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Weakly supervised part-of-speech (POS) tagging is to learn to predict the POS tag for a given word in context
by making use of partial annotated data instead of the fully tagged corpora. As POS tagging is crucial for
further natural language processing (NLP) applications such as named entity recognition and information
extraction, weakly supervised POS tagging would benefit various NLP applications in such languages where
tagged corpora are mostly unavailable. In this paper, we propose a novel approach for weakly supervised
POS tagging based on a dictionary of words with their possible POS tags. In the constrained error-correcting
output codes (ECOC) based approach, a binary classifier is learned for each POS tag. For each classifier, its
training data is generated in the following way: each word will be considered as a positive training example
only if the whole set of its possible tags falls into the positive dichotomy specified by the column coding in
ECOC; and similarly for negative training examples. Therefore, the set of all possible tags for each word is
treated as an entirety without the need of performing disambiguation. Moreover, instead of manual feature
engineering employed in most previous POS tagging approaches, features for training and testing in the
proposed framework are automatically generated using neural language modeling. The proposed framework
has been evaluated on two corpora for English and Italian POS tagging, achieving accuracies of 93.21% and
90.9% individually, which shows a significant improvement compared to the state-of-the-art approaches.

1. INTRODUCTION
Due to the lack of enough annotated corpora, weakly supervised learning has become
a hot topic in natural language processing (NLP) domain in recent years. In this paper,
weakly supervised part-of-speech (POS) tagging is to learn to predict POS tag for a giv-
en word in context given a dictionary of words with their possible POS tags as shown
in Table I. As POS tagging is crucial for further NLP applications such as named entity
recognition [Zhou et al. 2014] and information extraction [Zhou et al. 2015], weakly su-
pervised POS tagging might benefit NLP in such languages where both tagged corpora
and language annotators are mostly unavailable.

However, it is difficult to conduct weakly supervised POS tagging since the ground-
truth POS tag of the word in the sentence is hidden in its possible POS tags and is
not directly accessible by the learning algorithm. One common way to learn from the
dictionary of candidate POS tags is to regard the ground-truth tag as latent variable
which is identified via iterative refining procedure. Therefore, previous weakly super-
vised POS tagging approaches are largely based on expectation maximization (EM)
parameters estimation using hidden Markov models (HMMs) or conditional random
fields (CRFs). For example, Merialdo [1994] employed maximum likelihood estimation
(MLE) to train a trigram HMM. Following this way, some improvements were made by
modifying the statistical model or employing better parameter estimation techniques.
For example, Banko and Moore [2004] modified the basic HMM structure to employ
context on both sides of the word to be tagged. Training is conducted on CRF using
contrastive estimation for POS tagging [Smith and Eisner 2005].
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Table I. An example of input and output of weakly supervised POS tagging. (PRP denotes per-
sonal pronoun, DT for determiner, JJ for adjective, VB for verb base form, CD for cardinal number
and so on)

Dictionary
you PRP; these DT; events NNS; took VBD; 35 CD; years NNS; ago IN RB; to IN JJ
TO; place NN VB VBP; recognize VB VBP; that DT IN NN RB VBP WDT; have JJ
VBD VBN VBP;...
Sentence POS tagging
You have to recognize that
these events took place 35
years .

You/PRP have/VBP to/TO recognize/VB that/IN
these/DT events/NNS took/VBD place/NN 35/CD
years/NNS ago/IN ./.

Clustering can also be employed for weakly supervised POS tagging by casting the
identification of syntactic classes as a knowledge-free clustering problem. Distribution-
al clustering and dimensionality reduction techniques are typically applied [Toutanova
and Johnson 2008]. Unfortunately, due to a lack of standard and informative evalua-
tion techniques, it is difficult to compare the effectiveness of different clustering meth-
ods.

