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Abstract

Multi-instance partial-label learning (MIPL) is an emerging learning framework
where each training sample is represented as a multi-instance bag associated with
a candidate label set. Existing MIPL algorithms often overlook the margins for
attention scores and predicted probabilities, leading to suboptimal generalization
performance. A critical issue with these algorithms is that the highest prediction
probability of the classifier may appear on a non-candidate label. In this paper, we
propose an algorithm named MIPLMA, i.e., Multi-Instance Partial-Label learn-
ing with Margin Adjustment, which adjusts the margins for attention scores and
predicted probabilities. We introduce a margin-aware attention mechanism to dy-
namically adjust the margins for attention scores and propose a margin distribution
loss to constrain the margins between the predicted probabilities on candidate and
non-candidate label sets. Experimental results demonstrate the superior perfor-
mance of MIPLMA over existing MIPL algorithms, as well as other well-established
multi-instance learning algorithms and partial-label learning algorithms.

1 Introduction

Weakly supervised learning is a powerful strategy for constructing predictive models with limited su-
pervision. Based on the quality and quantity of supervision, Zhou [1] systematically categorizes weak
supervision into three types: inexact, inaccurate, and incomplete supervision. Inexact supervision
indicates a coarse alignment between instances and labels, which is a common and challenging issue
in real-world tasks. Multi-instance learning (MIL) [2–8] and partial-label learning (PLL) [9–15] are
two predominant weekly supervised learning frameworks for learning from samples with inexact
supervision in the instance space and the label space, respectively.

Recently, multi-instance partial-label learning (MIPL) [16] has been introduced to handle dual
inexact supervision, where inexact supervision exists in both the instance space and label space.
Therefore, MIPL can be seen as a generalized framework of MIL and PLL. In MIPL, a training
sample is represented as a multi-instance bag associated with a candidate label set. The candidate
label set comprises one true label and the remaining are false positives. The multi-instance bag
contains at least one instance corresponding to the true label and does not contain any instance
associated with the false positives. Additionally, positive instances refer to the instances that belong
to the true label, while negative instances represent the remaining instances in the bag that are not
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Figure 1: Margin violations in the instance space and the label space. (a) and (b) depict the attention
scores of ELIMIPL and MIPLMA for the same test bag in the FMNIST-MIPL dataset. Orange and blue
colors indicate attention scores assigned to positive and negative instances, respectively. (c)–(f) show
the highest predicted probabilities for candidate labels (green) and non-candidate labels (blue) by
ELIMIPL or MIPLMA in the CRC-MIPL-Row dataset. (c) and (e) correspond to the same training bag,
while (d) and (f) refer to another training bag.

associated with any label in the label space. During training, the identities of the positive instances
and the true label are inaccessible.

Dual inexact supervision widely exists in many tasks. In the classification of histopathological images,
an image is frequently partitioned into a multi-instance bag due to its high resolution [17–19, 6] and
employing domain experts for providing ground truth labels are costly. As a result, the utilization
of crowd-sourced candidate label sets proves to be a valuable strategy in substantially mitigating
labeling expenses [20]. To address colorectal cancer classification under dual inexact supervision,
Tang et al. [21] have introduced the MIPL algorithm named DEMIPL. This approach employs an
attention mechanism to aggregate all instances within a bag into a bag-level feature representation
and a disambiguation strategy to identify the true label. Following DEMIPL, ELIMIPL algorithm
has been proposed to exploit the label information from both candidate and non-candidate label sets
[22]. Additionally, the early MIPL algorithm MIPLGP predicts a bag-level label by aggregating all
instance-level labels within the bag without utilizing attention mechanisms [16].

However, existing MIPL algorithms fail to consider the dynamics of the margin between attention
scores of positive and negative instances, as well as the margin between the candidate and the non-
candidate label sets. These oversights could lead to two major issues. First, the attention scores for
positive and negative instances can be quite similar, and in some cases, negative instances may even
receive higher attention scores than positive ones, as illustrated in Figure 1(a). Second, the classifier
may even assign higher predicted probabilities to non-candidate labels than to candidate labels. Figure
1(c) illustrates a scenario where ELIMIPL assigns predicted probabilities to the candidate labels that
are only marginally higher than the non-candidate ones. Furthermore, ELIMIPL may even output
lower predicted probabilities for candidate labels than non-candidate ones, as depicted in Figure 1(d).
Such erroneous predictions may have serious consequences in applications. For example, in medical
image classification, misclassifying images of severe conditions as mild or disease-free may cause
patients to miss the opportunity for timely treatment. In this paper, we term this phenomenon as
margin violations, where the attention scores of negative instances surpass those of positives, or the
predicted probabilities for non-candidate labels exceed those for candidate ones. Margin violations
occur in both the instance and label spaces, adversely affecting the model’s generalization.

To overcome margin violations, we propose a novel end-to-end MIPL algorithm named MIPLMA,
i.e., Multi-Instance Partial-Label learning with Margin Adjustment. Specifically, to mitigate margin
violations in the instance space, we introduce a margin-aware attention mechanism to consolidate each
multi-instance bag into a unified feature representation, incorporating dynamic margin adjustments for
attention scores. To address margin violations in the label space, we propose a margin distribution loss
that adjusts the margin distribution between the model’s highest predicted probability for candidate
labels and its highest predicted probability for non-candidate labels. In Figure 1(a), MIPLMA allocates
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Figure 2: The MIPLMA framework processes an input comprising the multi-instance bag Xi =
{xi,1,xi,2, · · · ,xi,9} and the candidate label set Si = {2, 3, 5, 7}, where Ld and Lm represent the
dynamic disambiguation loss and the margin distribution loss, respectively.

higher attention scores to positive instances and enlarges the gap between the attention scores of
positive and negative instances. As illustrated in Figure 1(e) and (f), MIPLMA significantly enhances
the classifier’s highest predicted probability on candidate labels while concurrently reducing the
model’s highest predicted probability on non-candidate labels. Consequently, our margin adjustment
strategy effectively reduces supervision inexactness in both the instance space and the label space.

Our contributions can be summarized as follows: First, we identify the phenomenon of margin
violations and adjust the margins in both the instance and label spaces to alleviate this issue. Second,
our proposed MIPLMA outperforms state-of-the-art methods significantly. Third, the introduced
margin-aware attention mechanism enhances the performance of MIL algorithms, while the margin
distribution loss improves the generalization ability of PLL algorithms.

2 The Proposed Approach

Formally, we define a MIPL training dataset as D = {(Xi,Si) | 1 ≤ i ≤ m}, comprising m
multi-instance bags and their corresponding candidate label sets. Specifically, each candidate label
set Si includes one true label, and the remaining are false positives. We denote the instance space
as X = Rd, and the label space as Y = {1, 2, · · · , k}, covering k class labels. The i-th bag
Xi = {xi,1,xi,2, · · · ,xi,ni} consists of ni instances in the d-dimensional space. Both the candidate
label set Si and the non-candidate label set S̄i are proper subsets of the label space Y and adhere to
the conditions |Si|+ |S̄i| = |Y| = k, where | · | represents the cardinality of a set.

The overall framework of MIPLMA is depicted in Figure 2. Initially, we employ a feature extractor ψ
to learn instance-level feature representations Hi within the multi-instance bag Xi. Subsequently,
we propose a margin-aware attention mechanism with adjustable margins of attention scores to fuse
Hi into a unified feature representation zi. Lastly, we utilize a classifier to predict the probabilities
p̂i of the multi-instance bag. To identify the true label from the candidate label set, we introduce the
dynamic disambiguation loss Ld and the margin distribution loss Lm.

2.1 Margin Adjustment in the Instance Space

For a given multi-instance bag Xi = {xi,1,xi,2, · · · ,xi,ni
} ∈ Rd×ni comprising ni instances, we

utilize a feature extractor ψ to learn instance-level feature representations, which is defined as follows:

Hi = ψ(Xi) = {hi,1,hi,2, · · · ,hi,ni
}. (1)

Here, Hi ∈ Rl×ni represents the instance-level feature representation of the multi-instance bag Xi,
and hi,j denotes the feature representation of the j-th instance in the multi-instance bag Xi.

