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Abstract Representation learning is one of the most important aspects of multi-label
learning because of the intricate nature of multi-label data. Current researches of rep-
resentation learning either fail to consider label knowledge or are weakened by the
lack of labeled data. Moreover, most of them learn the representations and incorpo-
rate the label information in a two-step manner. In this paper, due to the success of
representation learning by deep learning we propose a novel neural networks based
framework named SERL to learn global feature representation by jointly consider-
ing all labels in an effective supervised manner. At its core, a two-encoding-layer
autoencoder, which can utilize labeled and unlabeled data, is adopted to learn fea-
ture representation in the supervision of softmax regression. Specifically, the softmax
regression incorporates label knowledge to improve the performance of both repre-
sentation learning and multi-label learning by being jointly optimized with the au-
toencoder. Moreover, the autoencoder is expanded into two encoding layers to share
knowledge with the softmax regression by sharing the second encoding weight ma-
trix. We conduct extensive experiments on five real-world datasets to demonstrate the
superiority of SERL over other state-of-the-art multi-label learning approaches.
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1 Introduction

Multi-label learning, which deals with the problem where one object may be associ-
ated with one or more labels, has attracted extensive researches in the past decades [20].
Different from single-label problem where binary class and multi-class classification
hold, multi-label learning could model the world more exactly. Besides, multi-label
learning has widespread applications such as news classification and image process-
ing [1]. For example, one news may belong to multiple topics such as politics and
economy because it reports new policies on bank rate. A scenery picture, as a more
familiar example, may contain sky, road, cornfield and so on, where they can be
viewed as with multiple labels.

Traditionally in multi-label learning, the problem transformation method trans-
formed the multi-label dataset to a series of single label datasets [31], such as the
binary relevance method [21] and the label powerset method [22]. This kind of meth-
ods neglect the fact that some labels are more likely to co-exist in one instance, which
is the main focus of many recent multi-label works. Therefore, in order to parame-
terize the label correlations, Ghamrawi et al. [7] proposed a multi-label classifier in
conditional random field by modeling the label co-occurrences explicitly. Zhang et
al. [28] utilized a bayesian network structure to encode the conditional dependencies
of the labels and the feature set. Nguyen et al. [13] proposed a bayesian nonparamet-
ric approach to automatically learn the number of label-feature correlation patterns.
However, most existing multi-label methods utilized the raw instance data to for-
malize the model, which might contain non-helpful feature attributes from the input
space prior to training. Hence, learning better feature representation is important for
the multi-label learning.

There exist some related works on multi-label learning classifiers based on repre-
sentative features [33,15,27]. MMDM [33] discovers a low-dimension feature space
which maximizes the dependence between the original features and the correspond-
ing labels. LIFT [27] uses clustering techniques to construct label-specific features for
each label and then solves binary classification problems based on the transformed
features. MLFE [32] utilizes the structural information in feature space to enrich the
labeling information. However, these works either learn representative features with-
out considering label knowledge or suffer from the lack of labeled data. Recently,
deep learning has proven to be able to learn good representation in natural language
processing, image classification, and so on. And some effort has been devoted to han-
dling multi-label learning problem to improve the performance. Read et al. [15] used
restricted boltzmann machine (RBM) to get a better representation of the original
features, and then applied the supervised learning algorithms to training classification
models. However, they performed the optimization framework in a two-step manner,
while we try to learn the representation and incorporate label knowledge in a joint
optimization framework.

To address these issues, we propose a novel framework named SERL (SupErvised
RepresentationLearning for multi-label classification) in this paper. SERL adopts a
two-encoding-layer autoencoder to learn better representation of the original features
in the supervision of softmax regression. Specially, the softmax regression incorpo-
rates label knowledge to improve the performance of both representation learning
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and multi-label learning by being jointly optimized with the autoencoder, where the
autoencoder can sufficiently utilize labeled and unlabeled data to learn nonlinear rep-
resentation of the original features. In addition, the autoencoder is expanded into two
encoding layers to share knowledge with the softmax regression by sharing the sec-
ond encoding weight matrix. We evaluate the proposed approach on five real-world
datasets and observe the effectiveness of SERL that it can outperform the compared
state-of-the-art algorithms significantly. The contribution of this paper is summarized
as follows.

– We propose an autoencoder based framework (SERL) to discover latent knowl-
edge of the original features by jointly considering all labels in an effective su-
pervised manner.

– The autoencoder learns representation from labeled and unlabeled data in the su-
pervision of the softmax regression. Moreover, the autoencoder shares knowledge
with softmax regression by sharing the second encoding weight matrix.