Most of the approaches mentioned above are disambiguation based. Although dis-
ambiguation presents as an intuitive and reasonable strategy to weakly supervised
POS tagging, its effectiveness is largely affected by the false positive tag(s) within pos-
sible tags. For disambiguation by ground-truth tag identification, the identified tag
refined in each iteration might turn out to be the false positive label instead of the
ground truth one. Therefore, the negative influence brought by false positive tags will
be more pronounced as the size of possible tags increases. In this paper, we incorporate
a novel strategy for weakly supervised POS tagging. It does not rely on disambiguat-
ing possible POS tags. In specific, error-correcting output codes (ECOC) [Dietterich
and Bakiri 1995], one of the famous multi-class learning techniques, is adapted and
a binary classifier is learned for each POS tag. The key adaptation lies in how the bi-
nary classifiers corresponding to the ECOC coding matrix are built. For each column
of the binary coding matrix, one binary classifier is built based on binary training ex-
amples derived from the POS tag dictionary. Specifically, any word will be regarded
as a positive or negative training example only if its possible tags entirely falls into
the positive or negative dichotomy specified by the column coding. In this way, the set
of possible tags is treated as an entirety without resorting to the any disambiguation
procedure. Moreover, the choice of features is a critical success factor for POS tagging.
Most of the state-of the-art POS tagging systems address their tasks by exploring the
lexical context of the words to be tagged and their letter structure (e.g., presence of suf-
fixes, capitalization and hyphenation). Obviously, these feature design needs domain
knowledge and expertise. In this paper, features employed for weakly supervised POS
tagging are generated without manual intervene.

The main contributions of the paper are summarized below:

— We proposed a novel approach based on ECOC for weakly supervised POS tagging.
In this way, the set of possible tags is treated as an entirety without resorting to any
disambiguation procedure. It can easily avoid the disadvantage of disambiguation
strategy, a common way for weakly supervised POS tagging.

— We developed a POS tagging system without human intervention. Features employed
for POS tagging are generated automatically.

— We evaluated the proposed approach on two corpora for English and Italian POS
tagging, and observed a significant improvement in accuracy compared to the state-
of-the-art approaches.
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2. RELATED WORK
Satisfactory results have been achieved in supervised Part-of-Speech tagging. The best
taggers can obtain tagging accuracies over 97% on the English Penn Treebank. How-
ever, tagging without labeled data still is full of challenge. Recently, more and more
researchers pay attention to POS tagging without using the fully annotated corpora.
There are mainly two directions to handle this problem.

On one hand, some efforts have been made on unsupervised POS tagging using the
clustering techniques. Omri et al. [2010] first identify landmark clusters of words, then
utilize morphological and distributional representations computed in a fully unsuper-
vised manner. Kairit et al. [2014] present an approach for inducing POS classes by
combining morphological and distributional information in non-parametric Bayesian
generative model based on distance-dependent Chinese restaurant process. However,
evaluating these systems proves difficult due to the lack of mapping from cluster labels
to gold standard tags.

On the other hand, many researchers focused on weakly supervised POS tagging us-
ing tag dictionaries [Merialdo 1994], where unlabeled word sequences and a dictionary
of possible tags for each word are given. A Bayesian approach that integrates over all
possible parameter values is employed and has the standard structure of 3-gram HM-
M [Goldwater and Griffiths 2007]. Integer programming (IP) is employed to search the
smallest bi-gram POS tag set and uses this set to constrain the training of EM [Ravi
and Knight 2009]. It achieves an accuracy of 91.6% on the 24k test set, but can not
handle large dataset. For solving the deficiency of IP, a two-stage greedy minimization
approach is proposed in [Ravi et al. 2010] that runs much faster while maintaining the
performance of tagging. To further improve the performance, several heuristics are
employed in [Garrette and Baldridge 2012]. Moreover, it works on incomplete dictio-
nary and achieves an accuracy of 88.52%. In [Ravi et al. 2014], distributed minimum
label cover is proposed which can parallelize the algorithm while preserving approx-
imation guarantees. It achieves an accuracy of 91.4% on the 24k test set and 88.15%
using incomplete dictionary. In [Yatbaz and Yuret 2010], unambiguous substitutes are
chosen for each occurrence of an ambiguous word based on its context. It achieves an
accuracy of 92.25% using standard HMM model on standard 24k test set.