The subsequent step involves computing attention scores for each instance. In MIPL, attention
scores of all instances are closely distributed during the early stages of training. However, as
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training progresses, attention scores for positive instances gradually become higher than those for
negative instances [21]. Due to dual inexact supervision, the attention mechanism struggles to
differentiate between positive and negative instances during the initial training phases and calculate
their corresponding attention scores. As training continues, the attention mechanism gradually assigns
more distinct attention scores to positive and negative instances.

Motivated by this observation, we introduce a margin-aware attention mechanism that dynamically
adjusts the margin of attention scores to achieve a closer alignment with the model’s training process.
The computation of attention scores is given by:

Ai = softmax
(
W>

(
tanh

(
W>

1 Hi

)
� sigm

(
W>

2 Hi

))
/τ (t)

)
, (2)

where W>, W>
1 , and W>

2 are learnable parameters. tanh(·) and sigm(·) are the hyperbolic tangent
and sigmoid functions, respectively. The operator � denotes element-wise multiplication, and τ (t)

denotes the temperature parameter of the margin-aware attention mechanism. Specifically, in the
early training stages, a larger temperature parameter is employed to smooth the distribution of
attention scores, preventing the attention mechanism from assigning high scores to instances that are
not unequivocally identified as positive or negative. In the later training stages, a smaller temperature
parameter is used to sharpen the distribution of attention scores, thereby widening the gap between
attention scores for positive and negative instances. Consequently, throughout the training process,
the temperature parameter at the t-th epoch is dynamically represented as follows:

τ (t) = max{τm, τ (t−1) ∗ 0.95}, (3)

where τm and τ (t−1) represent the minimum temperature and the temperature at the (t− 1)-th epoch,
respectively. Therefore, Eq. (3) describes an annealing process for the temperature parameter τ (t).

For multi-instance bags with varying numbers of positive instances, the distribution of attention
scores exhibits variations. Consequently, different multi-instance bags require varying temperature
parameters. To address this issue, we introduce the following normalization operations for the
attention scores:

A′i =
Ai − Āi√∑ni

j=1(ai,j − āi)2/(ni − 1)
, (4)

where āi = 1
ni

∑ni

j=1 ai,j is the mean value of the attention score Ai and Āi = [āi, āi, · · · , āi] ∈
R1×ni . Subsequent to obtaining normalized attention scores, we aggregate the instance-level feature
representations to compose the bag-level feature representation zi ∈ Rl in the following manner:

zi = HiA
′
i
>
. (5)

We now discuss the theoretical properties of the proposed margin-aware attention mechanism. Based
on the definitions of the permutation and permutation invariance (Appendix A), the margin-aware
attention mechanism can be seen as the operator A. Then, we have the following theorem:

Theorem 1. The margin-aware attention mechanism is permutation invariant.

Theorem 1 demonstrates that the margin-aware attention mechanism remains unaffected by the order
of instances within multi-instance bags. This property is crucial for algorithms that handle set inputs
[23, 4]. The proof is provided in Appendix A.

2.2 Margin Adjustment in the Label Space

With the aggregated bag-level feature representation, we utilize a classifier that synergizes dynamic
disambiguation loss and margin distribution loss to identify the true label.

The aim of our dynamic disambiguation loss is to progressively identify the true labels by calculating
the classification loss, as illustrated below:

Ld = − 1

m

m∑
i=1

∑
c∈Si

p
(t)
i,c log(p̂

(t)
i,c), (6)
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where p(t)
i,c and p̂(t)

i,c represent the weight and predicted probability, respectively, on the c-th class at
the t-th iteration. This weight represents the probability that the corresponding candidate label is the
true label, which is initialized as follows:

p
(0)
i,c =

{
1
|Si| if c ∈ Si,
0 otherwise,

(7)

where |·| represents the set cardinality. In the t-th epoch, we update the weight as:

p
(t)
i,c =

 α(t)p
(t−1)
i,c + (1− α(t))

p̂
(t)
i,c∑

c′∈Si
p̂
(t)

i,c′
if c ∈ Si,

0 otherwise,
(8)

where α(t) = (T − t)/T is a tuning parameter used to balance the update speed of the weight, and T
is the maximum number of training epochs.

The dynamic disambiguation loss adjusts the classifier’s predicted probabilities for the candidate
labels, without affecting the probabilities assigned to non-candidate labels. As illustrated in Figure
1(d), this circumstance may result in the classifier assigning its highest predicted probability to a
non-candidate label instead of a candidate label, i.e., margin violations. To mitigate potential issues
in model generalization, it is crucial to maintain a significant margin between the highest predicted
probabilities for the candidate and non-candidate labels. Therefore, we propose the margin loss to
maximize the margin between the highest predicted probability on the candidate label set and on the
non-candidate label set, as shown below:

Lml =
1

m

m∑
i=1

{1− (max
c∈Si

p̂
(t)
i,c −max

c̄∈S̄i
p̂

(t)
i,c̄)}, (9)

where maxc∈Si p̂
(t)
i,c and maxc̄∈S̄i p̂

(t)
i,c̄ are the highest predicted probabilities on the candidate label

set and the non-candidate label set, respectively. However, only considering the mean margin cannot
effectively address margin violations, thus affecting the performance. Some recent studies have
shown that the model performance can be enhanced by maximizing the margin mean and minimizing
the margin variance simultaneously [24–26]. Therefore, we employ two statistics of the margins
i.e., the margin mean and the margin variance, to adjust the margin distribution. Specifically, we
can maximize the margin mean and minimize the margin variance between the highest predicted
probability on the candidate label set and on the non-candidate label set simultaneously by minimizing
the following margin distribution loss:

Lm =
M{φ1, φ2, · · · , φm}

1−
√
V{φ1, φ2, · · · , φm}

, (10)

where φi = {1− (maxc∈Si p̂
(t)
i,c −maxc̄∈S̄i p̂

(t)
i,c̄)} refers to the margin loss of the i-th multi-instance

bag.M{·} and V{·} are the mean and the variance of the margin loss, respectively.

During training, the full loss is represented as the weighted sum of the dynamic disambiguation loss
and the margin distribution loss, as expressed below:

L = Ld + λLm, (11)

where λ represents a hyperparameter.

3 Experiments

3.1 Experimental Configurations

3.1.1 Datasets

Following the experimental setup of DEMIPL [21], we utilize four MIPL benchmark datasets and one
real-world dataset. The four benchmark datasets encompass MNIST-MIPL, FMNIST-MIPL, Birdsong-
MIPL, and SIVAL-MIPL, spanning diverse application domains such as image analysis and biology
[27–30]. Additionally, the real-world CRC-MIPL dataset is annotated by crowdsourced workers for
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Table 1: Characteristics of the benchmark and real-world MIPL datasets.
Dataset #bag #ins max. #ins min. #ins avg. #ins #dim #class avg. #CLs
MNIST-MIPL 500 20664 48 35 41.33 784 5 2, 3, 4
FMNIST-MIPL 500 20810 48 36 41.62 784 5 2, 3, 4
Birdsong-MIPL 1300 48425 76 25 37.25 38 13 2, 3, 4
SIVAL-MIPL 1500 47414 32 31 31.61 30 25 2, 3, 4
C-Row 7000 56000 8 8 8 9 7 2.08
C-SBN 7000 63000 9 9 9 15 7 2.08
C-KMeans 7000 30178 6 3 4.311 6 7 2.08
C-SIFT 7000 175000 25 25 25 128 7 2.08
C-R34-16 7000 112000 16 16 16 1000 7 2.08
C-R34-25 7000 175000 25 25 25 1000 7 2.08

colorectal cancer classification. The previous works [21, 22] employ four distinct types of multi-
instance features and consists of four sub-datasets: CRC-MIPL-Row (C-Row), CRC-MIPL-SBN (C-SBN),
CRC-MIPL-KMeansSeg (C-KMeans), and CRC-MIPL-SIFT (C-SIFT). These multi-instance features are
generated via four image bag generators [31], i.e., Row, single blob with neighbors (SBN), k-means
segmentation (KMeansSeg), and scale-invariant feature transform (SIFT), respectively. Besides
these multi-instance features, we are the first to employ the ResNet [32] to learn the multi-instance
features of CRC-MIPL dataset. Specifically, we partition each image into N non-overlapping patches,
treating each patch as an instance. Subsequently, the ResNet-34 is employed to acquire feature
representations for each patch, resulting in feature representations of dimension 1000 for each patch.
In our experiments, theN is 16 and 25, and the resulting datasets are CRC-MIPL-ResNet-34-16 (C-R34-16)
and CRC-MIPL-ResNet-34-25 (C-R34-25).