– We conduct extensive experiments on five real-world datasets to demonstrate the
superiority of the proposed method over other state-of-the-art algorithms.

The remainder of this paper is organized as follows. Section 2 introduces the pre-
liminary knowledge. The framework and its solution are detailed in Section 3. The
experimental results are reported in Section 4. Section 5 discusses the related work
and finally Section 6 concludes.

2 Preliminary Knowledge

2.1 Softmax Regression

Softmax regression which is often used to solve the problem of multi-class classifi-
cation can be regarded as the generalization of the logistic regression. When given a
test inputx, softmax regression estimates the probability of each label (label space
y ∈ {1, 2, ..., k}) by the hypothesis function as follows,
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The objective function of softmax regression can be described as follows,

min
θ


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>
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 , (2)

where the indicator function1{∙} equals 1 whenxi holds labelj and equals 0 oth-
erwise. Given training dataset{xi, yi}ni=1 (yi ∈ {1, 2, ..., k}), the model parameter
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θ can be derived by minimizing Eq. (2). After training, the probability of each label
can be computed using Eq. (1), then the predicted label can be assigned as follows,

y = max
j

eθ
>
j x

∑k
l=1 eθ

>
l x

. (3)

2.2 Autoencoder

Autoencoder, which is a neural network, uses unsupervised learning method to learn
compressed features from original features. A multi-layer autoencoder comprises one
input layer, one output layer, and several hidden layers. The aim of the autoencoder is
to reconstruct the input signal in the output layer with the least amount of distortion.
A simple autoencoder consists of two parts, that is, an encoder including the input
layer and hidden layer and a decoder including the hidden layer and output layer.
Given an inputxi ∈ Rd×1, weight matrixW1 ∈ Rk×d, W

′

1 ∈ R
d×k, and bias vector

b1 ∈ Rk×1, b
′

1 ∈ R
d×1, a single hidden layer autoencoder encodes it into the hidden

layerξi ∈ R
k×1 and decodes the hidden layer into the output layerx̂i which is as

same as possible with the input layer. This process can be described as,

ξi = f(W1xi + b1), x̂i = f(W
′

1ξi + b
′

1). (4)

Here we use the sigmoid function as the activation functionf . Given a set of inputs
{xi}ni=1, the goal of autoencoder is to minimize the reconstruction error using L2
regularization as follows,

min
W1,b1,W

′
1 ,b

′
1

n∑

i=1

‖x̂i − xi‖
2. (5)

3 The SERL Framework

In this section, we present our proposed framework in detail and the symbols used
are listed in Table 1.

3.1 Problem Formalization

The proposed framework is composed of a two-encoding-layer autoencoder and soft-
max regression as shown in Fig 1. The two components are jointly optimized and
they share the second encoding weight matrixW2. Given multi-label training dataset
Dr = {(x(r)

i , Y
(r)
i )|1 ≤ i ≤ nr} and test datasetDs = {(x(s)

i , Y
(s)
i )|1 ≤ i ≤ ns},

wherex
(r)
i , x

(s)
i ∈ Rd×1 andY

(r)
i , Y

(s)
i ⊆ Y (Y = {1, 2.., c}) are sets of relevant

labels associated withx(r)
i , x

(s)
i respectively. The objective function can be described

as follows,

J =
∑

t∈{r,s}

J(x(t), x̂(t)) + αL(θ, ξ(r)) + βΩ(W , b, W
′

, b′). (6)
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Table 1: Notations and Denotations

Dr , Ds The training and testdataset
nr The number of instances in trainingdataset
ns The number of instances in testdataset
d The number of nodes in the inputlayer
k The number of nodes in the embeddinglayer
c The number of nodes in the label layer,

also the number oflabels

x
(r)
i , x(s)

i Thei-th instance of training and testdataset

x̂
(r)
i , x̂(s)

i The reconstructions ofx(r)
i andx(s)

i

Y
(r)
i , Y

(s)
i The label sets of instancex(r)

i andx(s)
i

ξ
(r)
i , ξ(s)i The hidden representations ofx(r)

i andx(s)
i

ξ̂
(r)
i , ξ̂(s)i The reconstructions ofξ(r)

i andξ(s)i

z
(r)
i , z(s)i The hidden representations ofξ(r)

i andξ(s)i
Wi, bi Encoding weight and bias matrix for layeri

W
′

i , b
′

i Decoding weight and bias matrix for layeri
> The transposition of amatrix
◦ The element-wise product of vectors or matrixes