Our work is similar to the second way in the sense that we also focus on POS tag-
ging using tag dictionaries. However, most previous approaches try to disambiguate
the word’s possible tags by identifying the ground-truth tag iteratively. This disam-
biguation is prone to be misled by the false positive tags within possible tags set. In
this paper, we propose a novel approach for weakly supervised POS tagging without
disambiguation. The set of possible tags is treated as an entirety without disambigua-
tion. Moreover, instead of manually feature engineering employed in most previous
weakly supervised POS tagging approaches, features for training and testing in the
proposed framework are automatically generated using neural language modeling.
The proposed approach was evaluated on two corpora for English and Italian POS
tagging, and observed a significant improvement in accuracy compared to the state-of-
the-art approaches. From the perspective of machine learning, our approach falls into
the partial label learning framework [Zhang 2014] in which each training example is
associated with a set of candidate labels, among which only one is correct. However,
our problem setting here is different. The only supervision information we have is a
POS tag dictionary which lists all possible POS tags for each word. This equally ap-
plies to both the training and testing instances. The annotations of training instances
need to be generated based on the POS tag dictionary. That is why we incorporate the
“Training Data Generation” component in the proposed framework.
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Table II. Notations.

Symbol Description
O a list of distinct POS tags
D a dictionary of words and their corresponding possible POS tags
U an unannotated corpus consisting of sentences
G a list of words and their corresponding word embeddings
L ECOC codeword length
B binary learner used for ECOC training
thr the threshold controlling the size of binary training set
T the training data set

3. THE PROPOSED APPROACH
Table II lists notations used in this paper. Assuming a full list of POS tags O and a
dictionary of words and their corresponding possible POS tags D, we aim to predict
the POS tag for a given word w in a sentence. Firstly, each word w in an unlabeled
corpus U is converted into a feature vector based on neural language modeling. Each
word w in an unlabeled corpus U is converted into a feature vector based on neural
language modeling. The word’s feature vector together with its neighboring words’
feature vectors form the word’s context feature set. For each word w, its context feature
set ϕ(w) and its corresponding possible POS tags Aw, which are retrieved from the
dictionary D, form one training example in the training dataset T . After that, POS
tagging is conducted following the coding-decoding procedure. The proposed approach
is illustrated in Figure 1 which consists of two main components, one is Training Data
Generation and the other is Training and Testing based on ECOC. The details of each
component are described as follows.

3.1. Error Correcting Output Codes (ECOC)
As the proposed approach for POS tagging is based on Error Correcting Output Codes
(ECOC), we give a brief introduction to ECOC. In machine learning, multi-class clas-
sification problem is the problem of classifying instances into one of the more than two
classes. ECOC is a widely applied strategy for multi-class classification that enhances
the generalization ability of binary classifiers. To begin, one assigns a unique L-bit
vector to each label. One can view the ith bitvector as a unique coding for label i. The
set of bitvectors is referred as decomposition matrix (coding matrix) and denoted as M
with value {1,−1}. Then, the ECOC method can be separated into two steps: encoding
and decoding. The purpose of the encoding step is to design M . Each row of the coding
matrix M is called codeword to represent each class and each column of the coding
matrix M specifies a dichotomy over the label space to learn a binary classifier. There-
fore, each column corresponds to a binary classifier, which separates the set of classes
into two meta-classes. The instance x which belongs to the class i is considered as a
positive instance for the jth classifier if and only if Mi,j = 1 and is a negative instance
if and only if Mi,j = −1.

In the decoding step, the codeword of an unlabeled test sample is generated by con-
catenating the predictive outputs of the L binary classifiers. The sample is predicted
to the class with the closest codeword according to some distance measure.

3.2. Training Data Generation
In this section, we describe how to generate training data based on word embeddings,
which is shown in Algorithm 1. Word embedding or word representation of each word
is a real-value vector usually with a dimension of between 50 and 300. Word embed-
dings aim to capture the syntactic or semantic regularities among words such that
words that are semantically similar to each other are placed in nearby locations in
the embedding space. This characteristic is precisely what we want, because the key
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Fig. 1. The proposed approach for weakly supervised POS tagging.

to one-class classification is semantic similarity measurement. As such, word embed-
dings could be explored for one-class classification.

