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Abstract

In multi-label learning, each training instance is associated with multiple labels
simultaneously. Traditional multi-label learning studies primarily focus on closed
set scenario, i.e. the class label set of test data is identical to those used in training
phase. Nevertheless, in numerous real-world scenarios, the environment is open
and dynamic where unknown labels may emerge gradually during testing. In this
paper, the problem of multi-label open set recognition (MLOSR) is investigated,
which poses significant challenges in classifying and recognizing instances with
unknown labels in multi-label setting. To enable open set multi-label prediction, a
novel approach named SLAN is proposed by leveraging sub-labeling information
enriched by structural information in the feature space. Accordingly, unknown
labels are recognized by differentiating the sub-labeling information from holistic
supervision. Experimental results on various datasets validate the effectiveness of
the proposed approach in dealing with the MLOSR problem.

1 Introduction

Multi-label Learning (MLL) deals with the problem where an instance can be associated with
multiple labels simultaneously [37, 19]. As a practical machine learning paradigm, multi-label
learning has been widely applied in various real-world applications, such as image annotation [30],
text categorization [26], information retrieval [12].

Traditional multi-label learning studies focus on closed set scenario. That is, they assume that the
class label set of test data is identical to that in the training set [37, 8, 21]. However, in many
real-world scenarios, this assumption rarely holds because the environment is open and dynamic [29].
In addition to the extant label knowledge at training phase, the unknown labels may emerge gradually
with the data streams during the testing phase. For example, in Figure 1, the test image is annotated
with several relevant labels, some of which are unseen in the training set. The classification task
becomes much more challenging because the label correlation between known and unknown labels
may degrade the performance of the predictive model. Furthermore, due to the presence of unknown
labels in the class label set of test data, these test data are hardly employed in subsequent learning
processes, such as incremental learning [15].

Motivated by the potential applications, we formalize a novel framework named multi-label open set
recognition (MLOSR), whose goal is to learn a multi-label model that can correctly classify known
labels for the unseen instance and recognize unknown labels within its relevant label set. This can
be regarded as a special weakly supervised learning. In MLOSR, the most challenging part is to
recognize the unknown labels associated with instances. Since we do not have any prior knowledge
of unknown labels and they almost always co-occur with some known labels, it is very difficult to
separate instances with unknown labels from those with the known labels only.
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Figure 1: An example. The test image is associated with a variety of relevant labels. Among the set of relevant
labels, "cloud", "car", "ship", "building", "tree" and "sky" are known labels seen in the training set, while "sea",
"mountain" and "trestle bridge" are unknown labels emerging in the testing phase.

Open set recognition (OSR) is a paradigm previously proposed in [24] and is formalized as a risk-
minimizing constrained functional optimization problem. OSR describes a scenario where new
classes unseen in training occur in testing, thus classifiers must be able to properly identify seen
samples while rejecting unseen ones [9]. [24] proposes a 1-vs-Set machine to minimize open set risk
by sculpting a decision space from the marginal distances of binary SVM. OSR problem is further
studied via algorithm adaptation [1, 16], statistical extreme value theory (EVT) [25, 32], margin
distribution [23] or hierarchical Dirichlet process [10]. These existing works are based on the fact
that each instance owns one ground-truth label for multi-class cases. Thus, they cannot be used to
directly solve the MLOSR problem, due to the multiple ground-truth labels in MLL.

To address MLOSR problem, we propose a tailored algorithm named SLAN, i.e. Sub-Labeling
informAtion reconstructioN for multi-label open set recognition. The basic strategy of SLAN is to
enrich the sub-labeling information in the sub-label space by leveraging the structural information
in the feature space and differentiating it from the labeling information from holistic supervision.
Specifically, the underlying structure of feature space is characterized by the sparse reconstruction
relationships among training instances. After that, the reconstruction information is utilized to guide
the enrichment of sub-labeling information. Then, a unified optimization framework is presented
to simultaneously facilitate open set recognizer and multi-label classifier induced with alternating
optimization. Our empirical study on datasets from diverse domains demonstrates the effectiveness
of the proposed approach.

The rest of the paper is organized as follows. We present a brief review of related works. Then we
formulate the problem and propose the algorithm. Next, experimental results are reported, followed
by the conclusion.

2 Related Work

The task of multi-label learning has been extensively studied in recent years [37, 19]. Generally, the
major challenge for multi-label learning is its huge output space which is exponential to the number
of class labels. Therefore, exploiting label correlations has been adopted as a common strategy
to facilitate the learning process. Roughly speaking, extant approaches can be grouped into three
categories based on the order of correlations, i.e. first-order approaches, second-order approaches and
high-order approaches. First-order approaches tackle multi-label learning problem in a label-by-label
manner [2, 33]. Second-order approaches exploit pairwise interactions among class labels [7, 3].
High-order approaches exploit relationships among a subset of or all class labels [22, 14].

OSR is critical for the tasks where incomplete knowledge exists at training time, and unknown classes
can be submitted to an algorithm during the testing phase, requiring the classifiers to classify the
seen classes and deal with unseen ones. According to [9], traditional machine learning methods
are adapted to OSR scenario. For instance, SVM-based models add extra constraints on the score
space in [24, 4]; A collective decision-based model implemented by hierarchical Dirichlet process is
proposed in [10]; and distance-based models [1, 16] are developed by modifying existing classifiers,
such as nearest class mean classifier and nearest neighbor classifier. Some other approaches focus
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on the EVT [17]. [25] combines the EVT for score calibration with two separated compact abating
probability SVMs, where the first SVM is used as a conditioner and the second SVM fitted yields
the posterior estimate. [32] transforms the OSR problem into a set of hypothesis testing problems
by modeling the tail part of reconstruction error distribution via EVT. [23] formulates the extreme
value machine with distributional information, which can be interpreted by EVT. There are also some
methods trying to incorporate few-shot learning into OSR [5].

MLOSR can be regarded as a combination of MLL and OSR. Thus, a straightforward approach
is to generate a independent recognizer besides the multi-label classifier. However, as unknown
labels may co-occur with known labels, it is difficult to separate instances with unknown labels
from instances with known labels only, which leads to OSR approaches that could not be applied in
MLOSR problems.

Streaming multi-label learning (SMLL) [31] is similar to our MLOSR problem but differs in the
setting of unknown labels. It aims to derive a unified model by taking care of the continually emerging
new unknown labels on the training data. [31] trains a linear classifier for new labels with the linear
hypotheses between labels and classifiers. [28] proposes a novel DNN-based framework to model the
emerging new labels depending on high-order representations. [29] presents probabilistic streaming
label tree to incorporate new labels, which capture hierarchical correlations among labels. Compared
to SMLL, MLOSR is much more challenging in recognizing unknown labels as the unknown labels
only emerge in testing phase. In the next section, the first attempt towards MLOSR is introduced.

