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Abstract

Multi-label learning deals with ambiguous examples
each may belong to several concept classes simultane-
ously. In this learning framework, the inherent ambigu-
ity of each example is explicitly expressed in the out-
put space by being associated with multiple class la-
bels. While on the other hand, its ambiguity is only
implicitly encoded in the input space by being repre-
sented by only a single instance. Based on this recog-
nition, we hypothesize that if the inherent ambiguity
can be explicitly expressed in the input space appropri-
ately, the problem of multi-label learning can be solved
more effectively. We justify this hypothesis by propos-
ing a novel multi-label learning approach named INS-
DIF. The core of INSDIF is instance differentiation that
transforms an example into a bag of instances each of
which reflects the example’s relationship with one of
the possible classes. In this way, INSDIF directly ad-
dresses the inherent ambiguity of each example in the
input space. A two-level classification strategy is em-
ployed to learn from the transformed examples. Appli-
cations to automatic web page categorization, natural
scene classification and gene functional analysis show
that our approach outperforms several well-established
multi-label learning algorithms.

Introduction

Multi-label learning problems widely exist in real-world ap-
plications. For instance, in text categorization, each docu-
ment may belong to several predefined topics, such as gov-
ernment and health (McCallum 1999; Schapire & Singer
2000); in functional genomics, each gene may be associated
with a set of functional classes, such as metabolism, tran-
scription and protein synthesis (Elisseeff & Weston 2002);
in scene classification, each scene image may belong to sev-
eral semantic classes, such as beach and urban (Boutell et
al. 2004). When solving these multi-label learning prob-
lems, each example (a real-world object) in the training set
is represented by a single instance associated with a set of
labels, and the task is to output a label set whose size is un-
known a priori for the unseen example.

It is obvious that multi-label learning deals with am-
biguous objects, i.e., objects which have different semantic
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meanings simultaneously if they are viewed from different
aspects. Previous approaches to multi-label learning mainly
include decomposing the task into multiple independent
binary classification problems each for a class (Joachims
1998; Yang 1999), considering the ranking quality among
labels (Schapire & Singer 2000; Crammer & Singer 2002;
Elisseeff & Weston 2002; Zhang & Zhou 2006) and explor-
ing the class correlation (McCallum 1999; Ueda & Saito
2003; Ghamrawi & McCallum 2005; Yu, Yu, & Tresp 2005;
Zhu et al. 2005; Liu, Jin, & Yang 2006). A common char-
acteristic of these methods is that they only deal with the
ambiguity of objects in the output space (label space), i.e.,
they only exploit the information conveyed by the multiple
labels of each example.

In this paper, we propose a new solution to multi-label
learning by considering the ambiguity of objects in the input
space (instance space). We assume that the reason for an
object belonging to several semantic classes simultaneously
is essentially due to the diverse information embodied in the
object. For instance, a document being labeled with topics
government and health must contain sentences or sections
describing information about government and health respec-
tively; a natural scene image being labeled with types beach
and urban must contain sub-images characterizing informa-
tion about beach and urban respectively. However, in multi-
label learning, this diverse information is only encoded in a
single instance representing the object. Therefore, we expect
that if the ambiguous object can be properly represented by
a bag of instances instead of a single instance, where each
instance in the bag explicitly reflects some information con-
tained in the object from a certain aspect, a more effective
solution to the task of multi-label learning may be yielded.

Based on the above recognition, a two-stage algorithm,
INSDIF, which is based on instance differentiation, is pro-
posed. In the first stage, INSDIF transforms each example
into a bag of instances in order to explicitly express the am-
biguity of the example in the input space. Briefly, for each
possible class c;, a prototype vector v; is calculated by av-
eraging all the instances belonging to ¢;. After that, each
example t is re-represented by a bag of instances each of
which equals t — vy, i.e. the difference between the example
and the prototype vector of class ¢;. In the second stage, a
two-level classification strategy is utilized to learn from the
transformed data set. Applications to three real-world tasks



show that INSDIF achieves better performance than several
well-established multi-label learning algorithms.