The characteristics of the dataset are detailed in Table 1. It provides the number of multi-instance
bags and total instances, denoted as #bag and #ins, respectively. Furthermore, we employ max. #ins,
min. #ins, and avg. #ins to express the maximum, minimum, and average instance count within all
bags. The dimensionality of each instance-level feature representation is indicated by #dim. #class
and avg. #CLs denote the length of the label space and the average length of candidate label sets,
respectively. For a comprehensive performance assessment, we vary the number of false positive
labels on the benchmark datasets, represented as r (|Si| = r + 1).

3.1.2 Comparative Algorithms

We conduct a comprehensive comparison of MIPLMA with a wide variety of baselines, covering
MIPL, PLL, and MIL algorithms. For MIPL algorithms, we compare with MIPLGP [16], DEMIPL
[21], and ELIMIPL [22]. In our evaluation, we incorporate seven PLL algorithms, featuring five
deep-learning-based approaches: PRODEN [33], RC [34], LWS [35], CAVL [11], and POP [36], one
feature-aware disambiguation algorithm, PL-AGGD [37], and two margin-based algorithms, M3PL
[38] and PL-SVM [39]. Furthermore, our comparison encompasses seven MIL algorithms. Three of
the MIL algorithms are Gaussian processes-based: VWSGP [40], VGPMIL [41], and LM-VGPMIL
[41]. Additionally, a variational autoencoder-based algorithm, MIVAE [42], and three attention-based
algorithms: ATTEN [4], ATTEN-GATE [4], and LOSS-ATTEN [43], are included.

The deep-learning-based PLL algorithms [33–35, 11] can be equipped with either the linear model
or multi-layer perceptrons (MLP) as backbone networks. Results obtained from the linear model
are presented in the main body of the paper, while additional experiment results are detailed in the
Appendix C. Parameters for all compared baselines have been meticulously tuned, drawing from
recommendations in the original literature or refined through our pursuit of improved performance.

3.1.3 Implementation

We implement MIPLMA using PyTorch [44] and conduct training with a single NVIDIA Tesla V100
GPU. Employing the stochastic gradient descent (SGD) optimizer, we set the momentum value to
0.9 with a weight decay of 0.0001. To learn the instance-level features, we employ a two-layer
convolutional neural network and a fully connected network for the MNIST-MIPL and FMNIST-MIPL

datasets. Since the features of the Birdsong-MIPL, and SIVAL-MIPL datasets are preprocessed, we only
employ a fully connected network to learn the feature representations. For the CRC-MIPL dataset,
the feature extractor is one of the four image bag generators or ResNet-34, followed by a fully
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Table 2: The classification accuracies (mean±std) of MIPLMA and comparative algorithms on the
benchmark datasets with the varying numbers of false positive labels (r ∈ {1, 2, 3}).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

MIPLMA
1 .985±.010 .915±.016 .776±.020 .703±.026
2 .979±.014 .867±.028 .762±.015 .668±.031
3 .749±.103 .654±.055 .746±.013 .627±.024

ELIMIPL
1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

DEMIPL
1 .976±.008 .881±.021 .744±.016 .635±.041
2 .943±.027 .823±.028 .701±.024 .554±.051
3 .709±.088 .657±.025 .696±.024 .503±.018

MIPLGP
1 .949±.016 .847±.030 .716±.026 .669±.019
2 .817±.030 .791±.027 .672±.015 .613±.026
3 .621±.064 .670±.052 .625±.015 .569±.032

Mean MaxMin Mean MaxMin Mean MaxMin Mean MaxMin

PRODEN
1 .605±.023 .508±.024 .697±.042 .424±.045 .296±.014 .387±.014 .219±.014 .316±.019
2 .481±.036 .400±.037 .573±.026 .377±.040 .272±.019 .357±.012 .184±.014 .287±.024
3 .283±.028 .345±.048 .345±.027 .309±.058 .211±.013 .336±.012 .166±.017 .250±.018

RC
1 .658±.031 .519±.028 .753±.042 .731±.027 .362±.015 .390±.014 .279±.011 .306±.023
2 .598±.033 .469±.035 .649±.028 .666±.027 .335±.011 .371±.013 .258±.017 .288±.021
3 .392±.033 .380±.048 .401±.063 .524±.034 .298±.009 .363±.010 .237±.020 .267±.020

LWS
1 .463±.048 .242±.042 .726±.031 .435±.049 .265±.010 .225±.038 .240±.014 .289±.017
2 .209±.028 .239±.048 .720±.025 .406±.040 .254±.010 .207±.034 .223±.008 .271±.014
3 .205±.013 .218±.017 .579±.041 .318±.064 .237±.005 .216±.029 .194±.026 .244±.023

CAVL
1 .596±.074 .481±.030 .728±.047 .370±.025 .370±.012 .354±.015 .260±.013 .251±.023
2 .412±.039 .389±.027 .586±.055 .264±.037 .316±.017 .335±.008 .237±.001 .216±.011
3 .315±.020 .292±.032 .353±.025 .265±.025 .272±.031 .313±.017 .197±.014 .175±.020

POP
1 .657±.033 .511±.032 .799±.032 .409±.044 .383±.009 .388±.015 .295±.012 .316±.015
2 .585±.045 .438±.037 .725±.025 .395±.028 .348±.011 .360±.018 .278±.020 .296±.020
3 .335±.022 .362±.034 .619±.049 .324±.032 .312±.012 .345±.014 .251±.021 .255±.010

PL-AGGD
1 .671±.027 .527±.035 .743±.026 .391±.040 .353±.019 .383±.014 .355±.015 .397±.028
2 .595±.036 .439±.020 .677±.028 .371±.037 .314±.018 .372±.020 .315±.019 .360±.029
3 .380±.032 .321±.043 .474±.057 .327±.028 .296±.015 .344±.011 .286±.018 .328±.023

connected network. The initial learning rate is chosen from the set {0.01, 0.05} and coupled with
a cosine annealing technique. We set the number of epochs to 100 for benchmark datasets and
200 for the CRC-MIPL dataset. The weight of the margin distribution loss is chosen from the set
{0.01, 0.05, 0.1, 0.5, 1, 3, 5} for all datasets. For the annealing process of the temperature parameter,
the initial temperature parameter τ (0) = 5. Additionally, τm = 0.1 and τm = 0.5 are used for
benchmark datasets and the CRC-MIPL dataset, respectively. The dataset partitioning method aligns
with that of DEMIPL [21] and ELIMIPL [22]. We execute ten random train/test splits, maintaining a
ratio of 7 : 3. Mean accuracies and standard deviations from these ten runs are reported. The code of
MIPLMA can be found at https://github.com/tangw-seu/MIPLMA.

3.2 Comparison with MIPL and PLL Algorithms

Since PLL algorithms can not directly handle the multi-instance bags, we utilize two data degradation
strategies: the Mean strategy and the MaxMin strategy [16]. The former computes the average feature
values across all instances within a bag for producing a bag-level feature representation. The latter
identifies both the maximum and minimum feature values for each dimension among instances within
a multi-instance bag and concatenates these values to form a bag-level feature representation.

3.2.1 Results on the Benchmark Datasets

Table 2 provides a comprehensive comparison of the results achieved by MIPLMA, three MIPL
algorithms (ELIMIPL [22], DEMIPL [21], and MIPLGP [16]), five deep-learning-based PLL al-
gorithms (PRODEN [33], RC [34], LWS [35], CAVL [11], and POP [36]) with linear model, and
the feature-aware disambiguation PLL algorithm (PL-AGGD [37]). The evaluation is conducted on
benchmark datasets with varying numbers of false positive labels (r ∈ {1, 2, 3}).
Notably, MIPLMA consistently exhibits higher average accuracy than the three MIPL algorithms in
33 out of 36 cases. For the methods based on the embedding space paradigm, MIPLMA demonstrates
superior performance compared to ELIMIPL and DEMIPL in 21 out of 24 cases. Compared to
MIPLGP that follows the instance space paradigm, MIPLMA achieves higher average accuracies than
it in all cases. Specifically, on the SIVAL-MIPL dataset, the average accuracies of MIPLGP consistently
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Table 3: The classification accuracies (mean±std) of MIPLMA and comparative algorithms on the
real-world datasets. – means unavailable due to computational limitations.