Fig. 1: The Framework of SERL

whereJ is the loss of autoencoder,L is the loss of softmax regression,Ω is the
regularization term,α andβ are trade-off parameters for the whole framework.W , b
include all the parameters for encoding, andW

′
, b′ represent the ones for decoding.
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There are three terms in Eq. (6). In the first termJ(x(t), x̂(t)), the reconstruction
error is calculated for both training and test datasets, and it is defined as follows,

J(x(t), x̂(t)) =
∑

t∈{r,s}

nt∑

i=1

||x(t)
i − x̂

(t)
i ||

2, (7)

where

ξ
(t)
i = f(W1x

(t)
i + b1), z

(t)
i = f(W2ξ

(t)
i + b2), (8)

ξ̂
(t)
i = f(W

′

2z
(t)
i + b

′

2), x̂
(t)
i = f(W

′

1 ξ̂
(t)
i + b

′

1). (9)

There are three hidden layers in our framework. The first one called the embedding
layer hask nodes (k ≤ d) with outputξ(t)

i ∈ R
k×1, weight matrixW1 ∈ Rk×d, and

bias vectorb1 ∈ Rk×1. The second one called the label layer hasc nodes (equals
to the number of labels) with outputz(t)

i ∈ Rc×1, weight matrixW2 ∈ Rc×k and
bias vectorb2 ∈ Rc×1. The input of the label layer is also the input of the softmax
regression which incorporates label knowledge. The third one is the reconstruction
of the embedding layer with output̂ξ

(t)
i , weight matrixW

′

2 ∈ R
k×c and bias vector

b
′

2 ∈ R
k×1. The output layer is the reconstruction of inputx

(t)
i with outputx̂(t)

i ∈
Rd×1, weight matrixW

′

1 ∈ R
d×k and bias vectorb

′

1 ∈ R
d×1.

The second term in the objective Eq. (6) is the optimization of softmax regression,
which incorporates the label knowledge from training data. Note here that the autoen-
coder is expanded into two encoding layers to share the second encoding weight ma-
trix W2 with the softmax regression, which aims to share knowledge with the softmax
regression.

Here we try to use the softmax regression to handle multi-label data. The ba-
sic idea is to transform the multi-label data to multi-class data. Letσ : (xi, Yi) →
{(xi, yj)|yj ∈ Yi} be the function which converts a (instance, labels) pair into a
set of (instance, label) pair where each (instance, label) pair contains only one la-
bel. For example, suppose we have one instancexi with labelsy1, y2, y4. σ con-
verts(x1, {y1, y2, y4}) to (x1, y1), (x1, y2), (x1, y4). In the training phase, we firstly
converts the original multi-label training datasetDr into the following multi-class
training datasetD†

r by σ as follows,

D†
r = {σ(xi, Yi)|1 ≤ i ≤ nr}. (10)

After that, softmax regressionM is utilized to induce multi-class classifierg† : X →
Y , i.e., g† ← M(D†

r) (X ∈ Rd×1, Y = {1, 2, ..., c}). The objective function of
softmax regression can be formalized as follows,

L(θ, ξ(r)) = −
1
nr

nr∑

i=1

c∑

j=1

1{y(r)
i = j} log

eθ
>
j ξ

(r)
i

∑c
l=1 eθ

>
l ξ

(r)
i

.

In this term,ξ(r)
i is the output of the embedding layer andθ>

j (j ∈ {1, ..., c}) is
thej-th row ofW2 which is also the second encoding weight matrix of autoencoder.
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Finally, the last term in the objective Eq. (6) is the regularization on model param-
eters which controls the complexity of the framework to improve its generalization
ability. The last term is defined as follows,

Ω(W , b, W
′

, b′) = ‖W1‖
2+‖b1‖

2 + ‖W2‖
2 + (11)

‖b2‖
2 + ‖W

′

1‖
2+‖b

′

1‖
2 + ‖W

′

2‖
2 + ‖b

′

2‖
2.

3.2 Solution of the Proposed Framework

The optimization problem of our proposed framework is to minimizeJ (seen in
Eq. (6)) as a function ofW1, b1, W2, b2, W

′

2, b
′

2, W
′

1 and b
′

1. This is an un-
constrained optimization problem and therefore we can adopt the gradient descent
method to solve it.

We first introduce some intermediate variables for simplicity as follows,

A
(t)
i =

(
x̂

(t)
i − x

(t)
i

)
◦ x̂

(t)
i ◦

(
1− x̂

(t)
i

)
, (12)

B
(t)
i = ξ̂

(t)
i ◦

(
1− ξ̂

(t)
i

)
,

C
(t)
i = z

(t)
i ◦

(
1− z

(t)
i

)
, D

(t)
i = ξ

(t)
i ◦

(
1− ξ

(t)
i

)
.