We start the rest of this paper by briefly reviewing related
works on multi-label learning. Then, we propose the INSDIF
approach and report on the applications to automatic web
page categorization, natural scene classification and gene
functional analysis, which is followed by conclusion.

Multi-Label Learning

Let X = R? denote the input space and ) =
{1,2,...,Q} denote the finite set of possible labels, re-
spectively. Given a multi-label training set S = {(x1, Y1),
(x2,Y2), ..., (xn, YN)}, where x; € X is a single instance
and Y; C Y is the label set associated with x;, the goal of
multi-label learning is to learn a function h : X — 2% from
S which predicts a set of labels for an unseen example.

Traditional two-class and multi-class problems can both
be cast into multi-label problems by restricting that each in-
stance has only one label. On the other hand, the general-
ity of multi-label problems inevitably makes it more diffi-
cult to address. An intuitive approach to solving multi-label
problems is to decompose it into multiple independent bi-
nary classification problems (one per class). However, this
kind of method does not consider the correlation between the
different labels of each instance and the expressive power
of such a system could be weak (Elisseeff & Weston 2002;
McCallum 1999; Schapire & Singer 2000).

Majority studies on multi-label learning focus on text cat-
egorization. Most of the multi-label text categorization al-
gorithms were derived from traditional learning techniques
such as probabilistic generative models (McCallum 1999;
Ueda & Saito 2003), boosting methods (Schapire & Singer
2000), decision trees (Comité, Gilleron, & Tommasi 2003),
maximum entropy methods (Ghamrawi & McCallum 2005;
Zhu et al. 2005), bayes decision rules (Gao et al. 2004),
neural networks (Crammer & Singer 2002; Zhang & Zhou
2006), k-nearest neighbor methods (Zhang & Zhou 2007),
and maximal margin methods (Godbole & Sarawagi 2004;
Kazawa et al. 2005). Several studies aim to improve the
performance of text categorization systems by exploiting ad-
ditional information given by the hierarchical structure of
classes (Cai & Hofmann 2004; Rousu et al. 2005) or unla-
beled data (Liu, Jin, & Yang 2006).

In addition to text categorization, multi-label learning
has also manifested its effectiveness in many other real-
world applications, such as bioinformatics (Clare & King
2001; Elisseeff & Weston 2002; Brinker, Fiirnkranz, &
Hiillermeier 2006; Barutcuoglu, Schapire, & Troyanskaya
2006; Brinker & Hiillermeier 2007), scene classification
(Boutell et al. 2004), and association rule mining (Thabtah,
Cowling, & Peng 2004; Rak, Kurgan, & Reformat 2005).
It is worth noting that although most works on multi-label
learning assume that an instance is associated with multiple
valid labels, there is also a study that assumes that only one
of the labels associated with an instance is correct (Jin &
Ghahramani 2003).

The INSDIF Approach

As stated before, in multi-label learning, although the in-
herent ambiguity of the object is explicitly expressed in the
output space by having multiple labels, it is vaguely implied
in the input space by having only a single instance. In this
section, we propose to explicitly express the ambiguity in
the input space by automatically transforming the single in-
stance representation into a bag representation. After that,
the induced learning problem is solved by a two-level clas-
sification method.

In the first stage, INSDIF computes a prototype vector v;
for each class ¢; by averaging all the instances in the training
set which belong to ¢;:

v = (ZX-GUZ xi> /|Ut], where
Ur={xil{x;,Yi} € S, leYi}, 1€ )

Here v; can be approximately regarded as a profile-style
vector describing common characteristics of class ¢;. Ac-
tually, this kind of prototype vectors have already shown
their effectiveness in solving text categorization problems.
Specifically, the ROCCHIO method (Ittner, Lewis, & Ahn
1995; Sebastiani 2002) forms a prototype vector for each
class by averaging all the documents (represented by weight
vectors) of this class, and then classifies the test document by
calculating the dot-products between the weight vector rep-
resenting the document and each of the prototype vectors. In
this paper, this kind of prototype vectors are also utilized to
facilitate bag generation. After acquiring prototype vectors,
each example x; is re-represented by a bag of instances B;,
where each instance in B; is just the difference between x;
and one prototype vector:

Bi:{Xi—V”lEy} 2

In this way, each example is transformed into a bag whose
size equals to the number of possible classes.

