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ABSTRACT
Stroke evaluation is critical for coaches to evaluate players’ perfor-
mance in table tennis matches. However, current methods highly de-
mand proficient knowledge in table tennis and are time-consuming.
We collaborate with the Chinese national table tennis team and
propose Tac-Valuer, an automatic stroke evaluation framework for
analysts in table tennis teams. In particular, to integrate analysts’
knowledge into the machine learning model, we employ the latest
effective framework named abductive learning, showing promising
performance. Based on abductive learning, Tac-Valuer combines the
state-of-the-art computer vision algorithms to extract and embed
stroke features for evaluation. We evaluate the design choices of
the approach and present Tac-Valuer’s usability through use cases
that analyze the performance of the top table tennis players in
world-class events.

CCS CONCEPTS
• Computing methodologies → Knowledge representation
and reasoning; Activity recognition and understanding; •Human-
centered computing→ Visual analytics.
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1 INTRODUCTION
Table tennis is a highly confrontational racket sport, where players
from both sides strike the ball (the action that a player strikes the
ball once is a stroke) by turn until one wins this rally. Players’
techniques (patterns of single stroke) and tactics (patterns among
consecutive strokes) are always the focal points of analysis [9].
Thus, many national table tennis teams adopt data analysis methods
to facilitate technical and tactical analysis. In recent four years,
we have worked closely with the Chinese national table tennis
team, one of the top table tennis teams worldwide, and developed a
data platform. It provides pre-match and post-match data support
services for the team, including interactive tools for data collection
[8], correlation exploration [36], and match simulation [29]. Till
now, the platform has provided data support for the national team
in more than 20 world-class events, e.g., World Cup, World Tour,
and World Championships. However, the platform still falls short
of the strong demand from coaches for the stroke evaluation. In
table tennis, stroke evaluation is crucial for evaluating players’
performance since the stroke is the basic unit for analysis [18]. For
example, analysts evaluate a player’s performance of a particular
technique (e.g., topspin) by investigating whether this player can
win an advantage after performing the stroke with this technique.

Methods for stroke evaluation can be divided into video-driven
ones and data-driven ones. Initially, video-driven methods are
straightforward and widely adopted by analysts. Analysts orga-
nize stroke videos in various ways and repeatedly examine the
videos to evaluate the strokes’ performances based on their knowl-
edge [9]. Data-driven methods require analysts to collect the key
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stroke attributes from videos in advance. Then analysts use effec-
tive statistical indicators [34, 35] and simulation models [18, 29, 33]
to evaluate strokes’ performance. While these methods have helped
discover in-depth insights, they are tedious and time-consuming
because they rely on analysts’ knowledge for video checking and
data collection.

A possible solution is to train amachine learningmodel to extract
stroke features and evaluate strokes based on the features. Training
such a model requires a large number of labeled data. However,
labeled data is insufficient since qualified analysts for data labeling
are limited, and the labeling process is time-consuming. Instead, we
have considerable unlabeled data and collection of analysts’ domain
knowledge. Therefore, it is highly desirable to leverage analysts’
knowledge for automatic feature extraction and stroke evaluation
based on limited labeled data and plentiful unlabeled data.

The challenge of proposing such a model lies in combining the
analysts’ knowledge and the machine learning model. It is difficult
to inject symbolic knowledge into the optimization of numerical
values in machine learning models. To solve this challenge, we refer
to the latest effective AI framework, ABductive Learning (ABL)
[4, 37]. Unlike other frameworks (e.g., probabilistic logic program
[5], statistical relational learning [14]) that make one side subsume
to the other,ABL integrates machine learning and logical reasoning
(driven by domain knowledge) in a mutually beneficial manner
[37]. Furthermore, we propose a knowledge-based framework, Tac-
Valuer based on ABL for stroke evaluation.

Tac-Valuer takes stroke videos as input, embed stroke features,
and output the evaluation scores of the strokes. It consists of three
steps, namely, video formalizing (VF), stroke embedding (SE), and
performance rating (PR). Among the components, SE uses ABL
to extracts and embeds the stroke features from videos into fea-
ture vectors based on analysts’ knowledge. It contains an attribute
recognition component (driven by neural networks) and a logical
reasoning component (driven by rules of inference). The interaction
between the two components can help SE achieve decent embed-
ding effects with limited labeled data. The contributions of this
work are as follows.
• We are the first to address the problem of automatic stroke
evaluation in table tennis, benefiting table tennis analysts.
• Wepropose a novel framework that leveragesABL to achieve
decent stroke evaluation results based on analysts’ knowl-
edge and limited labeled data.
• We implement our framework and conduct use cases on
matches between top table tennis players. Through the cases,
we obtain valuable insights into players’ strokes.