3 The SLAN Approach

3.1 Problem Formulation

Formally, let X = Rd denote the d-dimensional input space and Y = {l1, l2, . . . , lq} denote the label
space including q class labels. Each multi-label instance can be denoted as (xi, Yi), where xi ∈ X is
its feature vector and Yi ⊆ Y is the set of relevant labels associated with xi. Here, a q-dimensional
indicator vector yi = [yi1, yi2, ...yiq]

⊤ is utilized to denote Yi, where yik = 1 indicates class label
lk ∈ Y and yik = −1 otherwise. By arranging feature vectors and label vectors of m training
instances, we obtain the feature matrix X = [x1, . . . ,xm] and label matrix Y = [y1, . . . ,ym].

Given the multi-label training set D = {(xi, Yi) | 1 ≤ i ≤ m}, the goal of MLOSR is to learn a
model from D that can correctly classify known labels for the unseen instance and recognize unknown
labels within its relevant label set. Conceptually, given the multi-label training set D, an open space
risk function RO and an empirical risk function Rε, multi-label open set recognition aims to derive a
measurable recognition function f ∈ H by minimizing the following Open Set Risk:

argmin
f∈H

RO(f) + λrRε(f(D)) (1)

where λr is a regularization constant.

3.2 Structural Information Discovery

To characterize the underlying manifold structure of feature space, a weighted directed graph G =
(V, E ,S) is constructed over the set of training instances, where V = {xi | 0 ≤ i ≤ m} corresponds
to the set of vertices and E = {(xi,xj) | sij ̸= 0, 1 ≤ i ̸= j ≤ m} corresponds to the set of edges
from xi to xj with nonzero weight.

Furthermore, S = [sij ]m×m corresponds to the weight matrix encoding the relationships among
all training instances. Conceptually, the weight value sij reflects relative importance of xi in
reconstructing xj . Thus, by implementing global sparse reconstruction, the weight matrix S is
instantiated by solving the following optimization problem:

min
S

||XS−X||2F + µ0||S||1

s.t. sii = 0,∀1 ≤ i ≤ m
(2)

Here, the first term controls the linear reconstruction error via squared Frobenius norm while the
second term controls the sparsity of reconstruction via ℓ1 norm. The relative importance is balanced
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by the trade-off parameter µ0. Then, the constrained optimization problem in Eq.(2) can be solved
via a standard ADMM (Alternating Direction Method of Multiplier) procedure [11].

3.3 Sub-Labeling Information Enrichment

According to the manifold assumption, the structural relationship specified in the feature space should
also be preserved in the entire label space to enrich labeling information originally encoding in
the indicator vector yi [13, 38]. That is, yi can be transformed into a numerical labeling vector
zi = [zi1, zi2, . . . , ziq]

⊤ under holistic supervision which encodes richer semantics for predictive
model induction.

However, this assumption might be suboptimal in the entire label space. Considering one specific label
lk ∈ Y , let fk

i = [fki1, . . . , f
k
i,k−1, f

k
i,k+1, . . . , f

k
iq]

⊤ represent the enriched sub-labeling information
of xi. With the manifold assumption, the structural information would be maintained in the sub-label
space Y\{lk}. Then, instances with lk can be reconstructed via the instances without lk as well as the
enriched sub-labeling information. Nevertheless, these reconstructed instances can not be assigned
with lk since there’s not enough positive labeling information w.r.t. lk. That is, the sub-labeling
information is differentiated from labeling information with holistic supervision. Thus, in open set
scenario, if lk is specified as an unknown class label, such difference can be employed as a criterion
for one specific instance to distinguish whether it is associated with an unknown class label.

Let concatenate all fk
i , denoted by Fk = [fk

1 , . . . ,f
k
m] ∈ R(q−1)×m and all zi, denoted by Z =

[z1, . . . ,zm] ∈ Rq×m. The enriched sub-labeling information is generated via leveraging the
structural information encoded in S by solving the following optimization problem:

min
Z,

F1,...,Fq

γ

2

m∑
i=1

||zi − yi||22 +
β

2

q∑
k=1

m∑
i=1

||fk
i −

m∑
j=1

sjif
k
j ||22

+
α

2

q∑
k=1

m∑
i=1

||δki (fk
i −Pkzi)||22

(3)

Here, δki is a indicator variable, where δki = 1 if lk is not associated with xi; otherwise δki = 0. Pk is
a (q − 1)× q projection matrix to align zi with fk

i without regard to lk, which removes the k-th row
of the identity matrix. The first term supervises the labeling information from the holistic aspect. The
second term conveys the manifold structure specified in the feature space to the sub-label space. The
third term minimizes the labeling information difference between sub-label space and entire label
space to differentiate instances with or without such unknown class label, which implicitly reduces
the open space risk.

During the testing phase, for an unseen instance x∗, the reconstruction coefficients w.r.t. lk is
identified by resorting to the ADMM technique over the training set. After that, the enriched sub-
labeling information fk

∗ of x∗ is determined via the second term of Eq.(3). Thereafter, whether
unknown labels are associated with x∗ is determined by the following recognizer G via ensemble
majority voting:

G(x∗) =

{
unknown, if

∑q
k=1 gk(x∗) ≤ 0,

known, if
∑q

k=1 gk(x∗) > 0.
(4)

where gk(x∗) = −1 if ||fk
∗ −Pkz∗||22 > ρk; otherwise gk(x∗) = 1. ρk is the threshold, and can be

chosen so that 100×τ% instances with lk in training set satisfy ||fk
i −Pkzi||22 > ρk. The labeling

information z∗ under holistic supervision is generated by the following MLL classifier.

3.4 MLL Classifier Training

Similar to the existing strategy in previous OSR algorithms, instead of training the classifier indepen-
dently, we perform open set recognizer and multi-label classifier induced simultaneously. Then, the
sub-labeling information can be optimized by considering both the manifold assumption and model
outputs. Furthermore, considering the label correlation between known and unknown labels, such
jointly optimization procedure with recognizer can facilitate the classifier more robust. We denote
W ∈ Rq×d and b ∈ Rq as a multi-label classifier and adopt the squared Frobenius norm as the
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regularization term to control the model complexity:

min
W ,b

m∑
i=1

1

2
||Wxi + b− zi||22 +

µ1

2
||W||2F (5)

Let Bk = [bkpi](q−1)×m denote the indicator matrix with bkpi = δki . Then, the objective function of
the unified framework is shown as follows:

min
W,b,Z,
F1,...,Fq

q∑
k=1

(
β

2
||FkS− Fk||2F +

α

2
||Bk ◦ (PkZ− Fk)||2F)

+
1

2
||Z− (WX+ b1⊤

n )||2F +
γ

2
||Z−Y||2F

+
µ1

2
||W||2F

(6)

Here, The first two terms control the open space risk and remaining terms control the empirical risk.