We use neural language modeling [Collobert et al. 2011] to learn word representa-
tions by discriminating the legitimate phrase from incorrect phrases. Given a sequence
of words p = (w1, w2, ..., wd) with window size d, the goal of the model is to discrimi-
nate the sequence of words p (the correct phrase) from a random sequence of words pr.
Thus, the objective function of the model is to minimize the ranking loss with respect
to parameters θ: ∑

p∈p

∑
r∈R

max(0, 1− fθ(p) + fθ(p
r)), (1)

where p is the set of all possible text sequences with d words coming from the corpus
U , R is the dictionary of words, pr denotes the window of words obtained by replacing
the central word of p by the word r and fθ(p) is the score of p. Therefore, the dataset for
learning the language model can be constructed by considering all the word sequences
in the corpus. Positive examples are the word sequences from the corpus, while nega-
tive examples are the same word sequence with the central word replaced by a random
one.
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Algorithm 1 Training Data Generation.
Input: O, D, U , G
Output: T

1: Initialize the training data set T = ∅;
2: for each word w in each sentence of U do
3: Retrieve from G the word embeddings of w, and its previous and next word;
4: Concatenate the retrieved vectors to form the feature of w, ϕ(w);
5: Retrieve from D all possible POS tags Aw for word w;
6: Insert the pair (ϕ(w), Aw) into the training set T ;
7: end for
8: T = {(ϕ(wi), Ai)|1 ≤ i ≤ |U |}(wi ∈ U,Ai ⊆ O);

3.3. Training and Testing based on Constrained ECOC
In this section, we describe our proposed approach based on ECOC for solving the
weakly supervised POS tagging problem, which does not rely on disambiguating pos-
sible tags. ECOC follows the binary decomposition philosophy via a coding-decoding
procedure for multi-class classifier induction.

Firstly, in the coding phase, a |O| × L binary coding matrix M ∈ {+1,−1}|O|×L is
needed where |O| is the number of distinct POS tags. Each row of the coding matrix
M(j, :) represents an L-bit codeword for one tag class yj (See the lower half of Figure
1). Each column of the coding matrix M(:, l) specifies a dichotomy over the tag space
y with y+l = {yj |M(j, l) = +1, 1 ≤ j ≤ |O|} and y−l = {yj |M(j, l) = −1, 1 ≤ j ≤ |O|}.
Then, one binary classifier is built for each column by treating training examples from
y+l as positive ones and those from y−l as negative ones. For each training instance,
(ϕ(wi), Ai), where ϕ(wi) is the feature vector of the word wi and Ai is its possible POS
tags which are retrieved from the dictionary D, the possible tag set Ai associated with
wi is regarded as an entirety. The training instance (ϕ(wi), Ai) will be used as a positive
(or negative) training example only if Ai entirely falls into y+l (or y−l ) to build the binary
classifier hl. Otherwise, (ϕ(wi), Ai) will not be used in the training process of hl.

Then, for any test word w∗, an L-bit codeword h(ϕ(w∗)) is generated by
concatenating the predictive outputs of the L binary classifiers: h(ϕ(w∗)) =
[h1(ϕ(w

∗)), h2(ϕ(w
∗)), · · · , hL(ϕ(w

∗))]T. After that, the tag whose codeword is closest
to h(ϕ(w∗)) is returned as the final prediction for w∗:

g(ϕ(w∗)) = argmin
yj

1 ≤ j ≤ |O|

dist(h(ϕ(w∗)),M(j, :)) (2)

Here, the distance function dist(, ) can be implemented in various ways such as ham-
ming distance [Dietterich and Bakiri 1995] or Euclidean distance [Pujol et al. 2008].
Table III lists the functions and their corresponding definitions employed in our ap-
proach.

Table III. The definition of Different decodings.