2 RELATEDWORK
In this section, we review the works related to performance evalua-
tion in sports and action recognition with domain knowledge.

2.1 Performance evaluation in sports
In table tennis, researchers have introduced many effective stroke
evaluation approaches [9], which have been discussed in Section 1.
Therefore, this section mainly discusses performance evaluation
in other sports. In soccer, both Decroos et al. [6, 7] and Bransen
et al. [1] have proposed automatic methods for valuing players’

actions during matches. In basketball, Cervone et al. [2] propose a
framework for valuing each moment of possession, and Sicilia et
al. [24] construct a deep learning architecture to evaluate players’
actions within a possession. Additionally, many similar studies
have also been conducted in tennis [30–32] and ice hockey [16, 23].
These studies mainly evaluate players’ actions based on position
tracking data and game context data (e.g., events and box scores).
While these studies are effective, they cannot be applied to stroke
evaluation in table tennis for two reasons. First, the gaps between
different competition rules prevent most of the aforementioned
approaches, especially those for team games like ice hockey, soccer,
and basketball. This gap leads to different evaluation metrics. For
example, in soccer, when analysts evaluate a pass, they need to
focus on the whole possession containing this pass to examine the
collaboration among teammates and defense of the opponent team.
However, in table tennis, there is no collaboration but confrontation
in a stroke. Analysts evaluate a stroke by examining whether the
stroke makes the striker at an advantage or not. Second, existing
studies mainly focus on position tracking data and game context
data, not considering players’ motions. Therefore, a new method is
required for table tennis to utilize motion data for stroke evaluation.

2.2 Action recognition with knowledge
Tac-Valuer extracts and embeds stroke features from videos by using
action recognition techniques. Video-based action recognition has
been a popular topic in computer vision [10, 19]. Considerable tech-
niques have been developed to improve the efficiency and accuracy
of the action recognition tasks [12, 25, 28]. To further enhance the
performance of the techniques, various datasets in different fields
(e.g., film, sports, music) have been introduced [15, 22, 27]. How-
ever, these techniques do not contain enough human knowledge in
the machine learning models, which limits their performance and
interpretability. To solve this issue, many AI frameworks, such as
probabilistic logic program [5] and statistical relational learning
[14], have provided solution alternatives. However, these frame-
works make knowledge subsume to machine learning or vice versa.
Therefore, we decide to use ABL to improve the state-of-the-art
action recognition techniques with domain knowledge for data col-
lection. According to existing works [4, 37], ABL can combine ma-
chine learning and logical reasoning with knowledge in a mutually
beneficial way. Moreover, it also performs well in semi-supervised
fashion, which further improves our proposal since high quality
labeled table tennis data is not sufficient for supervised learning.

3 BACKGROUND AND DATA
In this section, we introduce our collaboration with the Chinese
national table tennis team and the data we use in Tac-Valuer.

3.1 Collaboration with the national team
We have collaborated with the Chinese national table tennis team
for four years. During the collaboration, we developed a data plat-
form for the national team to empower the analysts in the team to
collect and analyze match data (Figure 1). The platform consists of
three components, database, data collection, and data analysis. The
database enables the analysts to store data, such as broadcast videos,
player information, and match meta information for table tennis



Figure 1: The structure of the data platform. It consists of
three components, namely, database, data collection, and
data analysis. The arrows present the data transmission in
the platform.

Figure 2: An example of a stroke’s attributes. These at-
tributes are manually collected by analysts.

matches with national team players involved. The data collection
leverages an interactive data collection framework, EventAnchor
[8], to reduce analysts’ efforts on data retrieval. The data analysis
supports various analysis techniques, such as visualization and
simulation. The visualization part provides a comprehensive vi-
sual analytics tool, iTTVis [36], to help analysts investigate the
collected data to gain new insights. The simulation part, Tac-Simur,
uses a hybrid second-order Markov chain model [29] to simulate
the matches against particular players to help coaches improve the
training plans and playing strategies. Till now, the platform has
served the teams in more than 20 top events in the world, which
provides a good opportunity to design an efficient video-based
framework for automatic stroke evaluation.