3.5 Alternative Optimization

Update Z With fixed F1, . . . ,Fq , W and b, the optimization problem Eq.(6) can be stated as follows:

min
Z

1

2
||Z− (WX+ b1⊤

n )||2F +
γ

2
||Z−Y||2F

+
α

2

q∑
k=1

||Bk ◦ (PkZ− Fk)||2F
(7)

The above optimization problem can be solved by updating Z with gradient descent. The gradient of
the objective function w.r.t. Z is

∇Z = (Z− (WX+ b1⊤
n )) + γ(Z−Y)

+ α

q∑
k=1

P⊤
k (Bk ◦ (PkZ− Fk))

(8)

Update F1, . . . ,Fq With Z, W and b fixed, the optimization problem Eq.(6) can be stated as follows:

min
Fk

β

2
||FkS− Fk||2F +

α

2
||Bk ◦ (PkZ− Fk)||2F (9)

Similarly, gradient descent is employed, and the gradient w.r.t. Fk is:

∇Fk = βFkT+ αBk ◦ (Fk −PkZ) (10)

where T = (S− Im×m)(S− Im×m)⊤.

Update W and b While Z and F1, . . . ,Fq are fixed, the optimization problem (4) can be stated as
follows:

min
W,b

tr(EE⊤) + µ1tr(WW⊤)

s.t. Z = WX+ b1⊤
m +E

(11)

Here, E = [e1, . . . , em] ∈ Rq×m, where ei = zi − (Wxi + b). To achieve better performance
of the predictive model, a kernel extension is further facilitated for the general nonlinear case. Let
Φ = [ϕ(x1), . . . , ϕ(xm)] ∈ Rh×m, where ϕ(•) : Rd → Rh corresponds to the feature mapping
that maps the feature space to some higher dimensional Hilbert space with h dimensions. Then, the
Lagrangian function of this problem can be formulated as:

L(W,b,E,A) = tr(EE⊤) + µ1tr(WW⊤)

− tr(A⊤(WΦ+ b1⊤
m +E− Z))

(12)
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Algorithm 1 The pseudo-code of SLAN

Input: The multi-label training set D, the trade-off parameters α, β, γ, µ1, τ , an unseen instance x∗;
Output: The predicted label set Y∗ for x∗, the recognition result G(x∗).
Process:

1: Instantiate the weighted graph G = (V, E ,S) by solving Eq.(2) with ADMM procedure;
2: Calculate the kernel matrix K = [κ(xi,xj)]m×m;
3: Initialize Z with Y;
4: Initialize Fk with PkY (1 ≤ k ≤ q);
5: repeat
6: Update Z according to Eq.(7);
7: Update Fk according to Eq.(9);
8: Update W and b according to Eq.(11);
9: until convergence or maximum number of iterations being reached

10: return Y∗ and G(x∗) according to Eq.(14) and Eq.(4).

where A = [aki] ∈ Rq×m stores the Lagrange multipliers. According to the KKT conditions, we
can obtain:

b =
ZH−11m

1⊤
mH−11m

A = (Z− b1⊤
m)H−1

(13)

where H = 1
µ1
K + Im×m and K = Φ⊤Φ with its element kij = κ(xi,xj) = ϕ(xi)

⊤ϕ(xj)

based on the chosen kernel function κ(·, ·). Then, by incorporating the specified kernel function, the
modeling output is denoted by 1

µ1
AK+ b1⊤

m. Furthermore, given an unseen instance x∗ ∈ X , its
relevant label set is predicted as:

Y∗ = {lk |
m∑
i=1

akiκ(x∗,xi) ≥ 0, 0 ≤ k ≤ q} (14)

The pseudo-code of SLAN is summarized in Algorithm 1. Given the multi-label training set, a
weighted graph is constructed to characterize the manifold structure of feature space (Step 1). After
that, the alternative optimization strategy is adopted to optimize open set recognizer and multi-label
classifier simultaneously (Step 2-9). Finally, the relevant label set of the unseen instance is predicted
and the recognition result is generated based on the learned model (Step 10).

Table 1: Characteristics of experimental data sets.
Dataset |S| dim(S) L(S) LCard(S) LDen(S) DL(S) PDL(S)

llog 1208 925 17 0.966 0.057 96 0.079
enron 1702 1001 24 3.124 0.130 548 0.322

slashdot 3659 1079 14 1.173 0.084 119 0.033
recreation 5000 606 15 1.361 0.091 259 0.052
corel5k 5000 499 44 2.214 0.050 1037 0.207

arts 5000 462 14 1.512 0.108 314 0.063
education 5000 550 11 1.374 0.125 173 0.035

rcvsubset2-2 6000 944 39 2.170 0.056 489 0.082
bibtex 7395 1835 27 0.954 0.035 380 0.051

4 Experiments

4.1 Experimental Setup

Table 1 summarizes the detailed characteristics of each benchmark multi-label data set S employed
in the experiments, including the number of instances |S|, number of features dim(S), number of
class labels L(S), label cardinality LCard(S), label density LDen(S), number of distinct label
sets DL(S) and proportion of distinct label sets PDL(S). To alleviate the influence of extreme
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Table 2: Experimental results of each compared approach (mean±std) with different label batch size (denoted
by #label). The best and the second best performance of each data set methods are highlighted in boldface and
underline respectively. In addition, •/◦ indicates whether SLAN is statistically superior/inferior to the comparing
approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label LIFT MUENLPLR SENCE LIMIC SLAN
Ranking loss (the smaller, the better)

llog

0 0.339±0.033 0.400±0.025• 0.335±0.039 0.350±0.035 0.344±0.030
3 0.358±0.035 0.418±0.026• 0.357±0.041 0.367±0.040 0.359±0.033
5 0.365±0.036 0.421±0.025• 0.362±0.037 0.373±0.037 0.366±0.033
7 0.368±0.032 0.425±0.022• 0.366±0.033 0.376±0.033 0.370±0.030
9 0.368±0.028 0.426±0.019• 0.367±0.029 0.377±0.032 0.374±0.030

enron

0 0.174±0.021• 0.236±0.024• 0.159±0.018 0.199±0.031• 0.157±0.016
6 0.179±0.014• 0.241±0.011• 0.172±0.009 0.194±0.011• 0.169±0.011
9 0.179±0.013• 0.245±0.013• 0.174±0.008 0.193±0.012• 0.172±0.012