The partial derivatives ofW1, W2, W
′

2, W
′

1 are as follows respectively,

∂J

∂W1
=

∑

t∈{r,s}

nt∑
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2W>
2 (W
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2 (W
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1 A

(t)
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(t)
i ) ◦ C

(t)
i ) ◦ D

(t)
i x

(t)>
i

−
α

nr

nr∑

i=1

c∑

j=1

1{y(r)
i = j}(W>

2j −
W>

2 eW2ξ
(r)
i

∑
l eW2lξ

(r)
i

) ◦ D
(r)
i x

(r)>
i

+ 2βW1,

∂J

∂W2j
=

∑

t∈{r,s}

nt∑

i=1

2W
′>
2j (W

′>
1 A

(t)
i ◦ B

(t)
i ) ◦ C

(t)
ij ξ

(t)>
i (13)

−
α

nrj
(

nrj∑

i=1

ξ
(r)>
i −

nr∑

i=1

eW2jξ
(r)
i

∑
l eW2lξ

(r)
i

ξ
(r)>
i ) + 2βW2j ,

∂J

∂W
′

2

=
∑

t∈{r,s}

nt∑

i=1

2W
′>
1 A

(t)
i ◦ B

(t)
i z

(t)>
i + 2βW

′

2 , (14)

∂J

∂W
′

1

=
∑

t∈{r,s}

nt∑

i=1

2A
(t)
i ξ̂

(t)>
i + 2βW

′

1 , (15)
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whereW2j is thej-th row ofW2 andnrj is the number of instance associated with
labelj in training dataset. According to the above partial derivatives, we update the
parameters by alternatively iterating following those rules,

W1 ←W1 − η
∂J

∂W1
, b1 ← b1 − η

∂J
∂b1

,

W
′

1 ←W
′

1 − η
∂J

∂W
′

1

, b
′

1 ← b
′

1 − η
∂J
∂b

′

1

,

W2 ←W2 − η
∂J

∂W2
, b2 ← b2 − η

∂J
∂b2

,

W
′

2 ←W
′

2 − η
∂J

∂W
′

2

, b
′

2 ← b
′

2 − η
∂J
∂b

′

2

.

(16)

whereη is step length controlling the learning rate. Finally, the whole algorithm is
summarized in Algorithm 1.

Algorithm 1: SupErvisedRepresentationLearning for multi-label classification
(SERL)

1 Input : Training datasetDr = {(x(r)
i , Y

(r)
i )|1 ≤ i ≤ nr} and test dataset

Ds = {(x(s)
i , Y

(s)
i )|1 ≤ i ≤ ns}, the number of nodes in the embedding layerk and label

layerc, trade-off parametersα, β.

2 Output : The predicted label setY (s)
i of each test instancex(s)

i .
1. Convert training dataset according to Eq. (10);
2. InitializeW1,W2,W

′

2 ,W
′

1 andb1, b2, b
′

2, b
′

1 by SDAE which is trained on both training and test
dataset;

3. Compute the partial derivatives of all variables based on Eqs. (13), (13) (14) and (15);
4. Update the variables iteratively using Eq. (16);
5. Continue Step3 and Step4 until the algorithm converges;
6. Predict the label sets of test instances.

Although the optimization of the objective function is not convex, we can get
a better local optimal solution through appropriate initialization of the weights and
biases. Specifically, we use the Stacked Denosing AutoEncoder (SDAE) to initialize
the values ofW andb.

3.3 Prediction

After training, we use the softmax regression to predict the label set of each test in-
stance. Specifically, we can estimate the probabilityP (y(s)

i = j|x(s)
i ) of one certain

test instance belonging to each label. Then we sort all the label probabilities in de-
scending order and compute the difference between two adjacent label probabilities
in this order. Finally we assign the labels, which are in the front of the position of the
max difference, as the predicted labels of the instance. This process can be described
by Fig 2, wherePi is the probability of one certain test instance belonging to labeli
and4Pj is the probability difference between adjacent labels in the ordered list.
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Fig. 2: The Prediction Strategy

4 Experimental Evaluation

In this section, we conduct extensive experiments on five benchmark multi-label
datasets to evaluate the performance of the proposed framework.