3.2 Data description
Tac-Valuer requires four parts of data for model training, namely,
stroke videos, stroke attributes, rules of inference, and performance
scores. The stroke videos are the input of Tac-Valuer. Each stroke
video contains a sequence of eight frames, including a central frame
when the player’s racket touches the ball, four frames before this
frame, and three frames after this frame. We labeled the timestamp
of the central frame through crowdsourcing since labeling this data

did not require proficient knowledge. We collected 9522 stroke
videos from 21 matches.

The stroke attributes are used as training labels of stroke videos
for the models in SE. In table tennis, players use rackets to strike
the ball by turn. The basic observation unit in table tennis is a
stroke, namely, the action that a player hits the ball once [18]. Since
the recognition of stroke attributes demanded knowledge in table
tennis, we asked analysts to collect this data. The data was collected
through the platform [8]. Analysts needed to watch the stroke
videos collected before and annotate the specific stroke attributes.
Figure 2 displays an example of the stroke attribute data. The first
three attributes are used to identify the temporal position of the
stroke within a match. The subsequent three attributes (i.e., stroke
technique, stroke position, and stroke placement) characterize the
technical features of a stroke. The last attribute is derived based on
the game rules. We collected the stroke attributes of all the 9522
stroke videos mentioned above.

The rules of inference are used as the logical reasoning com-
ponent of ABL to improve the performance of the models in SE.
We summarized analysts’ knowledge during data collection and
quantified their knowledge in the manner as follows.

𝑃𝑟𝑒_𝑇𝑒𝑐ℎ(𝑋, "Block") → ¬𝐶𝑢𝑟_𝑇𝑒𝑐ℎ(𝑋, "Push")
∧ ¬𝐶𝑢𝑟_𝑇𝑒𝑐ℎ(𝑋, "Short")
∧ ¬𝐶𝑢𝑟_𝑇𝑒𝑐ℎ(𝑋, "Slide")
∧ ¬𝐶𝑢𝑟_𝑇𝑒𝑐ℎ(𝑋, "Block"),

where “¬” is negation, “∧” is conjunction, and “→” is implication.
This example rule means if the technique of the previous stroke is
"Block", then the technique of the current stroke is impossible to
be “Push”, “Short”, “Slide”, and “Block”. We collected 28 rules.

The performance scores are used as training labels of stroke
videos for the model in PR. The performance scores were manually
rated by professional analysts. We hired seven analysts working for
the professional table tennis teams to evaluate the performance of
players’ strokes in the stroke videos. We let them rate the strokes
into two levels, namely, 1 for advantaged strokes and -1 for disad-
vantaged ones. Each stroke was rated by three different analysts.
Thus, the score of each stroke was decided according to major-
ity voting. For the strokes rated differently by the three analysts,
we asked another senior analyst to re-evaluate these strokes. The
senior analyst has worked for the Chinese national table tennis
team for more than five years and has rich experience in stroke
evaluation. We collected the scores of all the 9522 stroke videos.

4 FRAMEWORK
In this section, we first define the problem of stroke evaluation
in this work and present an overview of Tac-Valuer. Then, we
introduce the implementation details of Tac-Valuer.

4.1 Problem definition
Table tennis is a racket sport that requires players from both sides
to interact with each other’s stroke by turn. We denote a rally as
𝑅 = {𝑆1, 𝑆2, . . . , 𝑆𝑖 }, where 𝑆𝑖 represents the video frames of the
𝑖𝑡ℎ stroke in the rally 𝑅. Then, the problem of stroke evaluation in



Figure 3: A player performs the strokes with similar techni-
cal attributes in different motions. The player loses balance
in A and keep balance in B, which results in different per-
formance of these two strokes.

table tennis can be defined as follows.

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝐹 (𝑆𝑖 ) (1)

where 𝐹 denotes the evaluation function and 𝑆𝑐𝑜𝑟𝑒𝑖 represents the
performance of the stroke. The last stroke of a rally is evaluated as
poor by default since it belongs to the loser of this rally in our data.

