granularity layer with sequential encoding to further illustrate the sequential
correlation of the grained features from nearby range. Accordingly, the granule count is set to
standard deviation of users logon time in VDI pool. The grain-layer configuration 𝒌𝑑 , 𝒎𝑑 and
encoding vectors 𝒆𝑑𝑖 are summarized in Table 3.
For the weekly pattern representation, SOUP applies hour-level and day-level transformations.

The hour-level transformation is to catch the weekly patterns of user connection status that are
not included in daily description. For example, users usually logon late on Monday as it’s the first
workday of one week. In day-level transformations, we would like to extract the regularity that
whether user has connected sessions on the same week day in last 𝛽 weeks. Configurations of 𝒌𝑤 ,
𝒎𝑤 and 𝒆𝑤

𝑖
are summarized in Table 4.

Except for the seasonal description, SOUP also utilizes historical features to describe the connec-
tion status change in short-term. In single user logon model, the predicted value is more likely to
be impacted by the connection status in recent period. For example, a user logged off just several
minutes ago is less possible to logon immediately. Accordingly, let 𝜃 be the short-term interval we
want to consider4, the historical feature vector is set as follows:

𝒉𝑡 = (𝑥𝑡 ; 𝒆𝑠𝑒𝑞 (𝜃 )𝑇 (𝑥𝑡 , 𝑥𝑡−1, ..., 𝑥𝑡−𝜃+1)) (17)

The contextual features selected in SOUP include both static features, such as ℎ𝑜𝑢𝑟_𝑖𝑛𝑑𝑒𝑥 and
𝑑𝑎𝑦_𝑖𝑛𝑑𝑒𝑥 , and dynamic features generated from input sequence 𝒙𝑡,𝑛 . The detailed features are
listed in Table 5.

4In this paper, we set 𝜃 = 3
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Table 6. Power data 𝒌 and 𝒎 configuration in fine-granularity description

𝑖 5 6 7
𝑘𝑖

Δ𝑡
4

Δ𝑡
8 1

𝑚𝑖 8 8 1

Table 7. Power data 𝒌 and 𝒎 configuration in coarse-granularity description

𝑖 1 2 3 4
𝑘𝑖 𝑛 𝑛

2
𝑛
6

𝑛
8

𝑚𝑖 1 1 1 1

2.2.3 Learning Method. For the similar reason of limited data size, short training time and less
hype parameters, SOUP chooses the same GBDT learning method with CAFE.

2.3 Parameters Tuning

To explore the generalization ability of coarse-to-fine feature extraction method, we summarize the
common practice for parameters tuning when dealing with a new cloud workload of time series
prediction task.

First of all, we suggest to start from CAFE and SOUP’s default parameters listed in Table 1, 2, 3
, 4 if it could fit the data sample interval and data size. From our experience, even if the default
parameters can not work well, they can help to lay the foundation for future finer tuning.
If the results of the default parameters are not satisfied, below tips can be used to help further

tune the coarse-to-fine transformation parameters:
• Layer number (length of 𝒌 and 𝒎): the total layer number is suggested to set in range [6, 8],
it applies for both CAFE and SOUP granularity feature to ensure the feature efficiency.
• Action scope (𝛾 = 𝑘 ∗𝑚):
(1) Use domain knowledge in action scope configuration to judge how long will recent data

fluctuations, global trend and seasonal patterns impact the future prediction.
(2) Limit the historical (non-seasonal) feature action scope within 24 hours. The patterns that

occur in previous more than 24 hours should be captured in daily and weekly features.
• Granularity (𝑘):
(1) Except for the latest data point (𝑘 = 1), the granularity must be in multiples of the sampling

interval.
(2) Use finer granularities for recent and small action scope and coarser granularities for

ancient and big action scope.
• Leverage the learner’s capability, such as the feature importance in decision tree based
learning algorithms, to adjust the the total granular count and feature count in each granular
layer.

To evaluate the generalization ability of the coarse-to-fine feature extraction method, we apply
the above parameter tuning practice as well as the whole CAFE approach on an electricity load
prediction task. The data sets are from the Europe countries’ electricity load data between 2015
and 2020, which is collected every 15 minutes from the energy consumption monitoring system,
and the prediction is made for future Δ𝑡 = 120 and Δ𝑡 = 240 minutes.
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In the 120 minutes prediction task (Δ𝑡 = 120), we can’t achieve CAFE’s default finest granular
layer settings (Δ𝑡15 = 8 minute) as it’s smaller than the sampling interval (15 minutes). Following
the rules in granularity settings, the fine granules for the electricity load data are set as Δ𝑡

4 and Δ𝑡
8 ,

which are 1 ∗ 15 minutes and 2 ∗ 15 minutes for the prediction when Δ𝑡 = 120. In terms of their
action scopes, as we have limited domain knowledge in energy consumption field, the action scope
employs CAFE’s default settings: 2Δ𝑡 and Δ𝑡 . The parameter configuration of the fine granularity
feature description is summarized in Table 7. For coarse granularity, we completely follow CAFE’s
default settings where the max action scope is 𝑛 = 24 ∗ 60 minutes. The 𝒌 and 𝒎 configuration of
coarse description is given in Table 6 which depicts the global trend of power load during last 24
hours with a consistent average aggregation over the whole action scope.
In Section 5, the dataset and parameters settings are further detailed and the evaluational

experiment is conducted by the concrete comparison with other time-series prediction algorithms.

3 RELATEDWORK

Generally, the VDI workload prediction problem belongs to the cloud services workload prediction
problem. According to [32], the workload of cloud services is the total of work performed by
virtual machines demanded by the end-users or applications. As the accurate workload prediction
is of crucial importance to improve the operational efficiency, cost and QoS (Quality of Service)
satisfaction of cloud services [23], an increasing number of researchers attempt to solve the problem
with various statistical and machine-learning models.

Formally speaking, cloud services workload data can be regarded as time series data [31] as it
is a collection of observations made chronologically. During the past decade, classical statistical
methods have been successfully used in time series prediction [26], to name a few, in [3, 13, 24, 29],
authors used Autoregressive Integrated Moving Average (ARIMA) based models for various cloud
workload predictions; in [34, 37, 39], holt-winters exponential smoothing [6, 7] models are deployed
to predict cloud workload and resource provision; [8] leverages facebook Prophet [20] to predict
Microsoft Azure VM workload for cloud resource management. While these statistical methods
show advantages when dealing with the data of small size and simple patterns, they can not handle
the complex data with long term patterns and short term fluctuation which is commonly seen in
cloud workload data. Moreover, statistical methods can not conduct multi-steps forward prediction
but have to predict single step several times which results in pool performance in these scenarios.