4.1 Datasets and Preprocessing

These five datasets include slashdot, corel5k, bibtex, corel16k01 (sample 1) and
corel16k02 (sample 2) from MULAN [23] and MEKA [17] multi-label learning li-
braries. These datasets can evaluate the proposed framework in different cases in-
cluding text and image. For all the datasets, we randomly sample50% of examples
without replacement to construct training dataset and the remaining50% to construct
test dataset. We sample each dataset for five times and calculate the average accura-
cies. The information of all the datasets is detailed in Table 2, #instances represents
the number of instances, #features represents the feature dimension, #labels repre-
sents the number of labels, and #domains represents the domains of the datasets.

Table 2: Datasets Infomration

Datasets #instances #features #labels #domains
slashdot 3782 1079 22 text
corel5k 5000 499 374 image
bibtex 7395 1836 159 text

corel16k01 13766 500 153 image
corel16k02 13761 500 164 image

4.2 Comparison Methods

We compare our proposed model with seven multi-label algorithms as follows.
• Binary Relevance(BR)[1] This algorithm learnsc independent binary classi-

fiers for each label and queries all the classifiers for prediction.
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•Calibrated Label Ranking(CLR)[6] This algorithm uses pairwise comparison
to decompose the multi-label learning problem into the label ranking problem with
calibrated scenario.
• Random k-Labelsets(RAkEL)[24] This algorithm applies Label Powerset

techniques, which transforms the multi-label learning problem into the multi-class
classification problems, on an ensemble ofk random label subsets.
• Ensemble of Classifier Chains(ECC)[16] This algorithm is an ensemble of

classifier chain algorithm which considers high-order relations among labels repre-
sented in an ordered chain and then trainsc binary classifiers according to the chain.
• Multi-label learning with Label specIfic FeaTures (LIFT)[27] This algo-

rithm conducts clustering analysis on positive and negative instances of each label
to construct its specific features, then applies binary relevance algorithm on label-
specific features of each label.
•Multi-label learning with Stacked Denoising AutoEncoders (SDAE)[25] Here

we use SDAE in a two-step manner to compare with our joint optimization frame-
work. Specially, we first train the autoencoder alone to learn feature representation
and then combine the new features with the labels to construct new training dataset.
Finally, we use Bayesian Multinomial Regression(BMR) to learn the classifier on the
new training dataset.
•Multi-label Learning with Feature-induced labeling information Enrichment

(MLFE ) [32] In MLFE, the structural information in feature space is utilized to en-
rich the labeling information. The sparse reconstruction among the training examples
is conducted to characterize the underlying structure of feature space. Then the re-
construction information is conveyed from feature space to label space so as to enrich
the labeling information.

4.3 Experimental Settings

There are three factors in our proposed framework including trading-off parameters
α, β and the number of nodesk of the embedding layer. After cross-validations on
training dataset, we setα = 15, β = 0.005, k = 100 for all datasets. LIBSVM with
linear kernel [2] is employed as the base classifier for all baselines except SDAE.
Bayesian Multinomial Regression(BMR) [12] is employed as the base classifier for
SDAE. Specifically, for RAkEL, the size of label subsetk is set as3 and the size
of ensemble is set as2c (c is the number of labels) as a rule-of-thumb setting. For
ECC, the size of ensemble is set100 to cover the high-order relations among labels
sufficiently. For LIFT, the ratio is set to0.1 as reported in their original paper [27].
For MLFE, the penalty parametersβ1, β2 andβ3 are set as 2, 10, 1, respectively
according to [32].

4.4 Results and Discussion

To compare our proposed model with baselines in a more comprehensive way, we
adopt two types of evaluation metrics, i.e., ranking metrics and classification metrics.
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Table 3: Multi-label learning performance comparison on ranking evaluation metrics
on five data sets

Datasets Methods OneError Coverage RankingLoss AvgPrecision MacroAUC

slashdot

BR .4394±.0093 .1235±.0011 .1070±.0008 .6610±.0045 .8188±.0165
CLR .9944±.0007 .3029±.0060 .4484±.0038 .1973±.0050 .7263±.0156

RAkEL .4363±.0065 .1617±.0017 .1414±.0012 .6478±.0041 .7657±.0174
ECC .4122±.0074 .1128±.0015 .0966±.0016 .6842±.0044 .8592±.0064
LIFT .4307±.0022 .1172±.0023 .1017±.0024 .6694±.0020 .8512±.0061
SDAE .5863±.0083 .1606±.0008 .1451±.0010 .5527±.0038 .7786±.0046
MLFE .3923±.0074 .1295±.0036 .1105±.0035 .6947±.0048 .5962±.0041
SERL .4089±.0024 .1073±.0033 .0921±.0031 .6927±.0023 .8451±.0073

corel5k

BR .6872±.0040 .3036±.0020 .1299±.0010 .2693±.0027 .5947±.0028
CLR .6595±.0145 .3054±.0125 .1431±.0025 .2520±.0195 .6413±.0074