12 0.180±0.011• 0.245±0.012• 0.174±0.005 0.193±0.012• 0.174±0.010

recreation

0 0.237±0.013• 0.332±0.018• 0.214±0.020 0.279±0.018• 0.214±0.020
4 0.258±0.012• 0.343±0.015• 0.242±0.021◦ 0.286±0.017• 0.247±0.019
6 0.260±0.013 0.346±0.015• 0.247±0.019 0.287±0.018• 0.252±0.016
8 0.264±0.014 0.347±0.015• 0.251±0.018◦ 0.286±0.018• 0.258±0.014

slashdot

0 0.312±0.026• 0.406±0.024• 0.276±0.026• 0.324±0.028• 0.249±0.028
3 0.324±0.022• 0.412±0.019• 0.289±0.020• 0.337±0.029• 0.260±0.022
5 0.335±0.019• 0.418±0.011• 0.300±0.015• 0.350±0.025• 0.268±0.019
7 0.335±0.021• 0.418±0.011• 0.301±0.021• 0.351±0.024• 0.270±0.018

corel5k

0 0.206±0.006◦ 0.317±0.011• 0.195±0.006◦ 0.267±0.045 0.240±0.006
7 0.231±0.020◦ 0.332±0.018• 0.221±0.022◦ 0.287±0.051 0.266±0.013

12 0.239±0.017◦ 0.337±0.019• 0.231±0.019◦ 0.292±0.051 0.276±0.012
17 0.247±0.018◦ 0.342±0.016• 0.238±0.020◦ 0.295±0.051 0.283±0.012
22 0.252±0.018◦ 0.345±0.012• 0.243±0.020◦ 0.299±0.052 0.286±0.013

arts

0 0.220±0.024• 0.305±0.030• 0.193±0.023• 0.297±0.045• 0.187±0.018
3 0.324±0.049• 0.376±0.040• 0.311±0.051• 0.397±0.076• 0.296±0.049
5 0.348±0.029• 0.392±0.029• 0.335±0.033• 0.421±0.079• 0.318±0.030
7 0.363±0.036• 0.409±0.027• 0.351±0.042• 0.431±0.071• 0.332±0.034

education
0 0.222±0.028• 0.303±0.034• 0.194±0.023• 0.275±0.040• 0.185±0.029
4 0.300±0.059• 0.354±0.056• 0.278±0.050• 0.344±0.076• 0.270±0.049
6 0.311±0.037• 0.365±0.037• 0.290±0.032• 0.356±0.046• 0.281±0.034

rcvsubset2-2

0 0.120±0.005• 0.259±0.012• 0.093±0.005◦ 0.226±0.048• 0.097±0.007
8 0.220±0.035• 0.323±0.027• 0.197±0.033 0.279±0.042• 0.197±0.025

12 0.235±0.030• 0.333±0.024• 0.212±0.028 0.290±0.049• 0.211±0.027
16 0.248±0.020• 0.339±0.016• 0.226±0.020 0.298±0.042• 0.224±0.017
20 0.263±0.020• 0.350±0.017• 0.241±0.021 0.309±0.040• 0.238±0.019

bibtex

0 0.217±0.026• 0.396±0.009• 0.249±0.050• 0.267±0.013• 0.114±0.016
5 0.214±0.031• 0.387±0.013• 0.245±0.050• 0.262±0.024• 0.114±0.017
8 0.216±0.035• 0.388±0.017• 0.247±0.053• 0.264±0.034• 0.117±0.017

11 0.221±0.037• 0.391±0.016• 0.250±0.053• 0.270±0.026• 0.122±0.020
14 0.223±0.031• 0.390±0.010• 0.252±0.044• 0.272±0.019• 0.123±0.016

imbalance, any class label with rare appearance or with overly-high imbalance ratio is excluded from
the label space following previous settings [34].

For a given dataset, we randomly select 50% labels as known labels and the remaining labels as
unknown labels with different label batch sizes. Then, we sample 60% instances without unknown
labels to form training set while the remaining instances are treated as test data. The sampling
procedure is repeated ten times, and the mean metric value as well as standard deviation for each
label batch are reported.

To evaluate the performance of multi-label classifiers, we utilize five widely-used multi-label eval-
uation metrics [37], including Ranking loss, One-error, Coverage, Average precision and Macro-
averaging AUC. In addition, F-measure is employed to evaluate the performance of recognizers.

To validate the effectiveness of the proposed SLAN approach in multi-label learning, four multi-label
learning approaches are used for comparative studies.

• LIFT [35]: A multi-label learning approach, which induces classifiers with the label-specific
features generated via conducting clustering analysis for each class label. [parameter
configuration: r = 0.1]
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Table 3: Experimental results of each compared approach (mean±std) with different label batch size (denoted
by #label). The best and the second best performance of each data set methods are highlighted in boldface and
underline respectively. In addition, •/◦ indicates whether SLAN is statistically superior/inferior to the comparing
approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label OC-SVM IFOREST MUENLFOREST SLAN
F-measure (the greater, the better)

llog

3 0.501±0.063• 0.494±0.062• 0.340±0.067• 0.672±0.058
5 0.440±0.064• 0.436±0.060• 0.309±0.067• 0.576±0.062
7 0.391±0.049• 0.387±0.046• 0.281±0.057• 0.501±0.050
9 0.362±0.047• 0.359±0.043• 0.267±0.054• 0.456±0.043

enron
6 0.352±0.100• 0.350±0.099• 0.398±0.116 0.406±0.096
9 0.283±0.109• 0.282±0.108• 0.314±0.116 0.321±0.095
12 0.251±0.113• 0.250±0.112• 0.276±0.120 0.281±0.098

recreation
4 0.346±0.066• 0.339±0.066• 0.318±0.054• 0.376±0.066
6 0.283±0.052• 0.279±0.052• 0.265±0.044• 0.305±0.055
8 0.230±0.037• 0.227±0.035• 0.218±0.033• 0.244±0.039

slashdot
3 0.411±0.100• 0.409±0.099• 0.310±0.088• 0.528±0.127
5 0.350±0.094• 0.349±0.095• 0.274±0.088• 0.428±0.105
7 0.293±0.071• 0.293±0.072• 0.235±0.075• 0.350±0.069

corel5k

7 0.496±0.018• 0.489±0.016• 0.327±0.013• 0.653±0.015
12 0.430±0.022• 0.424±0.019• 0.298±0.013• 0.539±0.017
17 0.378±0.018• 0.373±0.018• 0.272±0.009• 0.462±0.012
22 0.344±0.018• 0.340±0.017• 0.253±0.009• 0.414±0.015

arts
3 0.356±0.074• 0.354±0.069• 0.340±0.058• 0.395±0.105
5 0.273±0.040 0.271±0.037 0.264±0.033 0.288±0.049
7 0.230±0.044 0.229±0.042 0.224±0.038 0.235±0.047

education 4 0.282±0.086 0.282±0.088 0.274±0.082 0.277±0.059
6 0.230±0.060 0.231±0.060 0.226±0.057 0.224±0.040

rcvsubset2-2

8 0.479±0.031• 0.475±0.031• 0.387±0.017• 0.616±0.025
12 0.418±0.034• 0.414±0.032• 0.346±0.021• 0.518±0.027
16 0.374±0.020• 0.370±0.020• 0.315±0.014• 0.452±0.013
20 0.341±0.021• 0.338±0.022• 0.291±0.015• 0.404±0.014

bibtex

5 0.567±0.021• 0.564±0.020• 0.478±0.023• 0.684±0.025
8 0.526±0.028• 0.524±0.026• 0.450±0.027• 0.621±0.024
11 0.489±0.026• 0.487±0.024• 0.424±0.024• 0.563±0.028
14 0.460±0.023• 0.459±0.022• 0.403±0.022• 0.518±0.029