More recently, machine-learning models are gaining more attention for cloud service workload
prediction where both supervised learning models and deep learning models are broadly explored
by researchers. A lot of literatures focused on using the mainstream supervised learning models
like Support Vector Machine (SVM), Support Vector Regression (SVR) [19] and Random Forest
(RF) [43] for cloud workload prediction such as [2, 5, 33, 41, 51]. For instance, in [2], an innovative
tuned support vector regression (TSVR) method was proposed for cloud workload prediction.
TSVR uses a hybrid genetic algorithm (GA) and particle swarm optimization (PWO) to select
SVR parameters and demonstrate good performance on simulated data by Google cloud traces. In
[41], Singh et al. proposed a web application workload prediction model with Linear Regression,
ARIMA and SVR for different kinds of data sets. Their results showed SVR performs well on
short-term non-seasonal workload data. In [5], Cetinski et al. introduced an Advanced Model
for Efficient Workload Prediction in the Cloud (AME-WPC) which uses Random Forest method
for cloud workload prediction. While these supervised learning models show good performance
on several cloud workload prediction scenarios, their limitations are also discussed in different
literatures. In [33], authors indicated that the accuracy of SVM depends on the workload data with
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seasonal and increasing patterns. In [2], it was discussed that SVM and SVR lack of systematic way
of parameter tuning.
Deep learning models have the strength on long-term prediction especially when the data size

and model layers are big and deep enough. There have been a number of explorations of leveraging
deep learning models to predict cloud workload. In [25], Kumar et al. explored using LSTM for
workload prediction on three data sets of web server logs and achieved high accuracy. In [17], Gao
et al suggested to use m-gap prediction (m steps forward prediction) on cloud workload for better
resource management. Their experiments show that LSTM perform better than ARIMA but worse
than Bayesian Ridge Regression (BRR). In [38], Ruan et al proposed a workload prediction method
(CrystalLP) for cloud storage based on LSTM. The experiments on the I/O data of a search engine
demonstrate LSTM outperform Arima, SVR and simple RNN. Meanwhile, the disadvantages of deep
learning models for cloud workload data prediction have also been extensively discussed in many
literatures. For example, in [17], authors indicated that LSTM has a good fit of the non-linearities
but does not perform well on short-term task when data size is not big enough. In [35], authors
discussed that the training time of LSTM is much longer than other approaches. It is also reported
in some literatures [18] that LSTM should only be used if statistical method fails on time-series
data prediction.

Besides exploring the different learning models, several researchers also investigated the effective
feature extraction methods for cloud workload prediction. For example, in [5], authors introduced
a Two-phase Pattern Matching (TPM) method to find similar daily patterns in the training data.
But longer term patterns like monthly patterns are not discussed. In [40], Shishira et al. proposed a
Feature Extraction Model (FEM) to extract labels features from raw cloud workload data. However,
there has not been any attempt of leveraging coarse-to-fine multi-granularity methods for feature
extraction.
VDI workload prediction is an emerging domain-specific cloud services workload prediction

problem. The majority of the state-of-the-art researches still focus on VDI workload analysis while
very few literatures on VDI workload prediction are available. In [48], Xu et al. discussed the
virtual desktop user workload on simulated data. In [14], characteristics of desktop workload on
single server are discussed in detail. In [4], authors analyze the important information of VDI users
behavior, VDI CPU usage and VDI storage I/O from a real-world cloud virtual desktop service. In
[50], Yao et al. proposed CAFEwhich uses multi-grained feature and GBDT to predict non-persistent
VDI workload adaptively which achieve superior performance against other methods. In [12], Fan
et al. introduced a Multi-instance Multi-label based approach to prediction the VDI single user
workload and verify its effectiveness on real VDI customer data.

4 EXPERIMENTS ON VDI WORKLOAD PREDICTION

4.1 CAFE Experiments

4.1.1 Data Sets. In this paper, we use the real VDI customer data for experiments. For CAFE, the
collected data sets include 6 non-persistent VDI pools from 6 different customers over several
months across 2018 and 2019. The number of samples in the training data is from 51840 to 59040.
The data of each pool is divided into two divisions where every division consists of training set
of 5 or 6 weeks’ customer data and test set of 1 week’s customer data. The twelve data sets are
named as Venus-D1, Venus-D2, Uranus-D1, Uranus-D2, Pluto-D1, Pluto-D2, Mars-D1, Mars-D2,
Mercury-D1, Mercury-D2, Neptune-D1 and Neptune-D2 respectively. Table 8 shows the detailed
statistics of the twelve data sets, where min-max and mean±std refer to the minimum/maximum
session count, mean value and standard deviation of the session counts in the VDI pools.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:14 Yao Zhang, et al.

Table 8. Characteristics of the real-world VDI non-persistent pool data sets where min-max and mean±std
stand for the minimum/maximum session count, mean value and standard deviation of the session counts

respectively.

Data sets Training set Testing set
Period min-

max
mean±std Period min-

max
mean±std

Venus-D1 1/06-10/07, 2018 0-82 26.26±26.66 11/07-17/07, 2018 0-85 27.09±27.35
Uranus-D1 1/06-10/07, 2018 0-74 11.63±11.81 11/07-17/07, 2018 0-38 9.59±7.61
Pluto-D1 1/06-10/07, 2018 0-91 51.15±27.88 11/07-17/07, 2018 0-94 56.01±32.29
Mars-D1 1/06-10/07, 2018 0-110 17.81±19.36 11/07-17/07, 2018 0-39 12.26±13.51

Mercury-D1 11/02-17/03, 2019 0-141 35.60±40.76 18/03-24/03, 2019 0-123 33.33±40.55
Neptune-D1 14/07-18/08, 2018 0-126 43.11±33.75 19/08-25/08, 2018 0-124 42.04±33.96
Venus-D2 1/07-10/08, 2018 0-91 28.35±28.09 11/08-17/08, 2018 0-86 26.09±26.83
Uranus-D2 1/07-10/08, 2018 0-74 13.09±12.24 11/08-17/08, 2018 0-61 10.76±11.46
Pluto-D2 1/07-10/08, 2018 0-99 52.01±30.98 11/08-17/08, 2018 0-85 46.14±29.35
Mars-D2 1/07-10/08, 2018 0-42 9.92±11.41 11/08-17/08, 2018 0-17 4.72±5.41

Mercury-D2 09/03-12/04, 2019 0-128 32.23±37.90 13/04-19/04, 2019 0-92 23.24±19.24
Neptune-D2 08/10-11/11, 2018 0-144 48.24±36.24 12/11-18/11, 2018 3-139 48.35±37.85