RAkEL .6905±.0041 .4301±.0045 .1912±.0024 .2505±.0030 .5735±.0071
ECC .6855±.0054 .2901±.0027 .1240±.0009 .2845±.0029 .6491±.0077
LIFT .7007±.0131 .3154±.0040 .1317±.0011 .2829±.0049 .6799±.0043
SDAE .7471±.0026 .3230±.0019 .1423±.0011 .2395±.0016 .6208±.0029
MLFE .6752±.0116 .4635±.0008 .2090±.0030 .2700±.0041 .5078±.0003
SERL .6445±.0059 .2542±.0032 .1063±.0014 .3152±.0023 .7120±.0052

bibtex

BR .4090±.0068 .1656±.0020 .0907±.0009 .5299±.0023 .8685±.0038
CLR .3797±.0104 .1136±.0019 .0644±.0011 .5640±.0042 .9095±.0014

RAkEL .4050±.0041 .2427±.0024 .1359±.0016 .5063±.0017 .8163±.0036
ECC .3807±.0053 .1389±.0020 .0741±.0011 .5702±.0015 .8977±.0026
LIFT .4069±.0036 .1495±.0034 .0824±.0021 .5439±.0013 .9040±.0025
SDAE .5862±.0042 .1945±.0022 .1228±.0017 .3841±.0041 .8484±.0022
MLFE .3777±.0067 .1695±.0035 .0889±.0018 .5733±.0043 .5381±.0010
SERL .3997±.0064 .1061±.0026 .0579±.0015 .5740±.0044 .9276±.0016

corel16k01

BR .7248±.0070 .3202±.0022 .1643±.0014 .2818±.0029 .6523±.0041
CLR .6468±.0048 .2750±.0018 .1415±.0012 .3229±.0021 .7286±.0013

RAkEL .7235±.0064 .4097±.0037 .2128±.0022 .2647±.0023 .6076±.0026
ECC .6773±.0040 .3042±.0022 .1550±.0014 .3174±.0027 .6908±.0032
LIFT .6944±.0052 .3268±.0050 .1652±.0027 .3086±.0044 .6958±.0017
SDAE .7364±.0029 .3280±.0020 .1719±.0009 .2793±.0013 .6605±.0022
MLFE .6695±.0040 .3682±.0024 .1891±.0017 .3192±.0017 .5105±.0002
SERL .6460±.0043 .2477±.0027 .1269±.0018 .3517±.0024 .7721±.0012

corel16k02

BR .7268±.0087 .3138±.0029 .1601±.0007 .2731±.0045 .6641±.0030
CLR .6326±.0206 .2647±.0029 .1359±.0007 .3149±.0032 .7418±.0029

RAkEL .7272±.0081 .3942±.0027 .2045±.0009 .2542±.0043 .6096±.0033
ECC .6720±.0078 .2932±.0026 .1485±.0006 .3145±.0017 .7024±.0035
LIFT .6833±.0043 .3165±.0041 .1596±.0022 .3073±.0022 .7089±.0047
SDAE .7301±.0064 .3207±.0024 .1673±.0009 .2756±.0019 .6696±.0036
MLFE .6645±.0042 .3663±.0014 .1876±.0004 .3171±.0017 .5111±.0006
SERL .6446±.0047 .2408±.0022 .1229±.0008 .3458±.0019 .7794±.0010

Further more, both types of metrics can be subdivided into example-based and label-
based ones. Table 3 and Table 4 summarizes the results on all five datasets. Next, we
analyze the results on all these metrics in detail as follows.