In fact, such a process attempts to exploit the spatial dis-
tribution since x; — v; in Eq. 2 is a kind of distance between
x; and v;. The transformation can also be realized in other
ways. For example, other than referring to the prototype vec-
tor of each class, maybe we can go with the following way:
For each possible class ¢;, identify the k-nearest neighbors
of x; among training instances with class ¢;. Then, the mean
vector of these neighbors can be regarded as an instance in
the bag. Note that the transformation of a single instance to a
bag of instances can be realized as a general pre-processing
method that can be plugged into many machine learning sys-
tems.

In the second stage, INSDIF learns from the transformed
training set ™ = {(B1,Y1),(Be,Y2),...,(Bn,YN)}.
Actually, this kind of learning problem falls into the recently
proposed learning framework of multi-instance multi-label
learning (Zhou & Zhang 2007), where each example is as-
sociated with not only multiple instances but also multiple
class labels. So, the two-level learning process used in INS-
DIF can also be regarded as a new multi-instance multi-label
learning method.

The idea of pre-processing examples before learning has
also been employed by the constraint classification (CC)



method (Har-Peled, Roth, & Zimak 2003). In this method,
label information of each example is encoded by a set of
constraints each of which specifies the relative order be-
tween a pair of classes for this example. There are two main
differences between the pre-processing schemes used by
INSDIF and CC. Firstly, for INSDIF, each example is trans-
formed into a fixed number (i.e. Q) of instances each is with
dimensionality d; While for CC, the number of instances
transformed from each example is decided by the number of
the constraints, and each instance is with dimensionality Qd.
Secondly, for INSDIF, the induced learning problem after
transformation is in fact solved by a multi-instance multi-
label learner; While for CC, the induced learning problem
after transformation can be solved by any binary classifier.
Figure 1 shows the two-level classification structure
employed by INSDIF. Input to the structure is a bag
B consisting of n instances {bi,bs,...,b,}, where
each instance b, is a d-dimensional feature vector
[br1,bra, ..., bra|T. Outputs of the structure consist of
@ real values {y1,¥2,...,y¢o}, where each output y; cor-
responds to a label [ € ). The first level is composed
of M bags {C1,C5,...,Cu}, where each bag C; is the
medoid of group G;. Here {G1,G>, ..., Gy} partition the
transformed training set into disjoint groups of bags with

U?il Gj = {Bl, BQ, ‘e ,BN} and Gz r]?#j Gj = (Z] The
second level weights W = [w,;]arx g connect each medoid
C} in the first level to each output y;.

outputs

input bag B

Figure 1: Two-level classification structure used by INSDIF

Firstly, by regarding each bag as an atomic object, the
popular k-medoids algorithm is adapted to cluster the trans-
formed training set into M disjoint groups of bags. In this
paper, we employ Hausdorff distance (Edgar 1995) to mea-
sure distance between bags. Formally, given two bags of
instances A = {aj,...,a,,} and B = {by,...,by,}, the
Hausdorff distance between A and B is defined as:

H(A, B) = max{max min ||a — b||, maxmin||b — a||}
acA beB beB acA

where ||a — b|| measures the distance between instances
a and b, which takes the form of Euclidean distance here.
Note that categorical data can be processed by adopting ap-
propriate distance metric, such as the Value Difference Met-
ric (VDM) (Stanfill & Waltz 1986).