• MUENLPLR [39]: A SVM-based dynamic multi-label learning approach which trains a set of
linear classifiers by minimizing misclassification loss and pairwise ranking loss. [parameter
configuration: C1 = 1, C2 = 1]

• SENCE [27]: A multi-label learning approach based on label-specific features generated by
mixture-based clustering ensemble. [parameter configuration: r= 0.4].

• LIMIC [21]: A multi-semantics multi-label metric learning approach coupled with ML-
LNN [36] which learns one global and multiple label-specific local metrics simultaneously.
[parameter configuration: λ1 = 1, λ2 = 100, γ = 2,K = 10].

With the first attempt towards solving the MLOSR problem, there is no method can be directly applied.
Thus, we compare the proposed SLAN approach with existing anomaly detection approaches.

• OC-SVM [20]: A SVM-based approach which constructs a hyper-sphere surrounding all
instances from known labels.

• IFOREST [18]: An unsupervised forest-based anomaly detection approach which employs
average path length over all trees as the anomaly score.

• MUENLFOREST [39]: A forest-based dynamic multi-label learning approach which utilizes
clustering process in each nodes by considering the feature space and the label patterns.
[parameter configuration: q = 5, ψ = 256, g = 100, em = 9].

For the proposed SLAN approach, trade-off parameters are set as α = 0.1, β = 0.1, γ = 10, µ1 =
0.1, τ = 0.8. µ0 is fixed to be 0.1. The sensitivity analysis of parameter configurations is conducted
in Subsection 4.3. A Linux server equipped with Intel Xeon CPU (48 cores @ 2.67GHz) and 256GB
memory is used for supporting the experiments.
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4.2 Experimental Results

The detailed experimental results in terms of Ranking loss and F-measure are reported in Table
2-3. Due to the page limit, the results on other metrics are shown in the Appendix. Meanwhile,
pairwise t-test [6] is conducted to demonstrate whether the performance of SLAN is statistically
superior/inferior to the comparing approaches on each data set. The resulting win/tie/loss counts are
summarized in the supplementary material.

Based on the reported experimental results, the following observations can be made:

• Compared with the performance on close set instances (#label = 0), the performance of all
comparing approaches on open set instances degrades. Nonetheless, across all multi-label
evaluation metrics, SLAN achieves superior or at least comparable performance against the
comparing approaches in 91.7% cases. The results clearly indicate the jointly optimization
with recognizer serves a more effective way to achieve more robust multi-label classifier in
the open environment.

• Comparing with anomaly detection approaches, SLAN achieves better performance in 83.3%
cases. Possible reasons are that: (a) OC-SVM and IFOREST are previously designed for multi-
class scenario which can not directly solve MLOSR problem. (b) For the construction of
MUENLFOREST, instance is augmented with its predictive values derived from MUENLPLR.
However, the predictive values might be suboptimal as MUENLPLR is trained without
considering open space risk.

• In the multi-label setting, instances with unknown labels may share the same dense region
of instances with known labels, which makes multi-class anomaly detection approaches tend
to reject instances with unknown labels. That is why since MUENLPLR is under multi-label
setting, it still inferior to IFOREST and OC-SVM.

4.3 Parameter Sensitivity Analysis

In this section, we study the sensitivity analysis of trade-off parameters α, β, γ, µ1, τ shown in
Algorithm 1. Figure 2 illustrates how the performance of SLAN changes with varying parameter
configurations on data set enron. As shown in Figure 2, SLAN achieves relatively stable performance
on multi-label metrics and somewhat sensitive on F-measure. In this paper, trade-off parameters are
set as α = 0.1, β = 0.1, γ = 10, µ1 = 0.1, τ = 0.8, which can be employed as the default parameter
setting.
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Figure 2: Performance of SLAN with varying value of trade-off parameters on enron.

5 Conclusion

The major contributions of our work are two-fold: 1) We formalize a novel learning framework
named multi-label open set recognition (MLOSR), which aims to classify and recognize instances
with unknown labels in multi-label setting, suggesting a new direction for multi-label learning. 2) We
propose a novel MLOSR approach named SLAN which can facilitate open set multi-label classification
by utilizing sub-labeling information and recognize the unknown labels by differentiating the sub-
labeling information from holistic supervision. Extensive experimental results clearly validate the
effectiveness of the proposed SLAN approach.

However, SLAN enriches #labels+1 sub-labeling information, which could hardly generalize to
extreme multi-label data set. Meanwhile, SLAN works in the multi-label learning schema where
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the feature representations of instances may less informative. In the future, it is interesting to
investigate towards extreme multi-label learning to achieve tolerable scalability and design deep
MLOSR approaches with discriminative feature representations. Furthermore, it is desirable to extend
evaluation metrics for MLOSR.
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A Appendix

Table 4, 5, 7 and 9 report detailed experimental results in terms of Average precision, Macro-
averaging AUC, Coverage and One-error, which are not covered in the Experimental Results part of
the main body due to page limit. Besides, the pairwise t-test is conducted to demonstrate whether the
performance of SLAN is statistically superior/inferior to the comparing approaches on each data set.
The resulting win/tie/loss counts in terms of multi-label evaluation metrics are summarized in Table 6
as well as F-measure in Table 8.