Decoding Definition
Euclidean

√∑n
i=1(xi − yi)2

Attenuated Euclidean
√∑n

i=1 |yi||xi|(xi − yi)2

Hamming
∑n

i=1(1− sign(xi · yi)/2)
Inverse Hamming max(∆−1HT ), where ∆(i1, i2) = Hamming Dist(yi1, yi2) and H

is the vector of Hamming decoding values of the x for each yi.
Laplacian (αi + 1)/(αi + βi + |O|), where αi is the number of matched po-

sitions between the codeword x and y, βi is the number of miss-
matches without considering the positions coded with 0.
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As for a test word w∗, its candidate POS tags Aw∗ can be found in the dictionary D.
The final prediction for w∗, g(ϕ(w∗)) must be in its candidate POS tags. To apply such
constrains, the equation 2 is modified as

g(ϕ(w∗)) = argmin
yj

1 ≤ j ≤ |O|
yj ∈ Aw∗

dist(h(ϕ(w∗)),M(j, :)) (3)

Algorithm 2 Training and Testing based on constrained ECOC.
Inputs: L, B, thr, T , w∗ (the test word in a given sentence)
Outputs: The predicted POS tag for w∗

Encoding:
1: l = 0;
2: do
3: Randomly generate a |O|-bit column coding v = [v1, v2, · · · , v|O|]

T;
4: Dichotomize the tag space according to v: y+v = {yj |vj = +1, 1 ≤ j ≤ |O|}, y−v =

y\y+v ;
5: Initialize the binary training set Tv = ∅;
6: for each word wi appeared in U do
7: if Ai ⊆ y+v then
8: add ((ϕ(wi), Awi),+1) to Tv

9: end if
10: if Ai ⊆ y−v then
11: add ((ϕ(wi), Awi),−1) to Tv

12: end if
13: end for
14: if |Tv| ≥ thr then
15: l = l + 1;
16: Set the l-th column of the coding matrix M to v;
17: Build the binary classifier hl by invoking B on Tv;
18: end if
19: while l < L

Decoding:
20: Generate ϕ(w∗), the feature of w∗, based on Algorithm 1;
21: Generate codeword h(ϕ(w∗)) by querying binary classifiers’ outputs;
22: Return y∗ = g(x∗) according to Equation 3.

The proposed approach based on constrained ECOC is summarized in Algorithm 2.
As shown here, the proposed approach does not rely on any POS tag disambiguation
strategy which often runs in an iterative manner. The procedure is conceptually sim-
ple and amenable to different choices of the binary learner B, similar to the standard
ECOC mechanism. Furthermore, as reported in the next section, the performance of
the proposed approach is highly competitive against the state-of-the-art weakly super-
vised POS tagging approaches.

4. EXPERIMENTS
4.1. Setup
We evaluate English POS tagging on Penn Treebank III (PTB) [Marcus et al. 1993].
Following the same experimental setup as in [Garrette and Baldridge 2012; Ravi et al.
2010; Ravi et al. 2014], we construct a dictionary D from the entire Wall Street Journal
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data in PTB. There are 45 distinct POS tags in PTB such as PRP, DT, CD, IN mentioned
in Table I, which form O. The dictionary contains 48,461 words and 56,602 word/tag
pairs. We also build an unannotated corpus U by choosing the first 50,000 tokens of
PTB. Following a similar setup in previous methods [Ravi and Knight 2009; Yatbaz
and Yuret 2010], we construct a standard test data by collecting 24,115 word tokens
from PTB. In the 24k test set, there are 5,175 distinct words with 8,162 word/tag pairs
found in the dictionary D.

In order to fairly compare the proposed approach with the state-of-the-art approach-
es, we also build larger datasets with different number of word tokens ranging from
48k, 96k and 193k to the entire PTB in addition to the standard 24k dataset.Figure 4.1
shows the percentage of words with different number of possible POS tags on different
test sets. It can be observed that the unambiguous words (with one POS tag only) ap-
proximately account for less than 45% of all words while more than 70% of ambiguous
words are with no more than four possible POS tags.
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Fig. 2. Distribution of words with different number of possible tags on 24k test set.

The dictionary D derived from the entire PTB is quite noisy due to the tagging er-
rors. For example, in the tagged sentence “... the/CD 1982/CD Salon/NNP is/VBZ a/DT
beautiful/JJ wine/NN ...”, “the” is wrongly tagged as “CD”. To remove the noisy tags,
we correct the tag dictionary using the similar way in [Goldberg et al. 2008].