Fig. 4. Ground-truth workload of the real-world VDI non-persistent pool data sets.
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Figure 4 shows the ground-truth workload of the six different pools in which we can observe dif-
ferent patterns. The rich diversity of the real-world data sets provide a solid basis for comprehensive
experimental studies.
• Venus is from a traditional national enterprise customer of energy domain. Venus-D1 has
57600 samples in the training set and 10080 samples in the testing set. Venus-D2 has 59040
samples in the training set and 10080 samples in the testing set. Both data sets show clear
working day pattern where the working days (from Monday to Friday) have much higher
workload than the weekend (from Saturday to Sunday). This conforms to the usual working
schedule of the traditional enterprise. Additionally, the testing set of Venus-D2 has an unusual
lower workload peak on Wednesday.
• Uranus is from a university customer. Uranus-D1 has 57600 samples in the training set and
10080 samples in the testing set. Uranus-D2 has 59040 samples in the training set and 10080
samples in the testing set. We can see the obvious a weekend pattern in Uranus which has
higher workload in weekend(especially in the Sunday) than in working days. Moreover, it is
worth noting that the testing set of Uranus-D1 has an uncommon lower workload peak on
Sunday.
• Pluto is from a customer of construction domain. Pluto-D1 has 57600 samples in the training
set and 10080 samples in the testing set. Pluto-D2 has 59040 samples in the training set and
10080 samples in the testing set. Pluto has a normal working day pattern but it shows a
special characteristic that the workload change of drops and climbs in a vigorous way.
• Mars is from a large customer of service provider enterprise domain. Mars-D1 has 57600
samples in the training set and 10080 samples in the testing set. Mars-D2 has 59040 samples
in the training set and 10080 samples in the testing set. Besides the common working day
patter, Mars shows a drift pattern whose average workload declines a little week by week in
Mars-D2.
• Mercury is from a customer of automative domain. Both Mercury-D1 and Mercury-D2 has
50400 samples in the training set and 10080 samples in the testing set. Mercury shows clear
working day pattern and it workload change pattern is very smooth where the session
count shifts regularly and slowly. Furthermore, testing set of Mercury-D2 has unusual lower
workload peak on Friday.
• Neptune is from a customer of transportation and logistics domain. Neptune-D1 has 50400
samples in the training set and 10080 samples in the testing set. Neptune-D2 has 48960
samples in the training set and 10080 samples in the testing set. Neptune has a working day
pattern with the speciality of double workload peak where the second session count peak
has about half workload of the first peak. Additionally, a notable higher peak on Friday is
observed in the testing set of Neptune-D1.

4.1.2 Comparing Approaches. In CAFE experiments, four state-of-the-art time-series data predic-
tion approaches are selected as the comparison methods including Prophet [44], Holt-Winters [7],
Nf-gbdt and LSTM. Prophet can automatically detect seasonalities and excels at the prediction
of large scale time-series data. Holt-Winter is a traditional exponential smoothing model based
statistical algorithm for time-series data forecasting. Nf-gbdt is the method that applies GBDT
model directly on naive time-series features [28]. Here, naive features refer to the way of using raw
time-series data as the historical features. Accordingly, we can regard Nf-gbdt as a degenerated
version of CAFE where multi-grained features are not employed.5 The comparison with Nf-gbdt
serves to show the advantages of multi-grained features used in CAFE. LSTM has been used in

5CAFE utilizes GBDT as the regression method.
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many cloud workload prediction problems and perform well on fitting long term patterns on large
data sets.

Based on the domain knowledge, two different time spans: Δ𝑡 = 30 minutes and Δ𝑡 = 60 minutes
are chosen for the CAFE experiments where smaller Δ𝑡 is useful during real-time monitoring
which needs immediate mitigation actions and bigger Δ𝑡 provides more value to scenarios like boot
storm detection and overall capacity optimization. With the maximum action scope 𝑛 set as 1440
minutes (24 hours), the granularity vector 𝒌 is then set as (1440, 720, 240, 180, 10, 2, 1) for Δ𝑡 = 30
minutes and (1440, 720, 240, 180, 20, 4, 1) for Δ𝑡 = 60 minutes. Correspondingly, the action scope
vector𝜸 is configured as (1440, 720, 240, 180, 60, 30, 1) and (1440, 720, 240, 180, 120, 60, 1) for Δ𝑡 = 30
minutes and Δ𝑡 = 60 minutes respectively. To better utilize the weekly seasonly pattern, the seasonal
parameter of Holt-Winters is set as 168 (24*7) hours. For Nf-gbdt and LSTM, 168-dimensional naive
features (𝑚𝑎𝑥𝑡−168∗60+1≤𝑖≤𝑡−167∗60 𝑥𝑖 , ... ,𝑚𝑎𝑥𝑡−60+1≤𝑖≤𝑡 𝑥𝑖 ) are used for the reason that maximum
workload is more important for VDI capacity planning.

4.1.3 Evaluation Metrics. In the CAFE experiment, we employ four evaluation metrics in total.
Two of them are commonly used regression metrics: Normalized Mean Absolute Error (NMAE)
and Normalized Root Mean Square Error (NRMSE). The other two are customized metrics based on
domain knowledge: Over Prediction Rate (OPR) and Under Prediction Rate (UPR). Following is the
definition of each metric where we use 𝑆 = (𝑠1, . . . , 𝑠𝑚) as the ground-truth workload sequence
and 𝑆 = (𝑠1, . . . , 𝑠𝑚) as the predicted workload sequence:

NMAE(𝑆, 𝑆) = MAE(𝑆, 𝑆)
∥𝑆 ∥1

=

∑𝑚
𝑡=1 |𝑠𝑡 − 𝑠𝑡 |∑𝑚

𝑡=1 |𝑠𝑡 |
(18)

NRMSE(𝑆, 𝑆) = RMAE(𝑆, 𝑆)
∥𝑆 ∥2

=

√︄∑𝑚
𝑡=1 (𝑠𝑡 − 𝑠𝑡 )2∑𝑚

𝑡=1 𝑠𝑡
2 (19)

OPR(𝑆, 𝑆) =
∑𝑚

𝑡=1 |𝑠𝑡 − 𝑠𝑡 | ×
𝑠𝑖𝑔𝑛 (𝑠𝑡−𝑠𝑡 )+1

2∑𝑚
𝑡=1 |𝑠𝑡 |

(20)

UPR(𝑆, 𝑆) =
∑𝑚

𝑡=1 |𝑠𝑡 − 𝑠𝑡 | ×
𝑠𝑖𝑔𝑛 (𝑠𝑡−𝑠𝑡 )+1

2∑𝑚
𝑡=1 |𝑠𝑡 |

(21)

Here, 𝑠𝑖𝑔𝑛(·) represents the signed function. Generally speaking, NMAE and NRMSE are more
scale-robust to the values of the prediction than MAE and RMSE. OPR and UPR are introduced
from the VDI domain practice. OPR is a measurement of resource waste by considering the cases
that the predicted values are greater than the ground-truth ones, which results in more desktops
powered on than needed. On the contrary, UPR measures the impact to the user experience by
considering the cases that the predicted values are less than the ground-truth ones, which causes
the shortage of powered on desktops and users have to wait new resource provision. OPR and
UPR can clearly indicate the impact of resource waste and bad user experience from the workload
prediction. To build a feasible VDI power management system, OPR and UPR need to be carefully
balanced based on different customer requirements.

4.1.4 Experimental Results. The experimental results of CAFE are summarized in Table 9 and Table
10 respectively where the best performance on each data set is shown in boldface. Furthermore, we
employ the Friedman test [10] for statistical analysis which can systematically reveal the relative
performance among the comparing approaches.
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Table 9. Performance on the real-world VDI data sets in term of NMAE, NRMSE, OPR and UPR (Δ𝑡 = 30).