A straightforward alternative to 𝐹 is training an end-to-end
model for stroke evaluation. Specifically, the model takes the stroke
videos as input and directly outputs the evaluation scores. However,
an end-to-end model lacks interpretability, which is not accepted by
analysts. To yield an interpretable evaluation result, we decided to
imitate analysts’ evaluation process when constructing 𝐹 . Generally,
analysts often need to identify the stroke attributes. Besides, they
also have to consider the strokemotions. Specifically, for example, in
Figure 3, the effects of the two strokes hit by topspin in forehand are
quite different according to the motion features of the two players.
However, from the perspective of attributes, these two strokes are
similar strokes since the technique and position of both strokes
are identical (Figure 3). With these two kinds of data, analysts can
evaluate a stroke comprehensively. Therefore, the function 𝐹 needs
first to extract stroke attributes and stroke motions from videos,
and then, evaluates the strokes based on them. The stroke attributes
are primarily depicted by stroke technique, stroke placement, and
stroke position according to existing studies [9]. The stroke motions
are depicted by visual features of video frames. Based on these
considerations, we propose Tac-Valuer, a knowledge-based stroke
evaluation framework.

4.2 Framework overview
Tac-Valuer takes the stroke videos within a rally as input, extracts
and embeds stroke features from videos, and output the evalua-
tion scores of these strokes. To accurately extract and embed the
stroke features with limited labeled data, we use ABL to optimize
pseudo-labels of unlabeled data to enhance model performance.
The challenges during constructing Tac-Valuer are as follows.
• C1: How to obtain effective stroke videos? The stroke
videos contain noise within each frame. The noise is often
brought by irrelevant persons on the court. In a table tennis
match video, apart from the players, the referees and other
staff, such as caddies, can appear in the scene (Figure 5). The

occurrence of these persons can decline the performance of
the models in SE and PR.
• C2: How to effectively extract and embed stroke fea-
tures with limited labeled data? Labeled stroke attribute
data is limited due to its high demand for proficient domain
knowledge. Training an effective model for extracting stroke
attributes with limited labeled data is challenging. More-
over, the stroke attributes have been well defined by existing
works in table tennis analysis as shown in Figure 2. However,
stroke motions for stroke evaluation have not been exten-
sively studied. Extracting stroke motions from the stroke
videos and embed them with stroke attributes for evaluation
is also challenging.
• C3: How to quantify the performance of a stroke? Cur-
rent studies in table tennis mostly use the scoring rate for
quantified analysis. However, this method is not rigorous
since whether the player can score in this rally is related to
all the strokes in this rally. A more accurate way is to ask
analysts to evaluate the performance of a stroke according
to the given stroke video. However, their evaluation criteria
are based on their knowledge and hard to be verbalized.

Given the challenges above, we constructed Tac-Valuer into three
steps (Figure 4) as follows.
• Step 1: video formalizing (VF). We remove the irrelevant
persons in each video frame to address C1. We use an object
detection algorithm to detect the two players in each frame.
Then we add masks to other irrelevant persons to remove
their influence (Figure 4A).
• Step 2: stroke embedding (SE). We leverage ABL to ex-
tract and embed the stroke attributes with stroke motions
with limited labeled data (C2). As Figure 4B shows, we first
use an attribute recognition component to embed strokes
into feature vectors. Then we introduce a logical reasoning
component constructed based on analysts’ knowledge to
improve pseudo-labels of unlabeled data. These labels are
further used to improve the performance of the attribute
recognition component iteratively.
• Step 3: performance rating (PR). We train a classifier that
learns analysts’ evaluation in video-based methods to obtain
quantified evaluation results (C3). We classify analysts’ eval-
uation of strokes into two levels as training labels and train
the model to classify the level of each stroke based on the
embedding vectors in Step 2 (Figure 4C).

4.3 Video formalizing
VF takes stroke videos as input and attaches a mask to remove
irrelevant persons for each frame (Figure 4A). We use Faster R-
CNN [21], to detect the bounding boxes of the table and all persons
in each frame. According to the relative position between the box
of the table and boxes of the persons, we identify the two players in
each frame. For the boxes of other persons, we use a mask to cover
them. We reserve both players for two reasons. First, analysts need
to investigate both players’ motions. For example, when player
A is performing a stroke, the other player B will anticipate the
stroke and move his/her body and racket in advance. If player A’s
motion misleads the anticipation of player B, this stroke is usually



Figure 4: The structure of the framework. The input is the video frames of strokes within a whole rally. The output is the score
of each stroke. The orange, green, and purple boxes represent the three steps and the blue ones represent the data flowing
among different steps. Video formalizing (A) applies masks to frames to remove irrelevant persons. Stroke embedding (B)
extracts and embeds stroke features from videos by using ABL. Performance rating (C) evaluates the performance of each
stroke based on the feature vectors. The contents under each blue box present the example of the data format.