As mentioned before, word embeddings are trained using neural language mod-
els [Collobert et al. 2011]. The training of 50-dimensional word embeddings from
Wikipedia took about 7 weeks. To represent the context features of a target word,
we concatenate the word embedding of the first left word, the target word and first
right word to form a 150-dimensional vector of [wi−1, wi, wi+1] and use it as the feature
vector of the target word. For words not appearing in the learnt word embeddings,
we use various morphological features to assign the word embeddings of the similar
words to these words. The most frequent 20 suffixes are chosen to handle unknown
words such as “tion”,“ness”, “ment” and so on. For example, if the suffix of a word w is
“ing”, we randomly select a word with “ing” and assign its word embedding to w. For a
hyphenated word, we assign the word embedding of the latter part to this word.

The codeword length L is set to ⌈10 log2(|O|)⌉, as is typically set in ECOC-based
approaches [Zhou 2012]. The binary learner B is chosen to be Support Vector Machines
(SVMs) using the implementation of Libsvm [Chang and Lin 2011]. The thresholding
parameter thr is set to 1

10 |U |.
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4.2. Baseline Construction
To evaluate the efficiency of the proposed framework for weakly supervised POS tag-
ging, we choose the following approaches as the baseline and compare the performance
on the standard test data (24k tokens) as well as larger test data (48k, 96k, 193k and
the entire PTB) for POS tagging.

(1) HMM: Training a bigram HMM model using an EM algorithm.
(2) IP+EM [Ravi and Knight 2009]: Using IP to search the smallest bi-gram POS tag

set and using this set to constrain the training of EM.
(3) MIN-GREEDY [Ravi et al. 2010]: Minimizing grammar size using the two-step

greedy method.
(4) DMLC+EM [Ravi et al. 2014]: An extension of MIN-GREEDY with a fast, greedy

algorithm with formal approximation.
(5) RD [Yatbaz and Yuret 2010]: Unambiguous substitutes are chosen for each occur-

rence of an ambiguous word based on its context using a standard HMM model
with a filtered dictionary.

4.3. Overall Results
Table IV shows the performance comparison results of unsupervised POS tagging on
different test sets. Here, Laplacian decoding is used to implement the distance function
between two binary codewords. Other distance metrics have also been evaluated and
the details will be elaborated in Section 4.4.

Table IV. Performance comparison of weakly supervised POS tagging on dif-
ferent test sets. ( − represents that no result was reported on the test set for
this method).

Methods Tagging Accuracy
24k 48k 96k 193k PTB

HMM 81.7% 81.4% 82.8% 82.0% 82.3%
IP+EM 91.6% 89.3% 89.5% 91.6% −
MIN-GREEDY 91.6% 88.9% 89.4% 89.1%
DMLC+EM 91.4% − − − 87.5%
RD 92.25% 92.47% − − −
Our approach 93.21% 93.15% 93.01% 92.77% 92.63 %

It can be observed that our approach achieves an accuracy of 93.21% on the 24k data,
which is the best performance reported on the dataset to the best of our knowledge.
With the increasing size of the test data, the performance of our approach decreases
slightly. According to our analysis, the size of train set is limited, so the train procedure
does not cover all words of dictionary, which leads to the performance of larger test
set little worse than smaller test set. Nevertheless, our approach outperforms all the
baselines on all the test sets with the improvements ranging from 0.68% to 11.51% on
accuracy. Overall, we see superior performance achieved by our proposed approach.

To investigate the degree of disambiguation achieved by our proposed approach, we
analyze the accuracy of POS tagging on words with different number of possible tags,
1 (unambiguous), 2, 3, 4 and more than 4. As shown in Figure 3, the accuracy of POS
tagging on words with only one POS tag is 100%. For words with 2 to 4 possible tags,
the POS tagging accuracy of our approach is fairly stable. We observe that the accu-
racy on words with 2 possible tags is less than 90% but the accuracy on words with 3
possible tags is around 90%. This is somewhat contrary to our prior belief. By further
analyzing the results, we found that a majority of words with two possible POS tags
are those tagged with either (VB, VBP) or (VBD, VBN). Since VB and VBP co-occur
quite often in the dictionary D and similarly for VBD and VBN, these two pairs of tags
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are difficult to be disambiguated by our approach. It can be observed that the accuracy
of POS tagging on words with 4 possible tags is lower than the accuracy on words with
> 4 possible tags. It might attribute to the insufficient training data for the words with
4 possible tags as shown in Figure 4.1.
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Fig. 3. Accuracy of words with different number of possible tags on 24k test set.

