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Abstract 

Multi-instance learning originates from the investigation 
on drug activity prediction, where the task is to predict 
whether an unseen molecule could be used to make some 
drug. Such a problem is difficult because a molecule may 
have many alternative shapes with low energy, yet only 
one of those shapes may be responsible for the 
qualification of the molecule to make the drug. Because of 
its unique characteristics and extensive existence, 
multi-instance learning is regarded as a new machine 
learning framework parallel to supervised learning, 
unsupervised learning, and reinforcement learning. In 
this paper, an open problem of this area is addressed. 
That is, a popular neural network algorithm is adapted 
for multi-instance learning through employing a specific 
error function. Experiments show that the adapted 
algorithm achieves good result on the drug activity 
prediction data. 

1. Introduction 
At present, roughly speaking, there are three frameworks 
for learning from examples [9]. That is, supervised 
learning, unsupervised learning, and reinforcement 
learning. Supervised learning attempts to learn a concept 
for correctly labeling unseen examples, where the training 
examples are with labels. Unsupervised learning attempts 
to learn the structure of the underlying sources of 
examples, where the training examples are with no labels. 
Reinforcement learning attempts to learn a mapping from 
states to actions, where the examples are with no labels 
but with delayed rewards that could be viewed as delayed 
labels. 

Recently, Dietterich et al. [7] proposed the notation of 
multi-instance learning, where the training set is 

composed of many bags each containing many instances. 
The bags are labeled in the way that if a bag contains at 
least one positive instance then it is labeled as a positive 
bag. Otherwise it is labeled as a negative bag. However, 
the labels of the instances are unknown. The task is to 
learn some concept from the training set for correctly 
labeling unseen bags. Since such kinds of learning tasks 
extensively exist in the world but they are quite unique 
from those addressed by previous learning frameworks, 
multi-instance learning is regarded as the fourth learning 
framework [9]. 

When the notation of multi-instance learning was 
proposed, Dietterich et al. [7] indicated that a particular 
interesting issue in this area is how to design 
multi-instance modifications for neural networks. In this 
paper, this open problem is addressed because a neural 
network algorithm BP-MIP, i.e. BP for Multi-Instance 
Problems, is presented. As its name implied, BP-MIP is 
derived from the popular neural network algorithm BP 
[14], which is adapted for multi-instance learning through 
employing a specific error function. Experiments show 
that BP-MIP works well on the drug activity prediction 
data, which is the only benchmark test data for 
multi-instance learning at present. 

The rest of this paper is organized as follows. Section 
2 briefly reviews previous works on multi-instance 
learning. Section 3 presents BP-MIP. Section 4 reports 
some preliminary experimental results of BP-MIP on the 
drug activity prediction data. Finally, Section 5 concludes 
and indicates several issues for future works. 

2. Previous Works Review 
In the middle of 1990’s, Dietterich et al. [7] investigated 
the problem of drug activity prediction. The goal is to 
endow learning systems with the ability of predicting that 



whether a new molecule could be used to make some drug, 
through analyzing a collection of known molecules. The 
qualification of a molecule to make a drug is determined 
by some of its shapes with low energy. However, as 
shown in Figure 1, a molecule may have many alternative 
shapes with low energy, but at present biochemists only 
know that whether a known molecule is qualified to make 
the drug instead of knowing that which of its alternative 

shapes responses for the qualification.  
An intuitive solution is to use the supervised learning 

framework by regarding all the shapes of the molecules 
qualified to make the drug as positive examples, while 
regarding all the shapes of the molecules unqualified to 
make the drug as negative examples. However, such a 
method can hardly work well because there may be too 
many false positive examples [7]. 

In order to solve this problem, Dietterich et al. [7] 
regarded each molecule as a bag, and regarded the 
alternative shapes of the molecule with low energy as the 
instances in the bag, thereby initiated multi-instance 
learning. Then they proposed three Axis-Parallel 
Rectangle (abbreviated as APR) algorithms, which 
attempts to search for appropriate axis-parallel rectangles 
constructed by the conjunction of the features. Their 
experiments on Musk data, which is the only benchmark 
test data for multi-instance learning until now, show that 
the iterated-discrim APR algorithm achieves the best 
result, while the performance of popular supervised 
learning algorithms such as C4.5 decision tree and BP 
neural network is very poor. 