4.4.1 Results on Ranking Evaluation Metrics

Among all ranking evaluation metrics, OneError, Coverage, RankingLoss and Avg-
Precision are example-based, while MacroAUC is label-based.
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Table 4: Multi-label learning performance comparison on classification evaluation
metrics on five data sets

Datasets Methods Accuracy F1 MacroF1

slashdot

BR .1219±.0018 .1843±.0026 .2502±.0084
CLR .0022±.0005 .0024±.0005 .1184±.0218

RAkEL .3506±.0085 .3628±.0088 .3388±.0112
ECC .4271±.0029 .4433±.0032 .3908±.0193
LIFT .3489±.0098 .3615±.0098 .3684±.0188
SDAE .3754±.0050 .4100±.0053 .3206±.0196
MLFE .3512±.0060 .3624±.0064 .3367±.0214
SERL .5323±.0030 .5694±.0032 .4255±.0183

corel5k

BR .0029±.0003 .0054±.0005 .0680±.0053
CLR .1115±.0065 .1900±.0091 .0766±.0079

RAkEL .0137±.0005 .0191±.0004 .0686±.0058
ECC .0565±.0018 .0792±.0021 .0781±.0049
LIFT .0398±.0036 .0555±.0052 .0829±.0048
SDAE .0979±.0012 .1498±.0019 .0847±.0056
MLFE .0771±.0029 .1099±.0036 .0830±.0052
SERL .1399±.0029 .2079±.0036 .0866±.0051

bibtex

BR .2742±.0019 .3235±.0027 .2187±.0052
CLR .2718±.0107 .3182±.0149 .2235±.0046

RAkEL .2742±.0019 .3231±.0028 .2178±.0047
ECC .2796±.0032 .3280±.0038 .2130±.0032
LIFT .2477±.0058 .2939±.0057 .1913±.0086
SDAE .2303±.0041 .2851±.0040 .1183±.0034
MLFE .2149±.0064 .2549±.0073 .1037±.0017
SERL .3508±.0035 .4261±.0042 .2249±.0041

corel16k01

BR .0136±.0018 .0191±.0025 .0094±.0019
CLR .0133±.0018 .0185±.0025 .0076±.0015

RAkEL .0157±.0017 .0222±.0024 .0087±.0013
ECC .0523±.0011 .0713±.0013 .0258±.0014
LIFT .0218±.0043 .0300±.0058 .0215±.0020
SDAE .1239±.0008 .1817±.0013 .0443±.0024
MLFE .0728±.0024 .0998±.0032 .0375±.0007
SERL .1640±.0023 .2321±.0029 .0573±.0012

corel16k02

BR .0162±.0017 .0234±.0024 .0139±.0017
CLR .0153±.0013 .0221±.0020 .0126±.0013

RAkEL .0157±.0018 .0227±.0026 .0136±.0014
ECC .0459±.0017 .0636±.0023 .0278±.0028
LIFT .0245±.0024 .0338±.0032 .0314±.0022
SDAE .1234±.0017 .1812±.0025 .0483±.0020
MLFE .0731±.0022 .1021±.0029 .0393±.0021
SERL .1599±.0029 .2292±.0039 .0530±.0020

– We can see that SERL performs the best in all five datasets on Coverage and
RankingLoss. Even on the metric of OneError, SERL achieves the best perfor-
mance on datasets corel5k and corel16k01, and gets an comparable performance
to CLR and MLFE, which obtain best results on some corresponding datasets.

– For label-based ranking metric MacroAUC, SERL also achieves the best perfor-
mance in most datasets. According to Table 2, we can see that corel5k has the
most labels up to374 and slashdot has the least labels of22. The results in all the
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five datasets show the outstanding performance of SERL in probability estimation
over the datasets with high-diversity of label size.

4.4.2 Results on Classification Evaluation Metrics

Among classification evaluation metrics, Accuracy and F1 are example-based and
MacroF1 is label-based.

– It is obvious that SERL achieves better performance than the baselines in terms
of Accuracy and F1. We can get the following two observations from the results.
The first one is that our model performs well for each example, which contributes
to high accuracy and F1. And the other one is that some baselines such as BR and
RAkEL output empty sets for some examples, failing to predict label information,
which makes no sense for classification and leads to unsatisfying results.

– For MacroF1, SERL achieves the best in all data sets, which proves good perfor-
mance of SERL in classifying the positive and negative examples of each label.
The fact that SERL does well in both example-based and label-based classifica-
tion metrics shows the superior classification performance of our model.

Overall, all the results validate the effectiveness of our framework.

4.5 Parameter Sensitivity

For analyzing the influence of the parametersα, β, k, we do a series of sensitivity
experiments. We choose RankingLoss as the criterion of sensitivity experiments. All
the results are shown in Fig 3.

– For α, RankingLoss has a obvious inflection point whenα changes from0 to
15. Specially, RankingLoss achieves the best value whenα gets 15 and 30. In
general, the trend of RankingLoss is gentle whenα changes, which shows that
our proposed framework is not sensitive toα when its value is not too small.

– For β, RankingLoss gets the best value whenβ is 0.005 and0.01. Whenβ in-
creases after 0.01, RankingLoss gets worse obviously.