4.4. The Impact of Different Decoding Functions
As described in Section 3.3, various distance functions can be used to decode the code-
words of target word w. To investigate the impact of decoding, we conducted experi-
ments on different sizes of test set with 50k train set. The performance of POS tagging
with different distance measures are presented in Figure 4 while the definitions of
different decodings are presented in Table III.
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Fig. 4. Performance comparison of unsupervised POS tagging using different decodings on different test
sets.

4.5. The Impact of Difference Sizes of Unannotated Corpus U

In this subsection, we investigate how the POS tagging performance changes with
different sizes of U . It can be observed from Table V that in general, on a larger test
set, the better performance is given by a larger unannotated training set.
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Table V. Performance comparison of the proposed approach trained
on U with different sizes.

Size of U Tagging Accuracy
24k 48k 96k 193k PTB

50k 93.21% 93.15% 93.01% 92.77% 92.63%
100K 93.10% 93.10% 93.18% 93.05% 92.87%
150k 93.20% 93.09% 93.17% 93.11% 92.91%
200K 93.09% 93.02% 93.09% 93.04% 92.91%

4.6. The impact of Dictionary D

In reality, it might be difficult to build a complete dictionary consisting of all possi-
ble words each with a correct set of POS tags. Therefore, it will be interesting to see
how the proposed framework performs when provided with an incomplete dictionary,
meaning that some words in the test data cannot be found in the dictionary.

We build a dictionary derived from section 00−15 in PTB. It consists of 39, 087 words
and 45, 331 word/tag entries. We use section 16 as raw data and perform final evalua-
tion on the sections 22− 24. We use the raw corpus along with the unlabeled test data
to train the proposed model. Unknown words are allowed to have all possible tags.

We compare the performance of our approach with several baselines in Table VI.
The “Random” baseline simply chooses a tag randomly from the tag dictionary and
gives an accuracy of 63.53%. “EM” uses the standard EM algorithm and achieves an
accuracy of 69.20%. The “Type+HMM” system [Garrette and Baldridge 2012] learned
taggers based on HMM from incomplete tag dictionaries. It improves MIN-REEDY al-
gorithm [Goldberg et al. 2008] with several intuitive heuristics and achieves 88.52%
in accuracy. As far as we know, it is the best score reported for this task in the lit-
erature. Our proposed approach gives an accuracy of 91.52%, outperforming all the
baselines including the state-of-the-art approach, Type+HMM. One possible reason is
that our proposed approach constructed features from word embeddings. Thus words
in the test data which are unseen in the POS tag dictionary D might still exist in the
learned word embeddings from Wikipedia.

Table VI. Performance comparison
with an incomplete dictionary. The
dictionary is derived from section
00 − 15 and test data is from sec-
tion 22− 24 of PTB.

Method Accuracy (%)
Random 63.53
EM 69.20
DMLC+EM 88.11
Type+HMM 88.52
Our approach 91.52

4.7. The Impact of POS Tag Space
To evaluate the performance of our proposed framework with a coarse grained dic-
tionary, we used a reduced tag set of 17 tags instead of the 45-tag set and evaluated
on the standard 24k test data, following a similar experimental setup as in previous
approaches. The details of the reduction of POS Tag are presented in Table VII.

Table VIII summarizes the previously reported results on coarse grained POS tag-
ging. “BH-MM” is a fully Bayesian approach that uses sparse POS priors and achieves
an accuracy of 87.3%, “CE” is based on the HMM model using contrastive estima-
tion method and achieves an accuracy of 88.7%. It can be observed that our approach
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Table VII. The reduced tag set with 17 tags.