Y = INSDIF(S, M, z)

Inputs:

S : the multi-label training set {(x1,Y17),..., (xn,Yn)}

M : the number of medoids in the first level

z : the test example (z € X)

Outputs:

Y : the predicted label set forz (Y C ))

Process:

1 Compute prototype vectors v; (I € V) using Eq. 1;

2 Form the new training set S™*" by transforming each x;
into a bag of instances B; using Eq. 2;

3 Cluster {By, Bs,..., By} into M partitions using k-
medoids algorithm combined with Hausdorff distance;

4 Determine medoid C; of each partition using Eq. 3;

5 Compute second layer weights W by solving Eq. 5
using singular value decomposition;

6 Transform z into a bag of instances Z using Eq. 2;

7Y ={lly(2) = X)L wi;(Z) >0, L€ V}.

Figure 2: Pseudo-code of INSDIF

After the clustering process, the transformed training set
is divided into M partitions whose medoids C; (1 < j <
M) are determined as:

C; = arg jrlin H(A, B) 3)

€G; BeGj

Since clustering could help find the underlying structure
of a data set, the medoid of each group may encode some
distributional information of different bags. With the help
of these medoids, each bag B can be converted into an
M -dimensional feature vector [¢1(B), ¢2(B), ..., oar (B)]*
with ¢;(B) = H(B, C;). The second level weights W =
[wji]mrx ¢ are optimized by minimizing the following sum-
of-squares error function:

1 N Q _
E=5Y . > twB)-d}? @

where y,(B;) = Z;L; w;1¢;(B;) is the actual output of the
structure on B; on the [-th class, and df is the desired output
of B; on the [-th class which takes the value of +1 if [ € Y;
and -1 otherwise. Differentiating the objective function in
Eq. 4 with respect to w;; and setting the derivative to zero
gives the normal equations for the least-squares problem as
follows:

(®T®)W = @TT (5)
Here @ = [¢;;]nx s is with elements ¢;; = ¢;(B;) and
T = [tu]nxq is with elements ¢; = dj. In this paper,

the second layer weights W are computed by solving Eq. 5
using singular value decomposition (Press ef al. 1992).

In summary, Figure 2 gives the complete description of
our two-stage approach to multi-label learning. In the first
stage (steps 1 to 2), INSDIF aims to explicitly express the
ambiguity in the input space, where each example is trans-
formed into a bag of instances by querying the class proto-
type vectors. In the second stage (steps 3 to 5), a two-level



Table 1: Experimental results (mean=std.) of the compared algorithms on the web page data sets. For each evaluation criterion,
“|” indicates “the smaller the better” while “1” indicates “the bigger the better”.

Evaluation Algorithm

Criterion INSDIF BOOSTEXTER ADTBOOST.MH RANK-SVM CNMF BsvMm
Hamming Loss 1 0.0394+0.013 0.046+0.016 0.04340.013 0.0434+0.014 N/A 0.04240.015
One-error * 0.3814+0.118  0.446+0.139 0.4614+0.137 0.4404+0.143 0.509+0.142 0.375+0.119
Coverage 4 454541285 4.2134+1.313 4.083+1.191 7.5084+2.396 6.717+1.588 6.919+1.767
Ranking Loss ! 0.1024+0.037  0.1034+0.040 N/A 0.1934+0.065 0.171+0.058 0.168+0.047
Average Precision I 0.686+0.091  0.638+0.108 0.63240.105 0.6054+0.117 0.561+0.114 0.660-+0.093

classification strategy is used to learn from the transformed
data. Finally, the test example is firstly transformed into the
bag representation (step 6) and then fed to the learned clas-
sification structure for prediction (step 7).

Applications

We compare INSDIF with several state-of-the-art multi-label
learning algorithms on three real-world applications. The
compared algorithms include BOOSTEXTER (Schapire &
Singer 2000), ADTBOOST.MH (Comité, Gilleron, & Tom-
masi 2003), RANK-SVM (Elisseeff & Weston 2002) and a
transductive style algorithm CNMF (Liu, Jin, & Yang 2006).
Moreover, BsvM, which works by decomposing the multi-
label learning problem into a set of binary classification
problems, is also evaluated.