Long and Tan [8] described a polynomial-time 
theoretical algorithm and showed that if the instances in 
the bags are independent drawn from product distribution, 
then the APR is PAC-learnable. Auer et al. [3] showed 
that if the instances in the bags are not independent then 

APR learning under the multi-instance learning 
framework is NP-hard. Moreover, they presented a 
theoretical algorithm that does not require product 
distribution. Later, the theoretical algorithm was 
transformed to a practical algorithm named MULTINST 
[2]. Blum and Kalai [5] described a reduction from the 
problem of PAC-learning under the multi-instance 
learning framework to PAC-learning with one-sided 
random classification noise, and presented a theoretical 
algorithm with smaller sample complexity than that of 
Auer et al.’s algorithm. 

Among practical multi-instance learning algorithms, 
the most famous is Diverse Density proposed by Maron 
and Lozano-Pérez [10]. The diverse density of a point in 
the feature space is defined in the way that the more 
positive bags and the less negative instances near the 
point, the bigger the diverse density of the point. The 
algorithm is then search for the point with the maximal 
diverse density. Such an algorithm has been applied to 
several applications, including learning a simple 
description of a person from a series of images [10], stock 
selection [10], natural scene classification [11], and 
content-based image retrieval [16]. 

There are also many other practical algorithms. Wang 
and Zucker [15] extended k-nearest neighbor algorithm 
for multi-instance learning through adopting Hausdorff 
distance. Ruffo [13] presented a multi-instance version of 
C4.5 decision tree, which was named as Relic. Chevaleyre 
and Zucker [6] derived ID3-MI and RIPPER-MI, which 
are multi-instance version of decision tree algorithm ID3 
and rule learning algorithm RIPPER. 

Recently, some researchers begin to investigate 
multi-instance regression tasks with real-valued outputs. 
Ray and Page [12] showed that the general formulation of 
the multi-instance regression task is NP-hard, and 
proposed an EM-based multi-instance regression 
algorithm. Amar et al. [1] extended Diverse Density for 
multi-instance regression and designed a method for 
artificially generating data sets for multi-learning 
regression. 

It is worth noting that when the term multi-instance 
learning was coined, Dietterich et al. [7] indicated that a 
particular interesting issue is how to design multi-instance 
modifications for decision trees, neural networks, and 
other popular machine learning algorithms. Multi-instance 
version of decision trees [6, 13], rule learning algorithms 
[6], and lazy learning algorithms [15], have already been 
presented. But designing neural networks for 
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Figure 1:  The shape of a molecule changes as it rotates 
an internal bond. 



multi-instance learning is still an open problem until now. 

3. BP-MIP 
Suppose there are N bags {B1, B2, …, BN}, the i-th bag 
contains Mi instances {Bi1, Bi2, …, BiMi}, each instance is 
a p-dimensional feature vector, e.g. the j-th instance of the 
i-th bag is [Bij1, Bij2, …, Bijp]T where T denotes the 
transpose of a vector. Suppose there is a feedforward 
neural network with p input units, one output unit, and 
one hidden layer. The activation function is Sigmoid 
function. 

Since the goal of multi-instance learning is to predict 
the labels of unseen bags, we define the global error 
function at the level of bags as: 
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where Ei is the error on Bi. 
We assume that for each instance, if the actual output 

of the network is not less than 0.5, then the instance is 
regarded as a positive instance. Otherwise it is regarded as 
a negative instance. Then, Ei can be defined as: 
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where “Bi = +” (“Bi = -”) means Bi is a positive (negative) 
bag, Eij is the error on Bij: 
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where oij is the actual output of Bij. 
With the defined error function, the BP algorithm [4] 

is easy to be adapted for multi-instance learning as 
described as follows. 

In each training epoch, the training bags are fed to the 
network one by one. When the instance Bij is fed, Eij is 
computed according to Eq.(3). For a positive bag Bi, if Eij 
is zero then all the rest instances of Bi are not be fed to the 
network in this epoch, and the weights in the network are 
not changed for Bi. Otherwise Ei is computed according to 

Eq.(2) after all the instances of Bi are fed, and the weights 
in the network are modified according to the 
weight-updated rule of BP [14]. Then, Bi,j+1 is fed to the 
network and the training process is repeated until the 
global error E decreases to some pre-set threshold or the 
number of epochs increases to some pre-set threshold. 