Table 4: Experimental results of each compared approach (mean±std) with different label batch size (denoted
by #label). The best and the second best performance of each data set methods are highlighted in boldface and
underline respectively. In addition, •/◦ indicates whether SLAN is statistically superior/inferior to the comparing
approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label LIFT MUENLPLR SENCE LIMIC SLAN
Average precision (the greater, the better)

llog

0 0.496±0.035 0.440±0.023• 0.506±0.044 0.478±0.035 0.497±0.039
3 0.479±0.035 0.425±0.026• 0.487±0.044 0.466±0.033 0.484±0.038
5 0.473±0.035 0.421±0.025• 0.480±0.041 0.460±0.030 0.477±0.036
7 0.469±0.035 0.416±0.022• 0.478±0.040 0.459±0.027 0.473±0.035
9 0.469±0.029 0.413±0.021• 0.476±0.034 0.459±0.024 0.469±0.032

enron
0 0.727±0.041• 0.663±0.054• 0.747±0.037 0.695±0.052• 0.751±0.035
6 0.674±0.031• 0.612±0.033• 0.682±0.032 0.653±0.031• 0.687±0.029
9 0.659±0.035• 0.595±0.033• 0.667±0.034 0.641±0.026• 0.669±0.035

12 0.655±0.025• 0.591±0.011• 0.663±0.023 0.638±0.020• 0.664±0.025

recreation
0 0.685±0.017• 0.574±0.019• 0.718±0.027 0.632±0.023• 0.717±0.026
4 0.661±0.012• 0.562±0.017• 0.684±0.025 0.619±0.022• 0.681±0.023
6 0.659±0.015• 0.559±0.017• 0.678±0.022 0.618±0.026• 0.673±0.020
8 0.653±0.015• 0.556±0.016• 0.672±0.021◦ 0.615±0.025• 0.666±0.018

slashdot

0 0.563±0.024• 0.462±0.022• 0.599±0.026• 0.542±0.031• 0.641±0.035
3 0.553±0.018• 0.456±0.018• 0.587±0.020• 0.534±0.029• 0.628±0.029
5 0.541±0.016• 0.450±0.013• 0.575±0.015• 0.520±0.025• 0.617±0.026
7 0.541±0.018• 0.449±0.012• 0.574±0.017• 0.518±0.020• 0.614±0.023

corel5k

0 0.463±0.011• 0.338±0.012• 0.480±0.011◦ 0.385±0.053• 0.471±0.008
7 0.426±0.019 0.320±0.014• 0.441±0.022◦ 0.370±0.057• 0.431±0.017

12 0.417±0.014 0.316±0.016• 0.429±0.016◦ 0.367±0.055• 0.417±0.014
17 0.411±0.013 0.313±0.011• 0.423±0.015◦ 0.368±0.050• 0.409±0.013
22 0.404±0.012 0.310±0.008• 0.418±0.014◦ 0.364±0.050• 0.404±0.013

arts

0 0.716±0.027• 0.607±0.036• 0.749±0.028 0.626±0.050• 0.752±0.023
3 0.595±0.061• 0.531±0.044• 0.613±0.061• 0.521±0.077• 0.622±0.059
5 0.573±0.036• 0.515±0.029• 0.588±0.038• 0.502±0.061• 0.597±0.035
7 0.551±0.035• 0.495±0.023• 0.566±0.036• 0.483±0.051• 0.576±0.034

education
0 0.762±0.029• 0.684±0.034• 0.797±0.026• 0.707±0.045• 0.805±0.028
4 0.690±0.056• 0.637±0.053• 0.714±0.050• 0.649±0.068• 0.722±0.048
6 0.678±0.036• 0.625±0.032• 0.701±0.033• 0.638±0.043• 0.709±0.033

rcvsubset2-2

0 0.660±0.009• 0.437±0.022• 0.726±0.011• 0.465±0.089• 0.752±0.015
8 0.525±0.024• 0.375±0.018• 0.575±0.029• 0.418±0.060• 0.596±0.029

12 0.504±0.025• 0.365±0.021• 0.551±0.027• 0.411±0.066• 0.572±0.026
16 0.485±0.016• 0.357±0.016• 0.528±0.019• 0.400±0.062• 0.549±0.018
20 0.473±0.013• 0.350±0.013• 0.513±0.017• 0.393±0.060• 0.532±0.017

bibtex

0 0.610±0.029• 0.348±0.011• 0.600±0.046• 0.530±0.018• 0.778±0.031
5 0.617±0.035• 0.356±0.013• 0.613±0.047• 0.546±0.023• 0.782±0.031
8 0.614±0.037• 0.356±0.014• 0.609±0.052• 0.546±0.034• 0.778±0.033

11 0.608±0.040• 0.353±0.011• 0.603±0.053• 0.541±0.030• 0.772±0.037
14 0.606±0.028• 0.355±0.009• 0.601±0.039• 0.542±0.022• 0.770±0.030
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Table 5: Experimental results of each compared approach (mean±std) in terms of Macro-averaging AUC with
different label batch size (denoted by #label). The best and the second best performance of each data set methods
are highlighted in boldface and underline respectively. In addition, •/◦ indicates whether SLAN is statistically
superior/inferior to the comparing approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label LIFT MUENLPLR SENCE LIMIC SLAN
Macro-averaging AUC (the greater, the better)

llog

0 0.590±0.029• 0.541±0.019• 0.595±0.031• 0.512±0.016• 0.618±0.033
3 0.579±0.031 0.526±0.021• 0.587±0.034 0.511±0.015• 0.602±0.034
5 0.573±0.027 0.524±0.021• 0.581±0.026 0.509±0.014• 0.594±0.034
7 0.573±0.020 0.521±0.019• 0.577±0.022 0.509±0.013• 0.590±0.033
9 0.570±0.019 0.522±0.017• 0.573±0.023 0.508±0.011• 0.585±0.034

enron

0 0.688±0.023• 0.589±0.026• 0.690±0.049• 0.580±0.021• 0.725±0.034
6 0.646±0.026• 0.565±0.017• 0.660±0.036• 0.561±0.016• 0.681±0.033
9 0.645±0.024• 0.563±0.014• 0.660±0.036 0.561±0.015• 0.679±0.031

12 0.646±0.022• 0.563±0.013• 0.659±0.033 0.560±0.014• 0.677±0.030

recreation

0 0.702±0.022• 0.585±0.016• 0.739±0.028• 0.564±0.020• 0.758±0.026
4 0.647±0.014• 0.561±0.010• 0.671±0.020• 0.544±0.010• 0.687±0.019
6 0.641±0.011• 0.557±0.011• 0.662±0.018• 0.542±0.010• 0.679±0.017
8 0.635±0.010• 0.555±0.010• 0.655±0.015• 0.538±0.010• 0.670±0.015

slashdot

0 0.606±0.023• 0.522±0.014• 0.667±0.025• 0.564±0.009• 0.728±0.030
3 0.601±0.016• 0.522±0.009• 0.658±0.020• 0.556±0.010• 0.699±0.026
5 0.596±0.012• 0.522±0.007• 0.653±0.014• 0.553±0.010• 0.692±0.022
7 0.596±0.012• 0.522±0.008• 0.653±0.016• 0.552±0.011• 0.687±0.020

corel5k

0 0.697±0.021• 0.573±0.009• 0.705±0.019• 0.535±0.020• 0.719±0.016
7 0.677±0.017• 0.567±0.009• 0.686±0.016• 0.531±0.018• 0.697±0.013