– For the number of nodesk of the embedding layer, RankingLoss reduces firstly
and then increases slightly. It is interesting that RankingLoss gets its best value
whenk is relatively small, which guarantees that we can speed up the construction
of our model because of the low dimension. Moreover, the trend of RankingLoss
is gentle whenk changes, which is helpful for the tuning process ofk.

As a whole, we setα = 15, β = 0.005, k = 100 for all datasets according to the
parameter sensitivity experiments.

4.6 Effects on Supervision Information

To study the effectiveness of the proposed model in the case there are different num-
bers of labeled instances are available, we do a series of experiments in variable ratios
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Fig. 3: The Parameter Affects

of labeled instances. Specifically, the ratio of labeled instances increases from5% to
50% and the step size is5%. The results are shown in Fig. 4. It is obvious that SERL
achieves the best performance in all ratios, which demonstrates the effectiveness of
SERL. Moreover, compared to the baselines, the superiority of SERL is higher in
small ratios than high ratios, which shows that SERL can make full use of labeled
and unlabeled data sufficiently.
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5 Related Work

Multi-label learning has attracted a lot of interest in recent years. There are two kinds
of multi-label algorithms, problem transformation and algorithm adaptation methods.

Problem transformation methods transform multi-label learning problem into other
problems which have solid theories and well-established solutions. For example,
Binary Relevance [1], AdaBoost.MH [18], Stacked Aggregation [8] and Classifier
Chains [16] transform multi-label learning problem into binary classification prob-
lems. Calibrated Label Ranking transforms multi-label learning problem into label
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ranking problems with calibrated scenario by pairwise comparison [6]. Randomk-
Labelsets [24] transforms multi-label learning problem into multi-class classification
problems on an ensemble ofk random label subsets.

Algorithm adaptation methods adapt traditional algorithms to multi-label data [31].
For example, ML-kNN [29] adapts traditionalk-nearest neighbor algorithm to multi-
label data and uses maximum a posteriori(MAP) principle to predict labels for the
new instance. ML-DT [4] calculates information gain based on multi-label entropy.
Rank-SVM [5] fits the maximum margin to differentiate the relevant and irrelevant
labels of one instance. BP-MLL [30] uses feedforward neural network to hold multi-
label data where a error function capturing ranking correlation between relevant and
irrelevant labels is calculated through backpropagation algorithm. CML [7] utilizes
conditional random field to model label co-occurrences in multi-label data. Nguyen
et al. [13] proposed a Bayesian nonparametric approach to learn the number of label-
feature correlation pat- terns automatically. MLFE [32] utilized the structural infor-
mation in feature space to enrich the labeling information.

Except these algorithms, representation learning is also one of the most important
aspects of multi-label learning [33,15,27,26,3,19,14,9,10,34]. For example, Read et
al. [15] utilized restricted boltzmann machine (RBM) to achieve better representation
of the original features to train the classifier. BILC [34] mapped the label relationship
into a binary embedded space instead of real-valued to achieve better performance.
However, current works about representation learning neglect label knowledge, or
suffer from the lack of labeled data, or are limited to linear projection. The most re-
lated work [11], which proposed a bi-directional representation model for multi-label
classification, in which the mid-level representation layer is constructed from both
input and output spaces. In essence, their network structure is different from ours.
Their framework contained two basic autoencoders, i.e., one for the input features
and the other one for output labels, and had to compute the additional parameters
of encoding weights from low-dimensional representation of the input features to
output labels and prediction model from input features to the low-dimensional repre-
sentation of the output labels. In this paper, we propose a framework named SERL,
which adopts a two-encoding-layer autoencoder to learn feature representation in
a supervised manner. The autoencoder can sufficiently utilize labeled and unlabeled
data simultaneously under the supervision of softmax regression. The softmax regres-
sion incorporates label knowledge to improve the performance of both representation
learning and multi-label learning by being jointly optimized with the autoencoder.
Extensive experiments on five data sets demonstrate the good performance of our
framework.

6 Conclusion

In this paper, we proposed a framework named SERL, which adopts autoencoder to
learn feature representation in a supervised manner. In this framework, labeled and
unlabeled data can be handled by the autoencoder, meanwhile the softmax regression
incorporates label knowledge by being jointly optimized with autoencoder. More-
over, the autoencoder is expanded into two encoding layers to share knowledge with
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softmax regression by sharing the second encoding weight matrix. Extensive exper-
iments on five real-world datasets demonstrate the superiority of SERL over other
state-of-the-art multi-label learning algorithms.
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