Algorithm C-Row C-SBN C-KMeans C-SIFT
MIPLMA .444±.010 .526±.009 .557±.010 .553±.009
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010
DEMIPL .408±.010 .486±.014 .521±.012 .532±.013
MIPLGP .432±.005 .335±.006 .329±.012 –

Mean MaxMin Mean MaxMin Mean MaxMin Mean MaxMin
PRODEN .365±.009 .401±.007 .392±.008 .447±.011 .233±.018 .265±.027 .334±.029 .291±.011
RC .214±.011 .227±.012 .242±.012 .338±.010 .226±.009 .208±.007 .209±.007 .246±.008
LWS .291±.010 .299±.008 .310±.006 .382±.009 .237±.008 .247±.005 .270±.007 .230±.007
CAVL .312±.043 .368±.054 .364±.066 .503±.025 .286±.062 .311±.038 .329±.033 .274±.018
POP .383±.010 .393±.015 .439±.009 .438±.010 .385±.016 .279±.016 .326±.013 .278±.040
PL-AGGD .412±.008 .460±.008 .480±.005 .524±.008 .358±.008 .434±.009 .363±.012 .285±.009

exceed those of DEMIPL. However, the average accuracies of MIPLMA surpass all algorithms on the
SIVAL-MIPL dataset, thus highlighting the effectiveness of MIPLMA.

Additionally, MIPLMA significantly outperforms PLL algorithms in all cases. For relatively sim-
ple datasets such as MNIST-MIPL and FMNIST-MIPL, the PLL algorithms demonstrate satisfactory
performance. However, with the increasing complexity of datasets, as observed in Birdsong-MIPL

and SIVAL-MIPL, the effectiveness of the PLL algorithms noticeably diminished. On MNIST-MIPL

and FMNIST-MIPL, the Mean strategy generally outperforms the MaxMin strategy. Conversely, on
Birdsong-MIPL and SIVAL-MIPL, the MaxMin strategy tends to yield superior results in most cases
compared to the Mean strategy. Hence, the two data degradation strategies do not uniformly outper-
form each other but have their respective advantages. The selection of the degradation strategy is
dependent on the characteristics of the dataset. For simpler datasets, a straightforward Mean strategy
may suffice, while for more complex datasets, a sophisticated MaxMin strategy may be preferable.

3.2.2 Results on the Real-World Datasets

Table 3 presents a detailed comparison of results on the CRC-MIPL dataset. Our method, MIPLMA,
demonstrates superior performance in all 11 cases when compared to ELIMIPL [22], DEMIPL [21],
and MIPLGP [16]. In terms of the PLL algorithm, MIPLMA also achieves superior accuracies in
all cases. While the PLL algorithms yield satisfactory results on relatively simple datasets like
CRC-MIPL-Row and CRC-MIPL-SBN, their performances noticeably deteriorate when handling more
complex datasets such as CRC-MIPL-KMeans and CRC-MIPL-SIFT.

Moreover, both MIPLMA and ELIMIPL demonstrate significantly better performance on the CRC-
MIPL-KMeans and CRC-MIPL-SIFT datasets compared to the CRC-MIPL-Row and CRC-MIPL-SBN datasets.
However, this trend is reversed for MIPLGP and the PLL algorithms. We attribute this discrepancy to
the incapacity of these algorithms to effectively model complex features. Particularly, the limitations
of the PLL algorithms become more apparent when dealing with complex MIPL data. Therefore,
there is an urgent need to devise more effective MIPL algorithms.

3.2.3 Results of the CRC-MIPL Dataset with Deep Features

Tang et al. [21] have introduced the CRC-MIPL dataset, extracting multi-instance features using four
hand crafted image bag generators [31]. Both DEMIPL [21] and ELIMIPL [22] were evaluated
using these multi-instance features in the literature. In this study, we investigate CRC-MIPL with
neural network generated features and employ ResNet to learn deep multi-instance features from the
CRC-MIPL dataset. The resulting datasets are referred to as C-R34-16 and C-R34-25.

Table 4: The classification accuracies
(mean±std) on the CRC-MIPL dataset
with deep multi-instance features.

Algorithm C-R34-16 C-R34-25
MIPLMA .631±.008 .685±.011
ELIMIPL .628±.009 .663±.009
DEMIPL .625±.008 .650±.010

Table 4 illustrates the classification accuracies of MI-
PLMA, ELIMIPL, and DEMIPL on the CRC-MIPL dataset
with deep multi-instance features. From the experimental
results, two key observations emerge: (a) ResNet-34-based
features outperform those generated by image bag gener-
ators in terms of classification performance. (b) When
learning multi-instance features with ResNet-34, dividing
an image into 25 instances results in a more discriminative
feature representation compared to using 16 instances.
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Table 5: The classification accuracies (mean±std) of MAAM, ATTEN, and ATTEN-GATE on the MIL
datasets with bag-level true labels.

Algorithm MNIST-MIPL (MIL) FMNIST-MIPL (MIL)

MAAM .991±.006 .930±.021
ATTEN .962±.010 .859±.032
ATTEN-GATE .971±.017 .847±.037

Table 6: The classification accuracies (mean±std) of PRODEN-MA and PRODEN on the Kuzushiji-
MNIST dataset with varying flipping probability q.

Algorithm q = 0.1 q = 0.3 q = 0.5 q = 0.7 q = 0.9
PRODEN-MA .932±.001 .926±.002 .914±.002 .892±.001 .816±.008
PRODEN .906±.002 .900±.001 .884±.005 .876±.010 .772±.017

In summary, feature representations learned by the deep feature extractor ResNet-34 exhibit higher
discriminative capacity compared to those generated by image bag generators. Our model consistently
achieves the highest classification accuracy among these three MIPL algorithms, especially on the C-
R34-25 dataset. These observations suggest that our model not only achieves the highest classification
accuracy on traditional features but also handles deep features better.

3.3 Effectiveness of the Margin Adjustment

To assess the effectiveness of margin adjustment, we introduce three variants of MIPLMA. MIPL-
MAINS denotes the margin adjustment of attention scores exclusively, with λ in Eq. (11) set to 0.
MIPL-MALAB signifies the margin adjustment of predicted probabilities only, where τ (t) in Eq. (2)
is assigned 1 for t = 1, 2, · · · , T . MIPL-WOMA indicates no margin adjustments of attention scores
or predicted probabilities, with λ = 0 and τ (t) = 1 for t = 1, 2, · · · , T .
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1.0
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MIPLMA
MIPL-MAINS
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Figure 3: The classification accuracies (mean and
std) of MIPLMA with the three variants on the
SIVAL-MIPL dataset (r ∈ {1, 2, 3}).

Figure 3 demonstrates that MIPLMA consis-
tently outperforms its three variants, proving
that margin adjustment in the instance and label
spaces can significantly enhance model perfor-
mance. Additionally, adjusting the margin in
the label space yields better results than in the
instance space, validating the effectiveness of
our proposed margin distribution loss. From
another perspective, adjusting the margin of
predicted probabilities directly impacts classi-
fication accuracies, whereas adjusting the margin of attention scores affects the bag-level feature
representations, thereby influencing classification accuracies. Consequently, MIPL-MALAB demon-
strates superior performance than MIPL-MAINS. By simultaneously adjusting the margins in both
the instance and label spaces, i.e., MIPLMA, optimal results can be achieved. This underscores the
effectiveness of our margin adjustment strategy in dealing with the inexact supervision of MIPL.

3.4 Margin Adjustment for MIL and PLL Algorithms

In MIPLMA, the margin adjustments for attention scores and predicted probabilities reduce the
supervision inexactness in the instance space and the label space, respectively. MIPL is a generalized
framework of MIL and PLL. Therefore, this raises a pertinent question: can margin adjustment
enhance the performance of MIL and PLL algorithms?