12 0.668±0.017• 0.565±0.010• 0.676±0.016• 0.530±0.017• 0.687±0.014
17 0.660±0.015• 0.560±0.009• 0.670±0.016• 0.529±0.016• 0.679±0.014
22 0.657±0.016• 0.559±0.008• 0.667±0.017• 0.528±0.015• 0.676±0.015

arts

0 0.731±0.022• 0.614±0.015• 0.762±0.020• 0.585±0.030• 0.782±0.022
3 0.652±0.023• 0.572±0.016• 0.672±0.022• 0.554±0.019• 0.684±0.022
5 0.638±0.015• 0.564±0.014• 0.656±0.015• 0.549±0.015• 0.665±0.015
7 0.630±0.014• 0.558±0.015• 0.645±0.014• 0.545±0.015• 0.655±0.013

education
0 0.724±0.021• 0.592±0.028• 0.777±0.022• 0.593±0.029• 0.792±0.022
4 0.629±0.013• 0.555±0.014• 0.667±0.013• 0.552±0.018• 0.681±0.015
6 0.623±0.010• 0.553±0.014• 0.660±0.012• 0.549±0.019• 0.674±0.016

rcvsubset2-2

0 0.798±0.015• 0.596±0.021• 0.839±0.012• 0.538±0.027• 0.864±0.010
8 0.729±0.022• 0.568±0.010• 0.769±0.022• 0.526±0.020• 0.789±0.017

12 0.722±0.019• 0.563±0.014• 0.763±0.018• 0.524±0.017• 0.782±0.014
16 0.711±0.015• 0.559±0.011• 0.750±0.015• 0.521±0.015• 0.770±0.012
20 0.705±0.015• 0.555±0.011• 0.744±0.015• 0.520±0.015• 0.764±0.014

bibtex

0 0.718±0.025• 0.529±0.011• 0.586±0.047• 0.593±0.017• 0.840±0.015
5 0.709±0.027• 0.529±0.012• 0.583±0.046• 0.591±0.017• 0.833±0.015
8 0.706±0.027• 0.528±0.012• 0.582±0.045• 0.590±0.016• 0.830±0.016

11 0.704±0.028• 0.527±0.012• 0.584±0.044• 0.589±0.015• 0.827±0.016
14 0.703±0.027• 0.527±0.013• 0.583±0.045• 0.588±0.015• 0.827±0.016

Table 6: Win/tie/loss counts (pairwise t-test at 0.05 significant level) for SLAN against other multi-label
approaches.

Metrics SLAN against
LIFT MUENLPLR SENCE LIMIC

Ranking loss 27/7/5 39/0/0 16/15/8 29/10/0
One-error 34/5/0 39/0/0 20/19/0 34/5/0
Coverage 28/6/5 39/0/0 18/15/6 29/10/0

Average precision 30/9/0 39/0/0 20/13/6 34/5/0
Macro-averaging AUC 35/4/0 39/0/0 33/6/0 39/0/0

In Total 154/31/10 195/0/0 107/68/20 165/30/0
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Table 7: Experimental results of each compared approach (mean±std) in terms of Coverage with different
label batch size (denoted by #label). The best and the second best performance of each data set methods are
highlighted in boldface and underline respectively. In addition, •/◦ indicates whether SLAN is statistically
superior/inferior to the comparing approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label LIFT MUENLPLR SENCE LIMIC SLAN
Coverage (the smaller, the better)

llog

0 0.332±0.030 0.384±0.027• 0.329±0.035 0.340±0.031 0.336±0.028
3 0.348±0.032 0.398±0.027• 0.348±0.036 0.353±0.034 0.348±0.029
5 0.354±0.033 0.401±0.026• 0.351±0.033 0.358±0.031 0.354±0.030
7 0.356±0.029 0.403±0.022• 0.355±0.029 0.361±0.027 0.357±0.027
9 0.356±0.026 0.404±0.020• 0.356±0.026 0.361±0.026 0.361±0.026

enron

0 0.419±0.053• 0.488±0.054• 0.401±0.051 0.442±0.061• 0.399±0.054
6 0.375±0.031• 0.445±0.020• 0.367±0.025 0.391±0.031• 0.363±0.028
9 0.368±0.021• 0.442±0.010• 0.361±0.016 0.381±0.025• 0.358±0.019

12 0.366±0.015• 0.440±0.012• 0.360±0.009 0.380±0.016• 0.359±0.013

recreation

0 0.282±0.019• 0.367±0.021• 0.263±0.024 0.313±0.025• 0.261±0.026
4 0.303±0.017• 0.378±0.016• 0.290±0.023 0.322±0.022• 0.292±0.023
6 0.304±0.014• 0.379±0.014• 0.294±0.020 0.322±0.020• 0.295±0.018
8 0.306±0.015 0.379±0.014• 0.296±0.018 0.320±0.019• 0.300±0.016

slashdot

0 0.296±0.028• 0.374±0.024• 0.264±0.027• 0.303±0.031• 0.244±0.029
3 0.303±0.022• 0.377±0.018• 0.273±0.021• 0.312±0.028• 0.250±0.023
5 0.312±0.018• 0.381±0.012• 0.281±0.016• 0.322±0.023• 0.256±0.020
7 0.311±0.020• 0.380±0.011• 0.281±0.020• 0.322±0.022• 0.257±0.018

corel5k

0 0.310±0.012◦ 0.441±0.013• 0.295±0.010◦ 0.372±0.037 0.357±0.009
7 0.316±0.018◦ 0.430±0.015• 0.304±0.020◦ 0.375±0.044 0.361±0.013

12 0.322±0.020◦ 0.431±0.019• 0.313±0.023◦ 0.379±0.048 0.368±0.016
17 0.330±0.022◦ 0.435±0.018• 0.320±0.025◦ 0.383±0.051 0.375±0.016
22 0.333±0.023◦ 0.434±0.015• 0.322±0.025◦ 0.384±0.051 0.375±0.016

arts

0 0.274±0.033• 0.351±0.036• 0.249±0.031• 0.339±0.048• 0.242±0.028
3 0.351±0.045• 0.398±0.038• 0.339±0.046• 0.412±0.065• 0.325±0.045
5 0.370±0.027• 0.411±0.026• 0.359±0.029• 0.431±0.064• 0.343±0.029
7 0.379±0.030• 0.420±0.023• 0.368±0.036• 0.436±0.059• 0.351±0.031

education
0 0.256±0.036• 0.324±0.042• 0.232±0.029• 0.297±0.047• 0.225±0.031
4 0.311±0.051• 0.358±0.051• 0.293±0.045• 0.346±0.066• 0.286±0.044
6 0.318±0.034• 0.365±0.036• 0.301±0.030• 0.355±0.041• 0.294±0.032

rcvsubset2-2

0 0.204±0.011• 0.361±0.013• 0.171±0.013◦ 0.320±0.039• 0.175±0.015
8 0.310±0.038• 0.419±0.029• 0.281±0.036 0.377±0.044• 0.277±0.027