For INSDIF, the parameter M as shown in Figure 2 is set
to be 20% of the size of training set. ! For BOOSTEXTER?
and ADTBOOST.MH?, the number of boosting rounds is set
to be 500 and 50 respectively as in this paper, the perfor-
mance of these two algorithms do not significantly change
after the specified boosting rounds. For RANK-SVM and
CNMF, the best parameters reported in (Elisseeff & Weston
2002) and (Liu, Jin, & Yang 2006) are used. For BSVM, lin-
ear kernel SVM/8M 4 ith default parameters are used as
the base binary classifiers.

Automatic Web Page Categorization

The first multi-label task studied in this paper is the spe-
cific text categorization problem of WWW page catego-
rization, which has been studied in (Ueda & Saito 2003;
Kazawa et al. 2005; Zhang & Zhou 2007). Web pages were
collected from the “yahoo.com” domain and then divided
into 11 data sets based on Yahoo’s top-level categories. Af-
ter that, each page is classified into a number of Yahoo’s
second-level subcategories. Each data set contains 2,000
training documents and 3,000 test documents, where a large
portion of them (about 20% ~ 45%) are multi-labeled over

'In preliminary experiments, several percentage values have
been tested ranging from 20% to 80% with an interval of 10%.
The results show that these values do not significantly affect the
performance of our approach.

Zhttp://www.cs.princeton.edu/ schapire/boostexter.html.

*http://www.grappa.univ-lille3.fr/grappa/index.php3?info=
logiciels.

*http:/svmlight joachims.org

the 11 data sets. Detailed descriptions of these 11 data sets
can be found in (Zhang & Zhou 2007).

As shown in Table 1, the performance of the compared
algorithms are evaluated according to five multi-label eval-
uation metrics, whose details can be found in (Schapire &
Singer 2000). The best result on each evaluation criterion is
highlighted in bold face.’

Table 1 shows that INSDIF performs quite well on almost
all the evaluation criteria. Pairwise ¢-tests at 0.05 signifi-
cance level reveal that INSDIF is only inferior to BSVM in
terms of one-error and inferior to BOOSTEXTER and ADT-
BOOST.MH in terms of coverage. On the other hand, INS-
DIF is comparable to BOOSTEXTER and is superior to the
rest algorithms in terms of ranking loss. More impressively,
INSDIF outperforms all the other algorithms in terms of
hamming loss and average precision.

Natural Scene Classification

The second multi-label task studied in this paper is natu-
ral scene classification. The data set consists of 2,000 natu-
ral scene images belonging to the classes desert, mountains,
sea, sunset, and trees. Over 22% images belong to mul-
tiple classes simultaneously and each image is associated
with 1.24 class labels on average. Detailed description of the
number of images associated with different label sets can be
found in (Zhang & Zhou 2007). Each image is represented
by a feature vector using the same method as in (Boutell et
al. 2004). Concretely, each color image is firstly converted
to the CIE Luv space, which is a more perceptually uniform
color space such that the perceived color differences corre-
spond closely to Euclidean distances in this color space. Af-
ter that, the image is divided into 49 blocks using a 7x 7 grid,
where in each block the first and second moments (mean
and variance) of each band are computed, corresponding to
a low-resolution image and to computationally inexpensive
texture features respectively. Finally, each image is trans-
formed into a 49 x 3 x 2 = 294-dimensional feature vector.

Ten-fold cross-validation is performed on this data set.
Table 2 reports the experimental results of the compared
algorithms with the best result on each evaluation criterion
highlighted in bold face. Pairwise ¢-tests at 0.05 significance
level reveal that, in terms of all evaluation criteria, INSDIF
significantly outperforms BOOSTEXTER and both of which

3Note that hamming loss is not available for CNMF while rank-
ing loss is not provided in the outputs of the ADTBOOST.MH im-
plementation.



Table 2: Experimental results (mean=+std.) of the compared algorithms on the natural scene image data set. For each evaluation
criterion, “|” indicates “the smaller the better” while “|” indicates “the bigger the better”.