To answer this question, we propose a MIL algorithm named MAAM that is a simplified variant of
MIPLMA. We compare MAAM with two classical MIL methods incorporating attention mechanisms,
namely ATTEN [4] and ATTEN-GATE [4], on the MNIST-MIPL (MIL) and FMNIST-MIPL (MIL) datasets.
During training, we use only the features of multi-instance bags and their corresponding bag-level
true labels. The parameters of MAAM for the two datasets are as follows: learning rates of 0.005
for MNIST-MIPL and 0.01 for FMNIST-MIPL. Additionally, τ (0) = 5 and τm = 0.1 for both datasets.
Table 5 presents the classification accuracies over ten runs, indicating that MAAM outperforms both
ATTEN and ATTEN-GATE, particularly on the FMNIST-MIPL dataset. These results demonstrate the
effectiveness of MAAM, confirming its superior performance.
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Moreover, we equip the PLL algorithm PRODEN with the margin distribution loss, resulting in the
variant PRODEN-MA. Table 6 presents the classification accuracies of PRODEN-MA and PRODEN
on the Kuzushiji-MNIST dataset with varying flipping probability q ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. The
only difference between PRODEN-MA and PRODEN lies in that PRODEN-MA includes the margin
distribution loss with the weight of 1. We employ MLP as the backbone network for both PRODEN-
MA and PRODEN, and keep all other parameters consistent. Experimental results indicate that
PRODEN-MA outperforms PRODEN across all scenarios. Notably, under higher disambiguation
difficulty, i.e., q = 0.9, the superiority of PRODEN-MA is more pronounced.

In summary, adjusting the margins of attention scores improves classification performance for MIL
algorithms. Similarly, margin adjustment in the label space enhances the performance of PLL
algorithms, particularly in challenging disambiguation scenarios.

4 Conclusion

This paper investigates the margin adjustments in both the instance space and the label space for
MIPL. We propose MIPLMA, which incorporates a margin-aware attention mechanism and a margin
distribution loss to adjust the margins for attention scores and predicted probabilities, respectively.
Experimental results on the benchmark and real-world datasets illustrate the superiority of our
proposed MIPLMA algorithm over a diverse set of baselines, encompassing MIPL, PLL, and MIL
algorithms. Specifically, MIPLMA achieves superior performances compared to baselines in 96.4% of
cases. These results underscore the effectiveness and significance of our margin adjustment strategy.

However, MIPLMA has several limitations. First, similar to other attention-based MIL and MIPL
methods, it cannot process multiple multi-instance bags simultaneously. Second, MIPLMA demon-
strates a slight overfitting problem on the relatively simple MNIST-MIPL dataset. Third, MIPLMA is
not suitable for instance-level classification tasks. In the future, we will delve into designing MIPL
algorithms capable of instance-level classification and parallel algorithms that can handle multiple
multi-instance bags concurrently.
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Multi-Instance Partial-Label Learning with
Margin Adjustment

(Appendix)
A Proof of Theorem 1

For notation simplicity, we denote the instance-level features Hi as H for the rest of this section.
First, we definite the permutation and permutation invariant as follows.
Definition 1. (Permutation). We characterize Q : Rl×n → Rl×n as a permutation operation,
denoted by Q(H) = HQ, where Q ∈ Rn×n is a permutation matrix employed to rearrange the
instance order within H . Specifically, Q is an orthogonal matrix, ensuring Q>Q = I .
Definition 2. (Permutation Invariant). An operator A : Rl×n → Rl is permutation invariant
concerning the instance order in H if Q(A(H)) = Q(H) is satisfied [23].
Theorem 1. The margin-aware attention mechanism is permutation invariant.

Proof. Let H = {h1,h2, . . . ,hn} denote the instance-level feature representations of the multi-
instance bag X . We rewrite the computation of attention scores in Eq. (2) as follows:

A = AS(H)

= softmax(W>(tanh(W>
1 H)� sigm(W>

2 H))/τ)

= softmax(ξ(H)/τ).

(A1)

The normalization operations of attention scores and the aggregated bag-level feature representation
are shown below:

A′ = Ψ(A) = Ψ(AS(H)), (A2)

A(H) = HA′ = HΨ(AS(H))>, (A3)
where Ψ(·) represents the function of the normalization operations and A′ signifies the normalized
attention scores.

Given the permutation matrix Q satisfying Q>Q = I , we obtain the permuted featureQ(H) = HQ.
Firstly, the attention scores are computed as follows:

AS(HQ) = softmax(ξ(HQ)/τ)

= softmax(W>(tanh(W>
1 HQ)� sigm(W>

2 HQ))/τ)

= softmax(W>(tanh(W>
1 H)Q� sigm(W>

2 H)Q)/τ)

= softmax(W>(tanh(W>
1 H)� sigm(W>

2 H))Q/τ)

= softmax(ξ(H)Q/τ)

= softmax(ξ(H)/τ)Q

= AS(H)Q.

(A4)

As depicted in Equation (4), in the normalization operations, neither the denominator nor the mean
value of attention scores is affected by the permutation matrix Q. Therefore, we can derive the
following equation:

Ψ(AS(HQ)) = Ψ(AS(H)Q) = Ψ(AS(H))Q. (A5)
Subsequently, the resultant representation of the aggregated bag-level features is expressed as:

A(HQ) = HQΨ(AS(HQ))>

= HQΨ(AS(H)Q)>

= HQQ>Ψ(AS(H))>

= HΨ(AS(H))>

= A(H).

(A6)

Therefore, the margin-aware attention mechanism is permutation invariant.
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Algorithm 1 Y∗ = MIPLMA (D, λ, T , X∗)

Inputs:
D: the MIPL training set {(Xi,Si) | 1 ≤ i ≤ m}, where Xi = {xi,1,xi,2, · · · ,xi,ni

}, xi,j ∈ X ,
X = Rd, Si ⊂ Y , Y = {1, 2, · · · , k}
λ: the weight for the maximum-margin disambiguation loss
T : the maximum number of training epochs
X∗: the unseen multi-instance bag with n∗ instances
Outputs:
Y ∗ : the predicted label for X∗
Process:

1: Initialize uniform the weights on candidate label set p(0)
i,c as stated by Eq. (7)

2: for t = 1 to T do
3: Shuffle training set D into B mini-batches
4: for b = 1 to B do
5: Extract the instance-level features according to Eq. (1)
6: Calculate the attention scores with the temperature τ (t) as stated by Eqs. (2) and (3)
7: Normalize the attention scores as stated by Eq. (4)
8: Aggregate the instance-level feature representations into the bag-level feature representation

according to Eq. (5)
9: Classify the multi-instance bag with predicted probabilities.

10: Update the weights p(t)
i,c according to Eq. (8)

11: end for
12: Calculate the full loss L according to Eq. (11)
13: Update the model Φ by the optimizer
14: end for
15: Extract the instance-level features of X∗ according to Eq. (1)
16: Calculate the attention scores and map the instance-level features into a single vector representa-

tion z∗ according to Eqs. (2), (3), (4), and (5)
17: Return Y∗ = arg max

c∈Y
p̂∗,c

B Pseudo-Code of MIPLMA

Algorithm 1 describes the complete procedure of MIPLMA. First, the algorithm uniformly initializes
the weights on the candidate label set (Step 1). In each epoch, the training set is divided into multiple
mini-batches (Step 3). Then, instance-level feature representations are extracted for each mini-batch
and aggregated into bag-level feature representation (Steps 5-8). The subsequent step involves classify
the multi-instance bag and updating the weights on the candidate label set (Steps 9-10). Last, the full
loss is calculated, and the model is updated (Steps 12-13). For an unseen multi-instance bag, instance-
level feature representations are learned and aggregated into a bag-level feature representation via
the feature extractor and the margin-aware attention mechanism, respectively (Steps 15-16). The
predicted label is the category corresponding to the highest prediction probability (Step 17).

C Additional Experiment Results

C.1 Comparison with Margin-based PLL Algorithms

In the field of PLL, there exist several disambiguation algorithms that rely on the maximum margin
criteria, with PL-SVM and M3PL emerging as notable algorithms. PL-SVM achieves disambiguation
by maximizing the margin mean between the highest prediction probability on the candidate label set
and that on the non-candidate label set. In contrast, M3PL maximizes the margin mean between the
highest and second-highest prediction probabilities of the classifier for disambiguation. Consequently,
we conduct a comparative analysis of classification performance using the MIPLMA algorithm against
PL-SVM and M3PL. Figures A1 and present the average accuracy and standard deviation of the three
algorithms over ten runs on benchmark and real-world datasets, with Mean and MaxMin representing
the corresponding data degradation strategies.
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Figure A1: The classification accuracies (mean and std) of MIPLMA, M3PL, and PL-SVM.

Table A1: The classification accuracies (mean±std) of MIPLMA and comparative MIL algorithms on
the benchmark datasets with one false positive candidate label (r = 1).