Data NMAE NRMSE
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Venus-D1 0.0625 0.2981 0.8134 0.0969 0.2363 0.0765 0.2702 0.6779 0.1185 0.2230
Venus-D2 0.0953 0.4131 0.7693 0.1764 0.2984 0.1189 0.3704 0.6869 0.2268 0.3838
Uranus-D1 0.1224 0.4991 0.6282 0.2595 0.7679 0.1473 0.4836 0.7010 0.2679 0.9280
Uranus-D2 0.1043 0.4030 0.8191 0.1864 0.3653 0.1048 0.3767 0.7211 0.1709 0.3330
Pluto-D1 0.0859 0.2324 0.4404 0.1284 0.2880 0.1321 0.2791 0.4607 0.1757 0.3107
Pluto-D2 0.0775 0.2464 0.3490 0.0640 0.1310 0.1152 0.2791 0.3696 0.0747 0.1532
Mars-D1 0.0714 0.2611 1.2227 0.1564 0.4687 0.0728 0.2721 1.0293 0.1913 0.4465
Mars-D2 0.1260 0.3331 0.9367 0.3081 0.3653 0.1332 0.3251 0.8201 0.3100 0.3394
Mercury-D1 0.0938 0.5029 0.2171 0.1226 0.1657 0.0882 0.3823 0.2183 0.1086 0.1415
Mercury-D2 0.1967 0.5029 0.6193 0.2272 0.2707 0.2505 0.3823 0.4899 0.2651 0.3065
Neptune-D1 0.0749 0.2623 0.2368 0.1108 0.1264 0.0844 0.2691 0.2589 0.1166 0.1390
Neptune-D2 0.0950 0.2808 0.1055 0.1070 0.1467 0.0975 0.2844 0.1127 0.1190 0.1505
Data OPR UPR
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Venus-D1 0.0287 0.1705 0.5877 0.0381 0.1186 0.0338 0.1277 0.2257 0.0588 0.1177
Venus-D2 0.0699 0.2902 0.2045 0.1287 0.2506 0.0255 0.1229 0.5648 0.0477 0.0479
Uranus-D1 0.0843 0.3360 0.5258 0.2110 0.7493 0.0381 0.1631 0.1024 0.0485 0.1862
Uranus-D2 0.0607 0.2398 0.6906 0.1280 0.2813 0.0435 0.1632 0.1285 0.0584 0.0839
Pluto-D1 0.0267 0.1140 0.3634 0.0651 0.0903 0.0592 0.1184 0.0770 0.0633 0.1977
Pluto-D2 0.0211 0.1232 0.2873 0.0350 0.0941 0.0564 0.1232 0.0617 0.0290 0.0369
Mars-D1 0.0514 0.2231 1.1949 0.0570 0.2462 0.0199 0.0380 0.0278 0.0994 0.2225
Mars-D2 0.0567 0.2090 0.6985 0.0281 0.1264 0.0693 0.1242 0.2382 0.2800 0.2389
Mercury-D1 0.0600 0.2149 0.1291 0.0903 0.1139 0.0338 0.2880 0.0880 0.0323 0.0518
Mercury-D2 0.1587 0.2149 0.2634 0.1758 0.2184 0.0379 0.2880 0.3559 0.0515 0.0523
Neptune-D1 0.0022 0.6344 0.1176 0.0325 0.0234 0.0531 0.1988 0.1192 0.0783 0.1030
Neptune-D2 0.0547 0.1549 0.0408 0.0710 0.1169 0.1048 0.1259 0.0647 0.0360 0.2977
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NF-GBDT
LSTMPROPHET

HOLT-WINTERS

(a) CD-NMAE-30

5 4 3 2 1
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NF-GBDT
LSTMPROPHET

HOLT-WINTERS

(b) CD-NRMSE-30

5 4 3 2 1
CAFE
NF-GBDT
LSTMPROPHET

HOLT-WINTERS

(c) CD-OPR-30

5 4 3 2 1
CAFE
NF-GBDT
HOLT-WINTERLSTM

PROPHET

(d) CD-UPR-30

Fig. 5. Comparison of CAFE (control algorithm) against other comparing approaches with the Bonferroni-

Dunn test (Δ𝑡 = 30). Approaches not connected with CAFE in the CD diagram are considered to have

significantly different performance from the control algorithm (CD=1.6125 at 0.05 significance level).
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Table 10. Performance on the real-world VDI data sets in term of NMAE, NRMSE, OPR and UPR (Δ𝑡 = 60).

Data NMAE NRMSE
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Venus-D1 0.0760 0.2835 0.1011 0.1085 0.2478 0.0758 0.2600 0.0969 0.1140 0.2271
Venus-D2 0.1589 0.4062 0.2435 0.2045 0.3324 0.2005 0.3716 0.3053 0.2635 0.3917
Uranus-D1 0.1639 0.5111 0.4064 0.3321 0.8049 0.1833 0.4935 0.4529 0.3440 0.9074
Uranus-D2 0.1463 0.4074 0.2426 0.2187 0.4812 0.1558 0.3839 0.2092 0.2008 0.4181
Pluto-D1 0.1244 0.2255 0.1705 0.1647 0.3002 0.1687 0.2711 0.2567 0.2108 0.3170
Pluto-D2 0.0885 0.2232 0.2776 0.0961 0.1479 0.1018 0.2728 0.3655 0.1053 0.1782
Mars-D1 0.0982 0.2270 0.2296 0.1823 0.5670 0.0957 0.2418 0.2165 0.2324 0.4878
Mars-D2 0.1550 0.5351 1.8100 0.3767 0.3864 0.1583 0.5392 1.9407 0.3721 0.3298
Mercury-D1 0.0862 0.5053 0.2088 0.1392 0.2601 0.0812 0.3822 0.2128 0.1178 0.2055
Mercury-D2 0.1907 0.5966 0.5490 0.2565 0.3076 0.2496 0.4927 0.4774 0.2904 0.3192
Neptune-D1 0.0749 0.2577 0.2209 0.1071 0.2940 0.0844 0.2656 0.2407 0.1121 0.2853
Neptune-D2 0.0910 0.2752 0.0999 0.1388 0.2437 0.0932 0.2798 0.1052 0.1436 0.2288
Data OPR UPR
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Venus-D1 0.0305 0.1568 0.0654 0.0441 0.1409 0.0455 0.1267 0.0357 0.0644 0.1069
Venus-D2 0.1101 0.3024 0.1608 0.1508 0.3007 0.0489 0.1038 0.0827 0.0537 0.0316
Uranus-D1 0.1237 0.3820 0.3310 0.2821 0.7854 0.0402 0.1291 0.0754 0.0499 0.0195
Uranus-D2 0.0864 0.2626 0.1987 0.1368 0.3657 0.0599 0.1448 0.0439 0.0819 0.1155
Pluto-D1 0.0396 0.0881 0.1127 0.0802 0.1092 0.0848 0.1374 0.0578 0.0844 0.1910
Pluto-D2 0.0330 0.1274 0.2448 0.0469 0.1010 0.0555 0.0958 0.0329 0.0492 0.0469
Mars-D1 0.0686 0.1748 0.1425 0.0438 0.3675 0.0296 0.0522 0.0872 0.1385 0.1994
Mars-D2 0.0679 0.4378 1.7545 0.0611 0.1956 0.0871 0.0973 0.0554 0.3156 0.1907
Mercury-D1 0.0538 0.2168 0.1283 0.0920 0.1523 0.0324 0.2883 0.0804 0.0472 0.1078
Mercury-D2 0.1556 0.2660 0.2990 0.1992 0.2330 0.0351 0.3304 0.2500 0.0572 0.7463
Neptune-D1 0.0022 0.6590 0.1086 0.0347 0.1231 0.0531 0.1918 0.1124 0.0724 0.1710
Neptune-D2 0.0490 0.1544 0.0474 0.0858 0.1663 0.0978 0.1208 0.0525 0.0530 0.0775
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Fig. 6. Comparison of CAFE (control algorithm) against other comparing approaches with the Bonferroni-