12 0.323±0.033• 0.425±0.025• 0.295±0.030 0.385±0.047• 0.288±0.028
16 0.335±0.022• 0.428±0.016• 0.307±0.020• 0.393±0.034• 0.300±0.017
20 0.351±0.021• 0.439±0.015• 0.323±0.021• 0.404±0.032• 0.313±0.019

bibtex

0 0.240±0.033• 0.405±0.015• 0.271±0.056• 0.286±0.018• 0.140±0.023
5 0.236±0.035• 0.396±0.015• 0.265±0.053• 0.281±0.024• 0.139±0.021
8 0.237±0.040• 0.396±0.021• 0.268±0.056• 0.282±0.036• 0.142±0.023

11 0.244±0.041• 0.401±0.020• 0.272±0.056• 0.290±0.028• 0.149±0.024
14 0.247±0.034• 0.402±0.014• 0.275±0.047• 0.293±0.021• 0.151±0.020

Table 8: Win/tie/loss counts (pairwise t-test at 0.05 significant level) for SLAN against other anomaly detection
approaches.

Metrics SLAN against
OC-SVM IFOREST MUENLFOREST

F-measure 26/4/0 26/4/0 23/7/0
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Table 9: Experimental results of each compared approach (mean±std) in terms of One-error with different
label batch size (denoted by #label). The best and the second best performance of each data set methods are
highlighted in boldface and underline respectively. In addition, •/◦ indicates whether SLAN is statistically
superior/inferior to the comparing approaches on each data set with pairwise t-test (at 0.05 significance level).

Dataset #label LIFT MUENLPLR SENCE LIMIC SLAN
One-error (the smaller, the better)

llog

0 0.708±0.040 0.766±0.034• 0.687±0.054 0.729±0.041 0.702±0.057
3 0.724±0.039 0.781±0.035• 0.705±0.050 0.740±0.036 0.714±0.050
5 0.730±0.039 0.785±0.033• 0.715±0.046 0.747±0.033 0.722±0.050
7 0.733±0.040 0.794±0.031• 0.716±0.046 0.745±0.026 0.725±0.050
9 0.734±0.035 0.797±0.029• 0.717±0.040 0.745±0.022 0.729±0.043

enron

0 0.230±0.105• 0.293±0.156• 0.210±0.099 0.276±0.146• 0.205±0.093
6 0.393±0.079• 0.436±0.090• 0.376±0.076 0.444±0.104• 0.370±0.069
9 0.436±0.082• 0.479±0.077• 0.416±0.080 0.484±0.086• 0.413±0.076

12 0.446±0.044• 0.489±0.024• 0.426±0.051 0.493±0.054• 0.423±0.048

recreation

0 0.469±0.031• 0.612±0.030• 0.413±0.039 0.577±0.035• 0.411±0.036
4 0.501±0.020• 0.629±0.027• 0.459±0.033 0.592±0.029• 0.460±0.032
6 0.503±0.026• 0.633±0.024• 0.467±0.032 0.592±0.040• 0.470±0.030
8 0.512±0.027• 0.636±0.023• 0.475±0.030 0.599±0.039• 0.479±0.028

slashdot

0 0.632±0.033• 0.762±0.028• 0.587±0.031• 0.668±0.040• 0.524±0.047
3 0.642±0.033• 0.768±0.024• 0.601±0.027• 0.674±0.038• 0.543±0.039
5 0.657±0.032• 0.774±0.021• 0.617±0.023• 0.691±0.035• 0.557±0.036
7 0.657±0.033• 0.775±0.020• 0.618±0.024• 0.694±0.028• 0.562±0.033

corel5k

0 0.652±0.014• 0.781±0.014• 0.634±0.017 0.732±0.024• 0.628±0.014
7 0.706±0.018• 0.808±0.016• 0.687±0.026• 0.756±0.030• 0.678±0.025

12 0.719±0.012• 0.809±0.016• 0.705±0.018• 0.758±0.025• 0.694±0.017
17 0.725±0.011• 0.812±0.011• 0.711±0.014• 0.755±0.017• 0.702±0.013
22 0.735±0.011• 0.817±0.009• 0.718±0.011• 0.765±0.013• 0.709±0.012

arts

0 0.393±0.035• 0.550±0.049• 0.345±0.038 0.531±0.064• 0.347±0.032
3 0.556±0.076• 0.648±0.050• 0.532±0.079 0.659±0.088• 0.528±0.076
5 0.583±0.043• 0.666±0.034• 0.563±0.048 0.681±0.064• 0.560±0.043
7 0.616±0.041• 0.692±0.026• 0.595±0.040 0.707±0.053• 0.592±0.035

education
0 0.372±0.043• 0.482±0.049• 0.313±0.041 0.469±0.067• 0.301±0.040
4 0.480±0.077• 0.549±0.071• 0.440±0.069• 0.544±0.085• 0.428±0.067
6 0.498±0.049• 0.568±0.042• 0.460±0.046• 0.557±0.056• 0.449±0.046

rcvsubset2-2

0 0.435±0.016• 0.694±0.036• 0.350±0.014• 0.686±0.091• 0.311±0.018
8 0.585±0.018• 0.758±0.023• 0.516±0.024• 0.731±0.081• 0.482±0.028

12 0.609±0.021• 0.767±0.025• 0.544±0.024• 0.739±0.077• 0.511±0.025
16 0.632±0.017• 0.776±0.023• 0.571±0.019• 0.752±0.074• 0.537±0.021
20 0.640±0.012• 0.781±0.017• 0.584±0.016• 0.753±0.071• 0.555±0.014

bibtex

0 0.498±0.029• 0.832±0.016• 0.486±0.043• 0.611±0.037• 0.281±0.039
5 0.489±0.039• 0.824±0.018• 0.467±0.047• 0.589±0.033• 0.274±0.039
8 0.491±0.038• 0.824±0.016• 0.472±0.054• 0.585±0.037• 0.279±0.042

11 0.499±0.039• 0.827±0.011• 0.481±0.056• 0.592±0.032• 0.286±0.046
14 0.500±0.024• 0.824±0.013• 0.482±0.036• 0.589±0.025• 0.287±0.037

16


	Introduction
	Related Work
	The Slan Approach
	Problem Formulation
	Structural Information Discovery
	Sub-Labeling Information Enrichment
	MLL Classifier Training
	Alternative Optimization

	Experiments
	Experimental Setup
	Experimental Results
	Parameter Sensitivity Analysis

	Conclusion
	Appendix 