Algorithm MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL
MIPLMA .985±.010 .915±.016 .776±.020 .703±.026
VWSGP .413±.043 .416±.045 .271±.045 .050±.013
VGPMIL .448±.052 .481±.030 .072±.038 .042±.006
LM-VGPMIL .483±.050 .465±.024 .079±.055 .046±.008
MIVAE .692±.221 .603±.212 .142±.191 .098±.133
ATTEN .499±.010 .408±.069 .134±.020 .100±.021
ATTEN-GATE .504±.078 .357±.101 .161±.026 .110±.012
LOSS-ATTEN .842±.051 .777±.048 .537±.025 .320±.028

MIPLMA consistently outperforms PL-SVM and M3PL algorithms on both benchmark and CRC-MIPL

datasets. This superiority can be attributed to two primary factors. First, within MIPLMA, the
margin distribution loss simultaneously maximizes the mean margin and minimizes the variance of
predicted probabilities. In contrast, PL-SVM and M3PL only maximize the mean margin of predicted
probabilities. Therefore, our proposed margin distribution loss provides a more refined approach
to optimizing the margins of predicted probabilities. Second, unlike the data degradation strategies
employed by PLL algorithms for the indirect treatment of multi-instance bags, MIPLMA aggregates
each multi-instance bag into a single bag-level feature representation using the margin-ware attention
mechanism. The aggregated feature representations in MIPLMA are more discriminative than
those obtained using data degradation strategies. Additionally, PL-SVM and M3PL employ iterative
optimization strategies, rendering them challenging to integrate with deep models.

C.2 Comparison with MIL Algorithms

Existing MIL algorithms are primarily tailored for addressing binary classification problems and are
not readily applicable to solving MIPL problems. To overcome this limitation, we adopt the One
vs. Rest (OvR) decomposition strategy employed in MIPLGP [16] for degradation of MIPL data.
Specifically, when presented with a multi-instance bag Xi linked to a candidate label set Si, we assign
each label from the candidate set to the bag, and thus generate |Si|multi-instance bags where each bag
is associated with a singular bag-level label. For each class c (c ∈ {1, 2, · · · , k}), we train and test
the c-th classifier by transforming the label c to 1 (positive) and all other labels to 0 (negative). In the
testing phase, a multi-instance bag yields k predictions from the k classifiers. If only one prediction is
positive, the corresponding class label of that positive prediction is considered the classification result
for the bag. In cases where there is more than one positive prediction among the k predictions, we
choose the class label associated with the classifier demonstrating the highest prediction confidence
as the classification result for the bag. If all k predictions are negative, the classification result is
the class label with the lowest prediction confidence. In particular, LOSS-ATTEN is a multi-class
MIL algorithm, eliminating the need for employing the One vs. Rest decomposition strategy. We can
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Table A2: The classification accuracies (mean±std) of MIPLMA and comparative PLL algorithms
with MLP on the benchmark datasets (r ∈ {1, 2, 3}).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

MIPLMA
1 .985±.010 .915±.016 .776±.020 .703±.026
2 .979±.014 .867±.028 .762±.015 .668±.031
3 .749±.103 .654±.055 .746±.013 .627±.024

Mean MaxMin Mean MaxMin Mean MaxMin Mean MaxMin

PRODEN
1 .555±.033 .465±.023 .652±.033 .358±.019 .303±.016 .339±.010 .303±.020 .322±.018
2 .372±.038 .338±.031 .463±.067 .315±.023 .287±.017 .329±.016 .274±.022 .295±.021
3 .285±.032 .260±.037 .288±.039 .265±.031 .278±.006 .305±.015 .242±.009 .244±.018

RC
1 .660±.031 .518±.022 .697±.166 .421±.016 .329±.014 .379±.014 .344±.014 .304±.015
2 .577±.039 .462±.028 .684±.029 .363±.018 .301±.014 .359±.015 .299±.015 .268±.023
3 .362±.029 .366±.039 .414±.050 .294±.053 .288±.019 .332±.024 .256±.013 .244±.014

LWS
1 .605±.030 .457±.028 .702±.033 .346±.033 .344±.018 .349±.013 .346±.014 .345±.013
2 .431±.024 .351±.043 .547±.040 .323±.031 .310±.014 .336±.013 .312±.015 .314±.019
3 .335±.029 .274±.037 .411±.033 .267±.034 .289±.021 .307±.016 .286±.018 .268±.019

CAVL
1 .539±.048 .497±.025 .679±.031 .359±.024 .312±.014 .332±.011 .237±.010 .220±.022
2 .380±.040 .337±.030 .482±.097 .327±.021 .285±.014 .303±.022 .197±.018 .199±.014
3 .266±.021 .267±.026 .288±.060 .266±.033 .278±.014 .282±.010 .169±.017 .144±.011

POP
1 .505±.029 .443±.032 .641±.033 .361±.030 .319±.020 .349±.015 .376±.019 .374±.014
2 .315±.022 .281±.026 .367±.037 .292±.019 .299±.020 .337±.014 .334±.029 .344±.012
3 .258±.041 .233±.026 .256±.025 .239±.018 .281±.016 .312±.022 .302±.022 .310±.022

Table A3: The classification accuracies (mean±std) of MIPLMA and comparative PLL algorithms
with MLP on the real-world datasets.

Algorithm C-Row C-SBN C-KMeans C-SIFT
MIPLMA .444±.010 .526±.009 .557±.010 .553±.009

Mean MaxMin Mean MaxMin Mean MaxMin Mean MaxMin
PRODEN .405±.012 .453±.009 .515±.010 .529±.010 .512±.014 .563±.011 .352±.015 .294±.008
RC .290±.010 .347±.013 .394±.010 .432±.008 .304±.017 .366±.010 .248±.008 .204±.008
LWS .360±.008 .381±.011 .440±.009 .442±.009 .422±.035 .335±.049 .338±.009 .287±.009
CAVL .394±.014 .376±.010 .475±.017 .356±.028 .409±.009 .483±.030 .321±.014 .279±.014
POP .399±.011 .374±.019 .513±.020 .431±.026 .503±.014 .440±.017 .333±.009 .293±.021

directly assign all candidate labels of a multi-instance bag Xi as the label for the multi-instance bag
and obtain |Si| multi-instance bags with a singular bag-level label.

Table A1 presents the classification accuracy of MIPLMA and seven comparative MIL algorithms.
Across all scenarios, MIPLMA consistently demonstrates significantly superior performance com-
pared to the seven MIL algorithms. Notably, among the compared MIL algorithms, LOSS-ATTEN
consistently outperforms its counterparts, primarily due to its capability of directly addressing the
multi-class MIL problem. While these algorithms yield reasonable results on the MNIST-MIPL and
FMNIST-MIPL datasets, their performance diminishes severely on datasets with more intricate features,
such as Birdsong-MIPL and SIVAL-MIPL. We attribute this challenge to the noise present in the labels
due to data degradation, hindering the effective learning of these MIL algorithms.

C.3 Results of PLL algorithms with MLP

Among the compared PLL algorithms, PRODEN[33], RC[34], LWS[35], and CAVL[11] can be utilized
with either linear model or MLP. Tables 2 and 3 in the main body present the results obtained using the
linear model. In this section, we present the results of MIPLMA and the comparative PLL algorithms
with MLP on the benchmark and CRC-MIPL datasets in Tables A2 and A3, respectively.

Table A2 presents the performance comparison of MIPLMA with the four PLL algorithms utilizing
the MLP on benchmark datasets. MIPLMA consistently outperforms the comparative PLL algorithms
in all cases, demonstrating statistically significant superiority. Interestingly, when employing the
MLP, the compared PLL algorithms do not consistently achieve superior outcomes compared to the
linear model. This observation suggests that the linear model has already captured sufficient features
for benchmark datasets, while employing the MLP may lead to overfitting.