Dunn test (Δ𝑡 = 60). Approaches not connected with CAFE in the CD diagram are considered to have

significantly different performance from the control algorithm (CD=1.6125 at 0.05 significance level).
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(a) CAFE, Venus-D1, Δ𝑡 = 60 (b) Prophet, Venus-D1, Δ𝑡 = 60

(c) CAFE, Neptune-D2, Δ𝑡 = 30 (d) Holt-Winters, Neptune-D2, Δ𝑡 = 30

(e) CAFE, Mars-D2, Δ𝑡 = 30 (f) Nf-gbdt, Mars-D2, Δ𝑡 = 30

Fig. 7. Illustrative prediction results of CAFE and comparing approaches on several data sets over one week.

Table 11 and Table 12 report the Friedman statistics 𝐹𝐹 and the corresponding critical values
in terms of each evaluation metric for Δ𝑡 = 30 and Δ𝑡 = 60 respectively. It is obvious that the
null hypothesis of equal performance is rejected at 0.05 significance level. Accordingly, post-hoc
Bonferroni-Dunn test [11] is performed to compare the relative performance among the comparing
approaches. The CD diagrams are presented in Figure 5 and Figure 6 for Δ𝑡 = 30 and Δ𝑡 = 60
respectively, where the average rank of each approach is marked along the axis (the smaller the
better). Based on the reported experiment results, the following observations can be made:
• Out of a total of 96 configurations (24 data sets × 4 evaluation metrics), CAFE achieves 1st
ranks in 78 (81.3%) cases and 2nd ranks in 13 (13.5%) cases. In the prediction of the shorter
time span (Δ𝑡 = 30), CAFE ranks 1st in 41 (85.4%) and 2nd in 5 out of 48 (10.4%) cases. In the
prediction of the longer time span prediction (Δ𝑡 = 60), CAFE ranks 1st in 37 (77.0%) and 2nd
in 8 out of 48 (16.7%) cases. It is impressive that CAFE achieves 1st rank in all cases in terms
of NMAE and NRMSE when Δ𝑡 = 60.
• It is remarkable that CAFE achieves the lowest average rank in terms of all evaluation metrics,
except on UPR with Δ𝑡 = 60.
• From the results shown in Figure 7, it is worth mentioning that CAFE achieves promising
generalization performance on diverse data sets: a) On data set Venus-D1 (Δ𝑡 = 60) as shown
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Table 11. Friedman statistics 𝐹𝐹 in terms of each evaluation metric and the critical value at 0.05 significance

level (# comparing algorithms 𝑘 = 5, # data sets 𝑁 = 12, Δ𝑡 = 30).

Evaluation metric 𝐹𝐹 critical value
NMAE 44.38

2.5837NRMSE 42.88
OPR 25.84
UPR 12.23

Table 12. Friedman statistics 𝐹𝐹 in terms of each evaluation metric and the critical value at 0.05 significance

level (# comparing algorithms 𝑘 = 5, # data sets 𝑁 = 12, Δ𝑡 = 60).

Evaluation metric 𝐹𝐹 critical value
NMAE 42.15

2.5837NRMSE 32.28
OPR 28.6
UPR 6.8

in Figure 7(a) and 7(d)), CAFE demonstrates far better generalization performance than
Prophet on Saturday and Sunday workload prediction; b) On data set Neptune-D2 (Δ𝑡 = 30)
as shown in (Figure 7(b) and 7(e)), CAFE shows superior performance on fitting the fine
granularity change of the peak workload on Wednesday while Holt-Winters does not adapt
to the frequent change very well; c) On data set Mars-D2 (Figure 7(c) and 7(f)), CAFE shows
its significant capability of balancing coarse and fine granularity change, while Nf-gbdt
severely under-predicts the peak workload.

4.2 SOUP Experiments

4.2.1 Data Sets. SOUP’s experimental data sets are collected from four persistent pools of different
customers from Aug. 15𝑡ℎ to Apr. 17𝑡ℎ, 2019. For each pool, the data is divided into two divisions.
Each division uses 10 weeks’ data as training set and succeeding 1 week’s data as testing set.
The eight data sets are named as Cocoa-D1, Cocoa-D2, Avocado-D1, Avocado-D2, Orange-D1,
Orange-D2, Lemon-D1 and Lemon-D2 respectively.

Table 13 shows details of the eight data sets, where 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛, 𝑙𝑜𝑔𝑜𝑛 𝑡𝑖𝑚𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑚𝑒𝑎𝑛

and 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 𝑚𝑒𝑎𝑛 denote the average value of the corresponding statistics of users. Through
the statistics in Table 13, it is obvious that the data set of different customers exhibit different
patterns. Due to these diverse properties, the selected real-world data sets serve as a solid basis for
evaluating the effectiveness of comparing approaches.
• Cocoa is from a large customer of service provider enterprise domain. Cocoa-D1, Cocoa-D2,
Cocoa-D3, Cocoa-D4 have 432000, 414000, 352800, 344448 samples in training set and
32008, 34963, 28602, 29187 samples in testing set respectively. For the four Cocoa data sets, a
considerable user count can be observed where each user logon regularly on working day
and keep the session during working hours.
• Avocado is from a customer of service industry. Avocado-D1, Avocado-D2, Avocado-D3,
Avocado-D4 have 201600, 205200, 178080, 182160 samples in training set and 16388, 17891,
16123, 16846 samples in testing set respectively. Avocado has a small number of assigned
users with shorter average session duration.
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Table 13. Characteristics of the real-world VDI data sets where 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛,

𝑙𝑜𝑔𝑜𝑛 𝑡𝑖𝑚𝑒 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑚𝑒𝑎𝑛 and 𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑢𝑛𝑡 𝑚𝑒𝑎𝑛 are user-related statistics

Data sets User
count

Session
duration
mean(hr)