Figure 5: The details of video formalizing. (A) is the origi-
nal frame with referees and staff. (B) is the processed frame
where the irrelevant persons are removed by masks.

performedwith high quality. Second, themotions of two players can
provide more features to improve the training accuracy of stroke
embedding in SE.

4.4 Stroke embedding
Given stroke videos, SE extracts the stroke features and embeds
them into feature vectors. This step is based on Abductive Learning
(ABL) and contains two components, an attribute recognition com-
ponent (Figure 6A) and a logical abduction component (Figure 6B).

Attribute Recognition Component. In the attribute recognition
component, the input data are stroke videos of a whole rally 𝑆𝑖 .
We first use VGG-13 [26] and LSTM [11] to extract feature vectors
𝐹𝑉𝑖 of each 𝑆𝑖 . Then the feature vectors 𝐹𝑉𝑖 are fed to dense layers
and softmax functions to get the result 𝐴𝑖 , which contains the
three technical attributes (i.e., stroke technique, stroke position,
and stroke placement) (Figure 2). This component is pre-trained by
labeled stroke videos. Due to limited labeled data, it may produce
incorrect pseudo-labels 𝐴𝑖 for the unlabeled stroke videos.

Logical Abduction Component. The logical abduction compo-
nent contains domain knowledge rules of table tennis. Given the

Figure 6: The structure of stroke embedding. (A) is an at-
tribute recognition component and (B) is a logical reason-
ing component. The input of (A) is the unlabeled formalized
stroke videos (𝑆𝑖 ) within a whole rally. The recognized at-
tributes (𝐴𝑖 ) are taken as pseudo-labels of the stroke videos
and input into (B). (B) revises the labels and transfers them
back to (A) to improve the performance of (A) iteratively.
The feature vectors (𝐹𝑉𝑖 ) are the final input for performance
rating.

pseudo-labels (technical attributes) of the attribute recognition
component, which may be incorrect, it first checks whether these
pseudo-labels are consistent with the rules. If the pseudo-labels
are consistent with domain knowledge, it returns them without
any revision. Otherwise, it explores logical abduction to revise the
pseudo-labels. The revision is conducted under the principle of
minimal inconsistency [4, 37] between the pseudo-labels and do-
main knowledge, aiming at correcting the most likely inaccurate
pseudo-labels. Specifically, logical abduction assumes that some



Algorithm 1 Abductive Learning in Tac-Valuer

Input: Labeled videos (𝑆𝑙 , 𝐴𝑙 ); Unlabeled videos 𝑆𝑢 ; Knowledge
base 𝐾𝐵
Parameter: Epoch 𝐸
Output: Model𝑀
1: 𝑀 ← 𝑇𝑟𝑎𝑖𝑛𝑀𝑜𝑑𝑒𝑙 (𝑆𝑙 , 𝐴𝑙 ) # Pre-train model
2: for 𝑒 B 1𝑡𝑜𝐸 do
3: 𝐴𝑢 ← 𝑀 (𝑆𝑢 ) # Generate pseudo-labels 𝐴𝑢
4: 𝐴𝑢 ← 𝐴𝑏𝑑𝑢𝑐𝑒 (𝐾𝐵,𝐴𝑢 ) # Revise pseudo-labels
5: 𝑀 ← 𝑇𝑟𝑎𝑖𝑛(𝑀, 𝑆𝑙 , 𝐴𝑙 , 𝑆𝑢 , 𝐴𝑢 ) # Update𝑀
6: end for
7: return𝑀

pseudo-labels are incorrect and makes them “unknown” (abducible),
while other pseudo-labels are fixed. Then the abduction module
will abduce the most compatible labels and use them to replace the
original pseudo-labels so that the revised labels are consistent with
domain knowledge.