Table A3 demonstrates that MIPLMA surpasses the comparative PLL algorithms utilizing the MLP
in 37 out of 40 cases. Compared to the outcomes obtained using the linear classifiers, the results
obtained using the MLP exhibit superior performance. Notably, on the complex CRC-MIPL-KMeans

dataset, the enhancement with the MLP is more pronounced. This indicates that the linear model is
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Table A4: Win/tie/loss counts of MIPLMA against the compared algorithms.
MIPLMA against In totalMIL algorithms PLL algorithms MIPL algorithms

r = 1 28/0/0 104/0/0 9/2/1 141/2/1
r = 2 – 104/0/0 10/1/1 114/1/1
r = 3 – 104/0/0 7/4/1 111/4/1

CRC-MIPL – 98/4/2 13/2/0 111/6/2
In total 28/0/0 410/4/2 39/9/3 477/13/5

inadequate for comprehensive feature learning on the CRC-MIPL dataset, while the MLP demonstrates
a more comprehensive capability in feature learning.

C.4 Win/tie/loss counts of Experimental Results

To ensure result reliability, we conduct pairwise t-tests with a significance level of 0.05. Table
A4 summarizes the win/tie/loss counts between MIPLMA and seven MIL, seven PLL, and three
MIPL algorithms on benchmark datasets with varying false positive labels (r ∈ {1, 2, 3}), as well
as the CRC-MIPL dataset. Several key insights can be drawn from our analysis: (a) MIPLMA shows
statistical superiority over MIL, PLL, and MIPL in 100%, 98.6%, and 76.5% of cases, respectively.
(b) MIPLMA achieves statistical superiority in 97.3% of cases on benchmark datasets. (c) For the
CRC-MIPL dataset, MIPLMA shows statistical superiority in 91.6% of cases. Overall, MIPLMA
outperforms the compared algorithms in 96.4% of cases.

D Further Analyses

D.1 Interpretability of the Attention Mechanism.

To investigate the interpretability of attention mechanisms, we compare MIPLMA with ELIMIPL and
DEMIPL regarding the attention scores across three test multi-instance bags in the FMNIST-MIPL

dataset (r = 1). Each row in Figure A2 represents a multi-instance bag, with the first to third columns
depicting the attention scores produced by MIPLMA, ELIMIPL, and DEMIPL across the three multi-
instance bags. It is noteworthy that since the sum of attention scores computed by DEMIPL does not
equal 1, we initially normalize them to sum to 1 before visualization.

Figure A2 reveals several important findings. First, on the Bags 1 and 2, both our MIPLMA and
ELIMIPL accurately identify positive instances. However, compared to ELIMIPL, MIPLMA assigns
higher attention scores to positive instances and lower scores to negative ones, confirming the efficacy
of our margin-aware attention mechanism. Second, the Bag 3 contains four positive instances, of
which MIPLMA only identifies three, erroneously assigning high attention scores to several negative
instances. However, the highest attention score assigned to a negative instance is still lower than the
scores of these three positives. In contrast, ELIMIPL assigns significantly higher attention scores to
two negative instances compared to the scores of the four positives, leading to a pronounced influence
of negative instances on the aggregated bag-level features. Third, DEMIPL computes attention scores
using the sigmoid function followed by normalization, while MIPLMA and ELIMIPL directly utilize
the softmax function for attention score computation. Results indicate that attention scores computed
by MIPLMA and ELIMIPL better conform to the distribution of positive and negative instances.

In summary, our margin-aware attention mechanism yields more accurate attention scores. Moreover,
when distinguishing negative instances within multi-instance bags proves challenging, our attention
mechanism effectively mitigates their influence on bag-level features.

D.2 Comparison between Margin Loss and Margin Distribution Loss

To adjust the margin for the predicted probabilities in the label space, we first propose the margin
loss λml as shown in Eq. (9). Whereas the margin loss aims to maximize the mean margin of
predicted probabilities, the margin distribution loss endeavors to concurrently maximize this mean
margin and minimize the variance in these probabilities. Therefore, the margin distribution loss
is a generalized formulation of the margin loss. There are several significant connections between
the two loss functions. (a) In scenarios where all φi are equal for i ∈ {1, 2, · · · ,m}, the variance
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Figure A2: Attention scores of MIPLMA, ELIMIPL, and DEMIPL for three test bags in the FMNIST-
MIPL dataset with r = 1. The horizontal axis denotes the indices of instances, while the vertical
axis represents the corresponding attention scores. Orange and blue colors indicate attention scores
assigned to positive and negative instances, respectively.

Table A5: The classification accuracies (mean±std) of MIPLMA and MIPL-MAMM on the benchmark
datasets with the varying numbers of false positive labels (r ∈ {1, 2, 3}).

Algorithm r MNIST-MIPL FMNIST-MIPL Birdsong-MIPL SIVAL-MIPL

MIPLMA
1 .985±.010 .915±.016 .776±.020 .703±.026
2 .979±.014 .867±.028 .762±.015 .668±.031
3 .749±.103 .654±.055 .746±.013 .627±.024

MIPL-MAMM
1 .987±.008 .894±.021 .762±.015 .682±.034
2 .969±.015 .849±.025 .741±.018 .628±.017
3 .756±.101 .652±.061 .671±.028 .561±.031

V{·} equals 0. Consequently, the margin distribution loss reduces to the margin loss. (b) When the
variability of φi is low, as indicated by a small variance V{·}, the margin distribution loss slightly
exceeds the mean of margin lossM{·}. This observation implies that when φi exhibits minimal
variation across different samples, the margin distribution loss marginally surpasses the margin loss.
(c) When the variability of φi is high, denoted by a large variance V{·}, the margin distribution loss
M{·}/(1−V{·}) can significantly exceed the mean of margin lossM{·}. In extreme cases, if V{·}
approaches 1, then the margin distribution loss becomes notably large. This suggests that when φi
exhibits substantial variation across different samples, the margin distribution loss could notably
surpass the margin loss.

To compare the magrin loss Lml and the margin distribution loss Lm, we substitute the Lm in Eq. (11)
with Lml, resulting in a variant named MIPL-MAMM. Table A5 presents the classification accuracies
of MIPLMA and MIPL-MAMM on the benchmark datasets, where the weight of the margin loss Lml

is tuned to achieve preferable performances. MIPLMA outperforms MIPL-MAMM in 10 of the 12
scenarios. On the MNIST-MIPL dataset, MIPLMA performs worse than MIPL-MAMM when r = 1
and 3. We speculate that this discrepancy may be attributed to the model slightly overfitting due to
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the consideration of margin distribution on the relatively simple MNIST-MIPL dataset. Notably, the
performance advantage of MIPLMA is more pronounced on the more challenging Birdsong-MIPL and
SIVAL-MIPL datasets. This demonstrates that optimizing the margin distribution is more effective
than only optimizing the margin mean, thus confirming the superiority of the margin distribution loss.

In summary, the margin distribution loss is associated with the variability of the margin loss across
different samples, effectively indicating the concentration of the margin loss within a dataset. In the
MIPL datasets, the margin distribution loss outperforms the margin loss in most cases.

D.3 Robustness of the Weight for the Margin Distribution Loss

As shown in Eq. (11), λ denotes the weighting factor for the margin distribution loss. Figure A3
depicts the average accuracies from ten runs. On the Birdsong-MIPL dataset, experimental findings
encompass λ values ranging from {2, 3, · · · , 10}. The obtained accuracy remains relatively stable
when λ ranges between 3 and 7. However, when λ exceeds 7, accuracy decreases. Therefore, it
is noteworthy that within a certain range of λ, MIPLMA can maintain a stable performance on the
Birdsong-MIPL dataset. In the main experiment, λ is set to 5 for the Birdsong-MIPL dataset.
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Figure A3: The classification accuracies (mean and std) of MIPLMA with varying λ on Birdsong-MIPL

dataset (r ∈ {1, 2, 3}). The diameter of the circle represents the relative standard deviation.

D.4 Robustness of the Initial Temperature

Eq. (3) describes the annealing process of the temperature parameter τ (t), with the initial temperature
parameter τ (0) manually specified. To investigate the influence of different initial temperature
parameters on MIPLMA, we vary the initial temperature parameter across {4, 5, 6, 7, 8, 9, 10}, while
maintaining all other parameters constant.

Figure A4 presents the average accuracies obtained from ten runs on the MNIST-MIPL (left) and
Birdsong-MIPL (right) datasets. The experimental results suggest that the performance of MIPLMA
remains relatively stable within the range of {4, 5, 6, 7, 8, 9, 10}, particularly noticeable when r = 1
and r = 2 on the MNIST-MIPL dataset. However, MIPLMA exhibits fluctuations in average accuracy
when r = 3 on the MNIST-MIPL dataset, and the standard deviation is significantly higher compared
to when r = 1 and r = 2. The MNIST-MIPL is a five-class dataset, and r = 3 represents an extremely
challenging scenario. Therefore, we believe that the fluctuations in average accuracy observed in
Figure A4 (left) are unavoidable. Furthermore, as shown in Figure 1, when τ (0) varies within the
range of 5 to 10, the performance of the Birdsong-MIPL dataset does not exhibit significant changes.