Logon time
entropy mean

Session count
mean

Training
period

Testing
period

Cocoa-D1 120 5.88 1.54 58.00
Avocado-D1 56 3.15 1.61 58.79 15/08/2018 29/10/2018
Orange-D1 102 10.87 1.12 11.05 – 28/10/2018 – 04/11/2018
Lemon-D1 91 88.99 1.06 10.98
Cocoa-D2 115 5.79 1.72 65.25
Avocado-D2 57 3.43 1.71 49.07 10/10/2018 24/12/2018
Orange-D2 90 10.23 1.17 10.84 – 23/12/2018 – 30/12/2018
Lemon-D2 98 118.01 1.21 14.15
Cocoa-D3 105 5.69 1.57 63.00
Avocado-D3 53 3.89 1.61 44.85 09/12/2018 17/02/2019
Orange-D3 79 12.09 1.07 10.91 – 16/02/2019 – 23/02/2019
Lemon-D3 93 220.43 1.19 17.09
Cocoa-D4 104 5.67 1.76 57.94
Avocado-D4 55 3.43 1.80 48.42 01/02/2019 11/04/2019
Orange-D4 75 10.95 1.04 9.35 – 10/04/2019 – 17/04/2019
Lemon-D4 95 142.43 1.25 17.49

• Orange belongs to a customer from basic industry. Orange-D1, Orange-D2, Orange-D3,
Orange-D4 have 367200, 324000, 265440, 248400 samples in training set and 31749, 29059,
24345, 23765 samples in testing set respectively. Different with Cocoa and Avocado, Orange’s
average user session count is much less than the number of working days. It indicates that
most users just have 1 session in a week.
• Lemon is from amanufacturing industry customer. Lemon-D1, Lemon-D2, Lemon-D3, Lemon-D4
have 327600, 352800, 312480, 314640 samples in training set and 18235, 25849, 20215, 20566
samples in testing set respectively. Lemon has the similar pattern that users have fewer ses-
sions that the number of working days. Furthermore, its average user session duration is
as long as 118 hours, this is a commonly seen 24 shift pattern in manufacturing enterprise
where three teams work 24-hr shifts to provide the whole day coverage.

4.2.2 Comparing Approaches. In the experiment, we compare SOUPwith four approaches including
Prophet [44], Holt-Winters [7], RNN-IDS [49] and LSTM [21]. Prophet is proven efficient in large
scale time-series forecasting with the ability of detecting seasonalities automatically. Holt-Winters
is a traditional statistical method for seasonal time-series data prediction using an exponential
smoothing model. RNN-IDS is an intrusion detection system based on recurrent neural network
which achieves high accuracy and superior performance in time-series prediction task. LSTM (Long
Short-Term Memory network) is a type of recurrent neural network used in deep learning. It’s
designed to handle sequence dependence and is good at time-series prediction problems. These
approaches investigate the time series from various aspects, thereby help to verify the effectiveness
of SOUP in VDI user login prediction.

The experiments are performed with granularity interval Δ𝑡 = 30 minutes and maximum action
scope 𝑛 = 1344 ( 6030 ∗ 24 ∗ 7 ∗ 4) which looks into previous 4 weeks historical data for pattern

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:22 Yao Zhang, et al.

Table 14. The value of
𝑏
𝑎 used in CSAG for four persistent pool datasets. Specially, a and b correspond to the

cost of VM charges and the cost of employee’s time wasted respectively.

Dataset Cocoa Avocado Orange Lemon
𝑏
𝑎

160 80 120 320

(a) CD-AUC (b) CD-CSAG

Fig. 8. Comparison of SOUP (control algorithm) against other comparing approaches with the Bonferroni-

Dunn test, CD=1.3964 at 0.05 significance level.

extraction. For SOUP, GBDT is utilized as the regression method to learn model from the training
samples. For Prophet, we enable the daily and weekly seasonality as they are both observed in the
data. For Holt-Winters, the seasonal parameter is configured as 336 ( 6030 ∗ 24 ∗ 7) hours. For LSTM,
we specify the input shape of 3D tensor (𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠, 𝑖𝑛𝑝𝑢𝑡_𝑑𝑖𝑚) as (256, 72, 1) which
achieves best AUC score on the data sets. For evaluation, we exclude the “𝑥𝑡 = 1" samples from
testing set as “𝑥𝑡 = 1" indicates that the user is currently connected to VDI system making the logon
prediction unnecessary. This conforms to the practical scenario where VDI system makes logon
prediction and launches desktops only for offline users. Finally, all the four comparing methods use
the same group-based model with SOUP where a single model is trained from the logon data of all
the users in one persistent pool.

4.2.3 Evaluation Metrics. Two metrics are used for performance evaluation, including Area Under
the ROC Curve (AUC) and Cost Saving Absolute Gain (CSAG). AUC is a single-value metric which
attempts to summarize an ROC curve to evaluate the quality of a classifier. After excluding “𝑥𝑡 = 1"
samples in testing set, we observe an imbalanced distribution where number of negative cases
(𝑥𝑡+1 = 0) is 100 times of positive cases (𝑥𝑡+1 = 1). When dealing with imbalanced data, AUC is
more feasible to represent model performance than precision and recall.

CSAG serves as a domain specific metric measuring the cost saving gain by user logon prediction.
In current solution, the VDI system admin usually keeps all VM powered on no matter the end
user is connected or not. Let TN be the number of true negatives where user is correctly predicted
as not connected and 𝑎 be the cost of VM charges of time range Δ𝑡 , the overall cost saving can be
represented as 𝑎 ∗ TN. Similarly, let FN be the number of false negatives where user actually logon
but predicted not, and 𝑏 be the cost of employee’s time wasted in waiting for VM to be powered on
and desktop to be ready, the penalty cost of the incorrect prediction is 𝑏 ∗ FN. For simplicity, the
definition of CSAG is as follows:

CSAG = TN − 𝑏

𝑎
FN (22)

Here, we use the pricing of the on-demand AWS EC2 t3.large VM (Windows) [1] as 𝑎 and 10
minutes’ employee salary of four different customers’ industries as 𝑏. The configuration of 𝑏

𝑎
for

the four customers is detailed in Table 14. Comparing with common metrics like accuracy and
recall, CSAG is more intuitive from VDI resource management perspective.

ACM Trans. Intell. Syst. Technol., Vol. 1, No. 1, Article 1. Publication date: January 2022.



CAFE and SOUP: Towards Adaptive VDI Workload Prediction 1:23

Table 15. Performance on the real-world VDI data sets in term of AUC Score and Cost Saving Absolute Gain.