4. Experiments 
We have tested BP-MIP on the Musk data, which is the 
only benchmark test data for multi-instance learning at 
present. There are two data sets, i.e. Musk1 and Musk2, 
both are publicly available at UCI Machine Learning 
Repository [4]. Here we used Musk1, which contains 47 
positive bags, i.e. musk molecules, and 45 negative bags, 
i.e. non-molecules. The number of instances contained in 
each bag varies from 2 to 40. In average each bag 
contains 5.17 instances. Each instance corresponds to a 
shape with low energy of the molecule, which is described 
by a 166-dimensional feature vector. All the features are 
numeric. 

The BP-MIP network we used contains 166 input units 
each corresponds to a dimension of the 166-dimensional 
feature vectors, one output units which outputs [0.5, 1] for 
positive while [0, 0.5] for negative, one hidden layer with 
100 hidden units. The learning rate is set to 0.01. Note 
that both the number of hidden units and the learning rate 
have not been finely tuned. 

10-fold cross validation is performed on the data set. 
In detail, the original data set is partitioned into ten 
roughly equal-sized subsets with roughly same proportion 
of positive/negative bags as that of the original data set. 
Then, in each fold, the union of nine subsets is regarded 
as the training set while the remaining subset is regarded 
as the test set. Such a process is repeated in ten times so 
that each subset has been used as test set for one fold. In 
each fold, five BP-MIP networks are trained where the 
best predictive accuracy is recorded as the result of that 
fold. The final result is the average result of those ten 
folds. 

The predictive accuracy curve of BP-MIP is shown in 
Figure 2, where the horizontal axis is the number of 
training epochs. 

Figure 2 shows that the best performance of BP-MIP 
is 83.8%, which roughly appears after 350 training epochs. 
Table 1 shows the comparison of the result with those 
reported in the literatures, where the value follows “±” is 
the standard deviation. 



Table 1 shows that, on the Musk data, BP-MIP is 
significantly better than Auer’s MULTINST algorithm [2], 
and is comparable to Ruffo’s Relic algorithm [13]. But its 
performance is not so good as Dietterich et al.’s 
iterated-discrim APR algorithm [7] and Maron and 
Lozano-Pérez’s Diverse Density algorithm [10]. 

As Dietterich et al. indicated [7], the performance of 
iterated-discrim APR might be the upper bound of 
learning algorithms on the Musk data because this 
algorithm was optimized toward this data. So, although 
the predictive accuracy of BP-MIP is not so good as that 
of iterated-discrim APR on the Musk data, its applicability 
is better because it is a general algorithm that has not been 
optimized toward any data. As for Diverse Density, 
feature selection is incorporated in this algorithm [10]. We 
believe that the performance of BP-MIP may be improved 
if some appropriate feature selection mechanism is 
employed.  

Moreover, Table 1 shows that the performance of 

BP-MIP is significantly better than that of BP and C4.5. 
This observation supports the claim that supervised 
learning methods can hardly work well on multi-instance 
problems because they have not consider the unique 
characteristics of multi-instance learning [7]. 

5. Conclusion 

In this paper, an open problem of multi-instance learning, 
that is, designing the multi-instance version of neural 
network algorithms, is addressed. Through devising a 
specific error function incorporates the characteristics of 
multi-instance problems, BP-MIP is proposed, which is 
observed to work well on the benchmark test data.  

As described in Section 4, there are two Musk data sets, 
i.e. Musk1 and Musk2. Due to the time limitation, at 
present we have only get results of BP-MIP on Musk1. 
Obtain the results of BP-MIP on Musk2 is a work we hope 
to do in the near future. 

The experimental results reported in this paper are 
preliminary also because that we have not finely tuned the 
architecture and parameters of BP-MIP. Exploring better 
configurations of BP-MIP is an issue for our future works. 

Moreover, there may be other ways to adapt popular 
neural network algorithms such as BP for multi-instance 
problems. Design more effective modification than 
BP-MIP is another issue for our future works. 
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Figure 2:  The predictive accuracy curve of BP-MIP. 
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