Reduced Tag Treebank tag
ADJ CD JJ JJR JJS PRP$
ADV RB RBR RBS
DET DT PDT

INPUNC ,:LS SYM UH
LPUNC “ -LRB

N EX FW NN NNP NNPS NNS PRP
RPUNC ” -RRB-

W WDT WP$ WP WRB
V MD VBD VBP VB VBZ

achieves an accuracy of 95.4%, outperforming most baselines, except “IP+EM” where
our approach is only 1.4% lower.

Table VIII. Performance com-
parison of the proposed frame-
work with the baseline ap-
proaches using 17-tagset on
the standard 24k test data.

Method Accuracy
BH-MM 87.3%
CE 88.7%
IP+EM 96.8%
RD 92.90%
Our approach 95.40%

4.8. The Impact of Constrained ECOC
As mentioned in the section 3.3, the final prediction for w∗, g(ϕ(w∗)) must be in its can-
didate POS tags. Therefore, a constrain is applied in the equation 2 for predict the POS
tag. To investigate the incorporating of such constrain, we conducted experiments on
different test sets with and without such constrain. It can be observed from Figure 4.8
that the performance of the proposed model with constrain outperforms the one with-
out the constrain. It further verifies the effectiveness of incorporating such constrain.

24k 48k 96k 193k PTB
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Fig. 5. Performance comparison of the proposed approach with or without constrain on different test sets.
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4.9. Evaluation Results of Italian POS Tagging
The proposed model is independent of specific language. To demonstrate this, we use
the CCG-TUT corpus 1 for evaluating Italian POS tagging. There are 90 distinct
POS tags in CCG-TUT, which form O. The dictionary contains 8,177 words and 8,733
word/tag pairs. The unannotated corpus U was constructed using 42,100 tokens in
CCG-TUT. A standard test set was constructed by collecting 21,878 word tokens from
CCG-TUT. In the test set, there are 3,838 distinct words with 4,078 word/tag pairs
found in the dictionary D. To generate Italian word embeddings, we trained word2vec 2

from 14 million sentences extracted from the Italian Wikipedia with the window size
set to 11 and got 64-dimensional word embeddings. To represent the context features
of a target word, we take concatenated the word embedding of the first left word, the
target word and the first right word to form a 192-dimensional vector of [wi−1, wi, wi+1]
and used it as the feature vector of the target word.

Table IX shows the results of Italian POS tagging. It can be observed that our pro-
posed approach achieves an accuracy of 90.9%, which is better than all the baselines. It
further validates the effectiveness of our proposed approach in a language other than
English.

Table IX. Comparison of the per-
formance of the proposed frame-
work on the CCG-TUT corpus for
Italian POS tagging.

Method Accuracy
EM 83.4%
IP 88.0%
MIN-GREEDY 88.0%
Our approach 90.9%

To investigate the impact of decoding, the performance of Italian POS Tagging with
different distance measures are presented in Table X. It can be observed that Inverse
Hamming achieves the best results.

Table X. Performance comparison of
weakly supervised Italian POS tagging
using different decodings on the test
set.

Decoding Accuracy
Inverse Hamming 90.9%
Euclidean 90.0%
Attenuated Euclidean 90.0%
Hamming 90.0%
Laplacian 89.9%

5. CONCLUSIONS AND FUTURE WORK
In this paper, we propose a novel approach based on constrained ECOC for weakly su-
pervised POS tagging. It does not require an iterative training procedure for POS tag
disambiguation. Any word will be treated as a positive or negative training example
only if its possible tags entirely falls into the positive or negative dichotomy specified
by the column coding in ECOC. In this way, the set of possible tags of each word is
treated as an entirety without resorting to any disambiguation procedure. Moreover,

1www.di.unito.it/∼tutreeb/CCG-TUT
2code.google.com/p/word2vec/
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features employed for POS tagging are generated without manual intervention. We
have evaluated the proposed approach on the Penn Treebank and CCG-TUT corpus
for English and Italian POS tagging, and observed a significant improvement in ac-
curacy compared to the state-of-the-art approaches. In future, we will explore other
disambiguation-free approaches for weakly supervised POS tagging.
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