Comparing AUC Score
Methods Cocoa-D1 Cocoa-D2 Avocado-D1 Avocado-D2 Orange-D1 Orange-D2 Lemon-D1 Lemon-D2
SOUP 0.9588 0.9084 0.9681 0.9690 0.9203 0.8650 0.9124 0.9054
Prophet 0.7169 0.6528 0.8553 0.8224 0.5923 0.5658 0.6565 0.5625
Holt-Winters 0.6948 0.6649 0.7963 0.8538 0.7203 0.6643 0.7634 0.7732
RNN-IDS 0.7846 0.6883 0.7780 0.8010 0.6976 0.6859 0.8640 0.8302
LSTM 0.6607 0.6737 0.7389 0.7688 0.7024 0.7134 0.8180 0.8226

Cocoa-D3 Cocoa-D4 Avocado-D3 Avocado-D4 Orange-D3 Orange-D4 Lemon-D3 Lemon-D4
SOUP 0.9494 0.9477 0.9646 0.9503 0.9259 0.879 0.9533 0.9285
Prophet 0.6431 0.7747 0.7541 0.788 0.591 0.6909 0.5395 0.681
Holt-Winters 0.8223 0.7731 0.8769 0.8015 0.876 0.6665 0.8792 0.6846
RNN-IDS 0.7451 0.7625 0.7453 0.759 0.8077 0.8013 0.813 0.8574
LSTM 0.6478 0.6626 0.673 0.7312 0.8189 0.8244 0.8253 0.847
Comparing Cost Saving Absolute Gain
Methods Cocoa-D1 Cocoa-D2 Avocado-D1 Avocado-D2 Orange-D1 Orange-D2 Lemon-D1 Lemon-D2
SOUP 20940 20371 13282 15731 25565 24025 10452 17862
Prophet 3490 2476 9122 12709 19590 22138 2361 4452
Holt-Winters 12099 11420 11569 14832 23265 22282 6770 12788
RNN-IDS 4819 2109 4345 8139 17562 16667 8132 10928
LSTM 2370 1952 5121 10239 21541 22622 8270 14775

Cocoa-D3 Cocoa-D4 Avocado-D3 Avocado-D4 Orange-D3 Orange-D4 Lemon-D3 Lemon-D4
SOUP 16448 16567 13140 12936 20532 20699 13789 11496
Prophet -206 6186 7212 6921 15943 16614 -441 -119
Holt-Winters 5582 3388 11175 7541 19078 18055 9927 202
RNN-IDS 2692 2280 6467 5795 17614 18514 4955 7580
LSTM 1545 183 5124 5528 17620 18274 8248 7859

Table 16. Friedman statistics 𝐹𝐹 for SOUP in terms of each evaluation metric and the critical value at 0.05

significance level (# comparing algorithms 𝑘 = 5, # data sets 𝑁 = 16).

Evaluation metric 𝐹𝐹 critical value
AUC 19.41 2.5252CSAG 25.25

4.2.4 Experimental Results. Table 15 summarizes the detailed experimental results in which the
best performance on each data set is shown in boldface. For CSAG, the threshold yielding best
CSAG score is utilized for each comparing approach. To analyze the relative performance among the
comparing approaches in a systematic manner, Friedman test [10] is employed as the statistical test
for performance comparison. The Friedman statistics 𝐹𝐹 and the critical values of each evaluation
metric are reported in Table 16. Accordingly, we perform post-hoc Bonferroni-Dunn test [11] to
compare the relative performance among the comparing approaches and control algorithm. The
CD diagrams are presented in Figure 8, where the average rank of each approach is marked along
the axis (the smaller the better).
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Table 17. Characteristics of the OPSD data sets where min-max and mean±std stand for the mini-

mum/maximum session count, mean value and standard deviation of the session counts respectively.

Data sets Period min-max mean±std
Dataset-1 29/01-22/07, 2018 4274-10836 7229±1442
Dataset-2 08/07-29/12, 2019 4167-10817 7075±1383
Dataset-3 01/02-26/07, 2015 3382-10013 6810±1344
Dataset-4 01/02-26/07, 2019 4312-10328 7107±1310

Fig. 9. Ground-truth electricity workload of the OPSD data sets. Only part of the training data is shown in

the figure.

Based on the experiment results, the following observations can be made:
• Among the 32 configurations (16 data sets × 2 evaluation metrics), SOUP ranks 1st in 100%
cases. As per the diverse properties of experimental data sets, SOUP demonstrates desirable
generalization ability in user logon prediction. Furthermore, for Division D2 in which
testing set includes Christmas holiday, SOUP keeps stable superiority against comparing
approaches.
• Apparently, the null hypothesis that SOUP and comparing approaches are of equal perfor-
mance is rejected at 0.05 significance level.

4.3 Experiments on Electricity Load Prediction

To evaluate the generalization ability of coarse-to-fine multi-grained feature extraction method,
we conduct the CAFE experiments of electricity load prediction tasks on "Open Power System
Data" (OPSD) [9]. We use the same comparing approaches (Prophet, Holt-Winters, Nf-gbdt and
LSTM) and evaluation metrics (NMAE, NRMSE, OPU and UPR) with the CAFE experiments on
VDI workload prediction.
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Table 18. Performance on the OPSD data sets in term of NMAE, NRMSE, OPR and UPR (Δ𝑡 = 120𝑚𝑖𝑛𝑢𝑡𝑒𝑠).

Data NMAE NRMSE
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Dataset-1 0.0251 0.0634 0.0750 0.0292 0.0451 0.0346 0.0760 0.098 0.0398 0.0555
Dataset-2 0.0122 0.0448 0.0722 0.0146 0.0351 0.0159 0.0547 0.0954 0.0206 0.0402
Dataset-3 0.0197 0.0463 0.0699 0.0239 0.0385 0.0236 0.0544 0.0928 0.0288 0.0470
Dataset-4 0.1021 0.265 0.2013 0.1253 0.1813 0.1250 0.2939 0.2362 0.1594 0.2229
Data OPR UPR
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Dataset-1 0.0123 0.0530 0.0418 0.0140 0.0180 0.0128 0.0103 0.0332 0.0152 0.0271
Dataset-2 0.0041 0.0317 0.0368 0.0052 0.0035 0.0082 0.0131 0.0355 0.0094 0.0316
Dataset-3 0.0030 0.0283 0.0274 0.0057 0.0013 0.0167 0.0180 0.0424 0.0182 0.0372
Dataset-4 0.0955 0.2628 0.1922 0.1191 0.1735 0.0065 0.0022 0.0090 0.0062 0.0078

4.3.1 Data Sets. The electricity load data are collected from "Open Power System Data" (OPSD)
from 2015 to 2020. We select 4 data sets and name them as Dataset-1, Dataset-2, Dataset-3
and Dataset-4. Each data set contains 25 weeks of data and the sample interval is 15 minutes.
We use the first 24 weeks for training and the last 1 week for testing. Table 17 shows the detailed
statistics of the 4 data sets, where min-max and mean±std refer to the minimum/maximum, mean
and standard deviation of the electricity load. Figure 9 shows the ground-truth value of the 4 data
sets where we can find some patterns. First, all 4 data sets show the working-day pattern where
the working days (from Monday to Friday) have much higher electricity load than the weekend
(from Saturday to Sunday). Additionally, Sunday almost has the least load but has some days of
anomaly in every data set. Second, all the data sets display a slowly and regularly change pattern.
It is interesting that Dataset-2 shows a two-peek on every day. Moreover, Dataset-3 exhibits
more short term fluctuations than other three data sets. Last but not least, notable variances can be
observed in the testing sets. For instance, Dataset-2 has much lower load in the whole week as it
is Christmas. Dataset-1 shows a drift pattern where the average electricity load declines slowly
every week.