In summary, the results presented in Figure A4 highlight the robustness of MIPLMA to variations in
the initial temperature parameter within the range of {5, 6, 7, 8, 9, 10}. In our experiments, the initial
temperature parameter τ (0) is consistently set to 5 for all datasets.
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Figure A4: The classification accuracies (mean and std) of MIPLMA with varying τ (0) ∈
{4, 5, 6, 7, 8, 9, 10} on MNIST-MIPL (left) and Birdsong-MIPL (right) datasets (r ∈ {1, 2, 3}). The
diameter of the circle represents the relative standard deviation.
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E Related Work

E.1 Multi-Instance Learning

Multi-instance learning has its roots in drug activity prediction [45], and it has found applications in
a variety of fields ranging from text classification [46, 42], object detection [47], and video anomaly
detection [48]. In contemporary multi-instance learning methodologies, a prevalent strategy involves
incorporating attention mechanisms to aggregate features from each multi-instance bag into a unified
feature representation, subsequently fed into a classifier. Ilse et al. [4] introduced both the plain
attention mechanism and gated attention mechanism to effectively enhance the performance of binary
multi-instance learning. An extension of this paradigm is the loss-based attention mechanisms [43],
providing a solution for multi-class tasks. Owing to the exceptional performance of the attention
mechanisms, multi-instance learning methods based on attention mechanisms have gained widespread
adoption in tasks such as histopathological image classification [49, 50]. These attention mechanisms
typically fall under the category of soft attention mechanisms, wherein the weighted sum of attention
scores for all instances in a multi-instance bag yields a bag-level feature representation. Conversely,
Li et al. [51] introduced hard attention mechanisms, which focus on selecting a subset of instances
from multi-instance bags to construct the feature representation.

Despite the considerable performance advancements achieved by these algorithms in multi-instance
learning tasks, their direct application in multi-instance partial-label learning scenarios is impeded by
their inability to handle inexact label information directly.

E.2 Partial-Label Learning

Partial-label learning has widespread applications in diverse real-world scenarios, encompassing facial
age estimation [37], face naming [9], object classification [52], and bioinformatics [29, 53]. Margin
violations also exist in partial-label learning, prompting researchers to introduce the maximum margin
criteria as a viable solution. Nguyen and Caruana [39] employed the maximum margin criterion to
augment the distinction between the model’s highest predicted probability on candidate labels and
its highest predicted probability on non-candidate labels. Similarly, Yu and Zhang [38] focused on
maximizing the margin between the model’s predicted probability on the true label and its highest
predicted probability on labels other than the true one. However, these methods require an alternating
optimization, contributing to the intricacies of the optimization procedure. In recent years, numerous
deep learning-based partial-label learning algorithms have emerged. Lv et al. [33] utilize linear
classifiers or multi-layer perceptrons to learn feature representations from instances, employing
progressive disambiguation strategies to identify true labels. Following this line of thought, Feng
et al. [34] delved into the generation process of partial-label data and proposed two theoretically
guaranteed partial-label learning algorithms. Similarly, Wen et al. [35] introduced a weighted loss for
disambiguation, serving as a generalized version across multiple algorithms.

While these algorithms exhibit considerable efficacy in tackling partial-label learning problems, they
encounter limitations in directly handling inexact supervision within the instance space. Consequently,
they cannot be directly applied to multi-instance partial-label learning problems.

E.3 Multi-Instance Partial-Label Learning

MIPL is an extension that encompasses both MIL and PLL. Its objective is to tackle the challenge of
inexact supervision simultaneously present in both instance and label spaces. To our knowledge, only
three viable MIPL algorithms, i.e., MIPLGP [16], DEMIPL [21], and ELIMIPL [22], currently exist.
Tang et al. [16] have introduced the MIPL framework, with MIPLGP adopting an instance-space
paradigm. MIPLGP is structured in three steps. Firstly, it augments a negative class for each candidate
label set. Secondly, it treats the candidate label set of each multi-instance bag as that of each instance
within the bag. Finally, it employs the Dirichlet disambiguation strategy and the Gaussian processes
regression model for disambiguation. On the other hand, DEMIPL follows the embedded-space
paradigm and consists of two steps. Initially, it aggregates each multi-instance bag into a unified
feature representation through the disambiguated attention mechanism. Subsequently, it employs a
momentum-based disambiguation strategy to discern true labels from candidate label sets. Following
this way, Tang et al. [22] have proposed ELIMIPL to exploit the information from candidate and
non-candidate label sets via three loss functions. Specifically, ELIMIPL learns the mappings from

21



Table A6: Code availability of the algorithms.
Algorithm URL
MIPLMA https://github.com/tangw-seu/MIPLMA
ELIMIPL https://github.com/tangw-seu/ELIMIPL
DEMIPL https://github.com/tangw-seu/DEMIPL
MIPLGP https://github.com/tangw-seu/MIPLGP
VWSGP https://github.com/melihkandemir/vwsgp
VGPMIL https://github.com/manuelhaussmann/vgpmil
LM-VGPMIL https://github.com/manuelhaussmann/vgpmil
MIVAE https://github.com/WeijiaZhang24/MIVAE
ATTEN https://github.com/AMLab-Amsterdam/AttentionDeepMIL
ATTEN-GATE https://github.com/AMLab-Amsterdam/AttentionDeepMIL
LOSS-ATTEN https://github.com/xsshi2015/Loss-Attention
PRODEN https://github.com/Lvcrezia77/PRODEN
RC https://lfeng-ntu.github.io/codedata.html
LWS https://github.com/hongwei-wen/LW-loss-for-partial-label
CAVL https://github.com/Ferenas/CAVL
POP https://github.com/palm-ml/POP
PL-AGGD http://palm.seu.edu.cn/zhangml/

the multi-instance bags to the candidate label sets and the sparsity of the candidate label matrix.
Moreover, it incorporates the non-candidate label information via an inhibition loss. Recently, Yang
et al. [54] have proposed a probabilistic generative model for multi-instance partial-label learning
(MIPL) that infers latent ground-truth labels by modeling the data generation process of MIPL. From
a theoretical perspective, Wang et al. [55] have established connections between MIPL and latent
structural learning, as well as neurosymbolic integration.

However, the existing MIPL algorithms do not consider the margins of attention score and predicted
probabilities, and thus suffer from the issues of margin violations illustrated in Figure 1.

F Data and Code Availability

The implementations of the compared algorithms are publicly available. Table A6 includes the
URLs of all compared algorithms in this paper, while the source code of our proposed MIPLMA
is included in the supplementary material. The MIPL datasets can be accessed publicly at http:
//palm.seu.edu.cn/zhangml/.

G Broader Impact

The proposed MIPLMA has several potential societal impacts, both positive and negative.

The positive impacts of MIPLMA include: (a) Medical diagnosis: MIPLMA could enhance the
accuracy of medical diagnoses where obtaining exact labels is challenging. For example, in medical
image classification tasks, when experts lack confidence in the provided results, MIPLMA can yield
more accurate outcomes. (b) Privacy-preserving surveys: Similar to PLL methods, MIPLMA can be
applied in scenarios where respondents are hesitant to disclose sensitive information. By allowing
respondents to select a set of candidate labels instead of providing a single label, MIPLMA can
facilitate data collection while respecting privacy. This can be particularly useful in fields such as
mental health, where patients may feel uncomfortable disclosing exact symptoms or conditions.

Conversely, there may also exist some negative impacts of MIPLMA. (a) Misuse in surveillance:
There is a risk that our method could be exploited in surveillance systems to infer sensitive information
about individuals without their explicit consent. For example, an adversary could use our algorithm
to analyze multi-instance data collected from social media or other sources to infer private details
about individuals, leading to potential breaches of privacy. (b) Job displacement: As MIPLMA
improves the efficiency and effectiveness of learning from inexact data, it might reduce the demand
for human annotators. This could lead to job displacement involved in data labeling and annotation.
Consequently, efforts should be made to retrain and upskill these workers to mitigate the impact.
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