Evaluation Algorithm

Criterion INSDIF BOOSTEXTER ADTBOOST.MH RANK-SVM CNMF BsvMm
Hamming Loss 1 0.1524+0.016 0.17940.015 0.1934+0.014 0.25340.055 N/A 0.20240.015
One-error * 0.2594+0.030 0.3114+0.041 0.3754+0.049 0.4914+0.135 0.635+0.049 0.388+0.038
Coverage 4 0.8344+0.091 0.939+0.092 1.10240.111 1.3824+0.381 1.7414+0.137 1.066+0.093
Ranking Loss ! 0.140+0.018 0.168+0.020 N/A 0.2784+0.096 0.370+0.032 0.196+0.022
Average Precision | 0.8304+0.019  0.798+0.024 0.75540.027 0.6824+0.092 0.585+0.030 0.753+0.025

Table 3: Experimental results (mean4std.) of the compared algorithms on the Yeast data set.
indicates “the smaller the better” while “|” indicates “the bigger the better”.

For each evaluation criterion, ““|”

Evaluation Algorithm

Criterion INSDIF BOOSTEXTER ADTBOOST.MH RANK-SVM CNMF BsvMm
Hamming Loss 1 0.1894+0.010 0.22040.011 0.207£0.010 0.207+0.013 N/A 0.199+0.009
One-error + 0.2144+0.030 0.278+0.034 0.24440.035 0.243+£0.039 0.354+0.184 0.227£0.032
Coverage ' 6.288+0.240 6.55040.243 6.390+0.203 7.090+£0.503 7.930+£1.089 7.220+£0.338
Ranking Loss ! 0.163+0.017 0.18640.015 N/A 0.1954+0.021 0.268+0.062 0.201+0.019
Average Precision | 0.77440.019  0.73740.022 0.74440.025 0.74940.026  0.668+0.093 0.749+0.021

are far superior to ADTBOOST.MH, RANK-SVM, CNMF and Conclusion

BsvM. It is also worth noting that CNMF performs quite
poorly compared to other algorithms. The reason may be
that the key assumption of CNMF, i.e. two examples with
high similarity in the input space tend to have large overlap
in the output space, does not hold on this image data set due
to the big gap between low-level image features and high-
level image semantics.

Yeast Gene Functional Analysis

The third multi-label task studied in this paper is to predict
the gene functional classes of the Yeast Saccharomyces cere-
visiae, which is one of the best studied organisms. Specifi-
cally, the Yeast data set investigated in (Elisseeff & Weston
2002) is used. Each gene is described by the concatenation
of micro-array expression data and phylogenetic profile and
is associated with a set of functional classes whose maxi-
mum size can be potentially more than 190. Actually, the
whole set of functional classes is structured into hierarchies
up to 4 levels deep. In this paper, as what has been done in
(Elisseeff & Weston 2002), only functional classes in the top
hierarchy are considered. The resulting multi-label data set
contains 2,417 genes each represented by a 103-dimensional
feature vector. There are 14 possible class labels and the av-
erage number of labels for each gene is 4.24 4 1.57.

Ten-fold cross-validation is conducted on this data set. As
shown in Table 3, pairwise t-tests at 0.05 significance level
disclose that INSDIF performs fairly well in terms of all
evaluation criteria, where on all these metrics INSDIF sig-
nificantly outperforms all the other algorithms. Similarly as
in nature scene classification, CNMF doesn’t perform well
as the basic assumption under this method may not hold on
this gene data set.

In multi-label learning, the ambiguity of examples is explic-
itly expressed in the output space by associating an example
with multiple labels. In this paper, we propose a new so-
lution to multi-label learning, which attempts to explicitly
express the ambiguity of examples in the input space such
that the relationship between input and output ambiguities
can be exploited. In the first stage, our approach transforms
each example into a bag of instances, where each instance
in the bag corresponds to the difference between this exam-
ple and the prototype vector of a class. In the second stage,
a two-level classification strategy is employed to learn from
the transformed data set. Applications to three real-world
multi-label tasks show that our approach achieves signifi-
cant better results than several well-established multi-label
learning algorithms. Investigating other ways to exploit the
relationship between the input ambiguity and output ambi-
guity is an interesting issue for future work.
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