4.3.2 Coarse-to-fine Parameters. As the sample interval of electricity load raw data is 15 minutes,
we perform two group of experiments with Δ𝑡 = 120𝑚𝑖𝑛𝑢𝑡𝑒𝑠 and Δ𝑡 = 240𝑚𝑖𝑛𝑢𝑡𝑒𝑠 . As discussed in
the Section 2.3, the coarse-to-fine feature extraction parameters are as in Table 6 and Table 7. We use
the same maximum action scope 𝑛 set as 1440 minutes (24 hours), the granularity vector 𝒌 is then set
as (1440, 720, 240, 180, 30, 15, 15) for Δ𝑡 = 120 minutes and (1440, 720, 240, 180, 60, 30, 15) for Δ𝑡 =
240 minutes. Meanwhile, the action scope vector𝜸 is configured as (1440, 720, 240, 180, 240, 120, 15)
and (1440, 720, 240, 180, 480, 240, 15) for Δ𝑡 = 120 minutes and Δ𝑡 = 240 minutes respectively.

4.3.3 Experimental Results. The experimental results are summarized in Table 18 and Table 19
respectively where the best performance on each data set is shown in boldface. Based on the
reported experiment results, the following observations can be made:
• Out of a total of 32 configurations (8 data sets × 4 evaluation metrics), CAFE achieves 1st
ranks in 22 (61.1%) cases and 2nd ranks in 6 (16.7%) cases. In the prediction of the shorter
time span (Δ𝑡 = 120), CAFE ranks 1st in 12 (66.7%) and 2nd in 3 out of 18 (16.7%) cases. In the
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Table 19. Performance on the OPSD data sets in term of NMAE, NRMSE, OPR and UPR (Δ𝑡 = 240𝑚𝑖𝑛𝑢𝑡𝑒𝑠).

Data NMAE NRMSE
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Dataset-1 0.0284 0.1015 0.1278 0.0300 0.0407 0.0367 0.1170 0.1614 0.0396 0.0527
Dataset-2 0.0170 0.0832 0.1312 0.0131 0.0229 0.0222 0.1012 0.1653 0.0167 0.0288
Dataset-3 0.024 0.0771 0.1212 0.0250 0.0362 0.0286 0.0944 0.1584 0.0301 0.0443
Dataset-4 0.1237 0.3048 0.2261 0.1559 0.1757 0.1502 0.3343 0.2622 0.1989 0.2174
Data OPR UPR
Sets CAFE Prophet Holt- NF- LSTM CAFE Prophet Holt- NF- LSTM

Winters GBDT Winters GBDT
Dataset-1 0.0134 0.0895 0.0691 0.0165 0.0184 0.0150 0.0119 0.0586 0.0136 0.0224
Dataset-2 0.0036 0.0681 0.0663 0.0069 0.0213 0.0134 0.0151 0.0649 0.0063 0.0017
Dataset-3 0.0024 0.0558 0.0529 0.0035 0.0035 0.0215 0.0213 0.0683 0.0215 0.0327
Dataset-4 0.1129 0.3046 0.2041 0.1486 0.1647 0.0108 0.0001 0.0220 0.0072 0.0110

prediction of the longer time span prediction (Δ𝑡 = 240), CAFE ranks 1st in 10 (55.5%) and
2nd in 3 out of 18 (16.7%) cases. It is worth noting that CAFE achieves 1st rank in all cases in
terms of NMAE and NRMSE when Δ𝑡 = 120.
• CAFE performs not well on UPR when Δ𝑡 = 240. By analysis, we can see that the main reason
is CAFE has pretty good balance between OPR (all rank 1st) and UPR while Prophet has
un-acceptable high OPR which makes its UPR relatively low. In the VDI domain, the balance
between OPR and UPR is very important for the VDI desktop pool administrator to measure
the cost saving against user experience satisfaction.

5 GENERALIZATION ABILITY OF COARSE-TO-FINE FEATURE EXTRACTION

As one of the most important contributions of this paper, coarse-to-fine feature extraction was
proposed specifically in VDI domain and its effectiveness has been proven by the experiment results
of non-persistent and persistent desktop pool workload prediction. Additionally, the parameters
tuning practice has been discussed in Section 2.3. Furthermore, in the extended experiments
in Section 4.3.3, CAFE achieves convincing generalization performance on the electricity load
prediction which clearly proves the effectiveness of the coarse-to-fine feature extraction approach.
Generally, it is highly potential that this method can be tuned to adapt workload prediction or
time-series prediction tasks in an explainable way under controllable effort. It is worth mentioning
that we do not have any domain knowledge of electricity load data and just tune the coarse-fine
parameters with some common sense. Accordingly, we have reason to believe that with more
guidance of related domain knowledge, CAFE and SOUP can be optimized to perform even better
in various workload prediction and time-series prediction tasks.

6 CONCLUSION

In this paper, an extension to our earlier research [50] is presented where two adaptive learning
approaches named CAFE and SOUP are proposed for VDI workload prediction on non-persistent
and persistent pools. With the multi-grained features, selected seasonal and contextual features
generated from the historical workload time-series data, CAFE and SOUP train aggregated model by
leveraging the GBDT regressor. Comprehensive experiments on real VDI customer data demonstrate
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that CAFE and SOUP achieve preferable performance than the comparing models and show superior
generalization capability on dealing with data sets with varying characteristics. Furthermore,
extended experiments of electricity load prediction on OPSD data are conducted where CAFE’s
superior performance validates the potential applicability of using coarse-to-fine feature extraction
method in other workload prediction and time series data prediction tasks.

During the procedure of designing and evaluating CAFE and SOUP, we reveal several practicable
insights: 1) Aggregated model shows superiority in VDI workload prediction for its capability
of adopting the global behaviors of all pool-sharing users as well as its cost-efficient training. 2)
For different types of VDI pools, different multi-grained features are required. For non-persistent
pool, multi-grained features are generated from pool-level aggregated workload historical data.
For persistent pool, multi-grained features generated from individual users are incorporated into
one pool-level aggregated model. 3) The design of multi-grained features must be well-balanced
between long-term and short-term characteristics to improve the model’s generalization ability of
handling macro and micro patterns in data sets with diverse properties.
Future works may include exploring advanced machine learning techniques on VDI workload

data sets, such as deep learning for large-scale data sets [30, 52], feature augmentation for contextual
features exploitation [22, 45], group supervision modeling for pool-sharing users [47], etc., and
experimenting further on longer prediction interval. We also plan to further evaluate coarse-to-fine
feature extraction method on more workload prediction tasks in other domains. From engineering
perspective, it is beneficial to study the possibility of enable online training and testing in VDI
workload prediction models.
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