Abductive Learning (ABL). By ABL [4, 37], the logical abduction
component leverages the knowledge base (summarized rules of
inference) of table tennis and unlabeled data to improve the attribute
recognition component’s performance. An outline of our learning
algorithm is shown in Algorithm 1. Given labeled stroke videos,
unlabeled stroke videos and domain knowledge, it first uses labeled
stroke videos to pre-train the deep learning models in the attribute
recognition component. The pre-trained model generates pseudo-
labels of unlabeled stroke videos, whichmay containmistakes. Then
the logical abduction component tries to revise the pseudo-labels
based on domain knowledge rules. Finally, the revised pseudo-
labels will be treated as ground-truth labels, and transferred back
to the attribute recognition component for training. The model’s
performance is improved by repeating the above circulation.

4.5 Performance rating
With the feature vectors, PR uses DF211 (an efficient implementa-
tion of Deep Forest [38, 39]) as a classifier to rate the performance
of a stroke. After training, the classifier can predict the probabilities
of the performance, (i.e., 𝑝𝑖,𝑎𝑑 for the probability of advantaged
performance and 𝑝𝑖,𝑑𝑖𝑠 for disadvantaged performance) of 𝑆𝑖 . In
this way, the final score, 𝑆𝑐𝑜𝑟𝑒𝑖 can be defined by the expectation
value of the level as follows.

𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑝𝑖,𝑎𝑑 ∗ 1 + 𝑝𝑖,𝑑𝑖𝑠 ∗ (−1) (2)

5 EVALUATION
In this section, we evaluate our framework from two aspects. First,
we conduct two experiments to justify the design decisions of Tac-
Valuer. Then, we present two use cases based on the implementation
of the framework. We conduct the cases with analysts in the na-
tional table tennis team and discover valuable insights.

5.1 Evaluation of design decisions
We evaluate the design choices on the critical aspect of VF and PR
by comparing the performance of our methods with alternatives.
1https://www.lamda.nju.edu.cn/deep-forest/

Table 1: The mAP of the experiments in SE

method label tec pla pos striker

supervised 50% 0.66 0.56 0.75 0.79
ABL 50% 0.69 0.66 0.79 0.86

supervised 100% 0.71 0.64 0.8 0.91

Table 2: The result of the experiment in PR

FC SVM RF DF21 XGBoost CatBoost LightGBM

Avg. 82.02 84.90 84.83 85.16 85.11 84.97 84.41
Std. 1.51 1.63 1.71 1.81 2.21 1.75 1.75

5.1.1 Choice of ABL. In SE, we used ABL to construct a semi-
supervised model due to the limited labeled data. To validate the
effectiveness of ABL, we compared ABL with the other two super-
vised conditions in this experiment. First, we used 50% labeled data
with 50% unlabeled data to train the attribute recognition compo-
nent with ABL. Then, we used 50% labeled data and 100% labeled
data to train the attribute recognition component without ABL
separately. The result of the comparison is displayed in Table 1.
We added one more attribute, “striker,” to evaluate the model per-
formance because each stroke video contains two players and the
model needs to figure out which player is the striker. Among the
three conditions, ABL outperforms the other two conditions in rec-
ognizing stroke placement. For other attributes, ABL outperforms
the supervised one with only 50% labeled data and performs nearly
as well as the supervised one with 100% labeled data.

5.1.2 Choice of DF21. In PR, we needed a model that can accu-
rately determine the performance level. Therefore, we tested pop-
ular classification models, including a three-layer fully connected
neural network (FC), SVM [17], Random Forest (RF) [17], DF21
[38, 39], XGBoost [3], CatBoost [20], and LightGBM [13]. We used
10-fold cross validation. The result is displayed in Table 2. Although
FC has the lowest standard variance, the average accuracy of DF21
(85.16%) is the highest during cross validation. We finally chose
DF21 as the model in for performance rating.

5.2 Use Cases
In this section, we present three cases we conducted with two
professional analysts to demonstrate the effectiveness of Tac-Valuer.
Both of the two analysts have worked for the Chinese table tennis
team for more than five years. They did not participate in the
collection of performance scores in this work. We mainly analyzed
Ito Mima, a strong opponent of the Chinese table tennis players. In
the first case, we compared the evaluation of Tac-Valuer with those
of traditional indicators and analysts to demonstrate the reliability
and advantage of Tac-Valuer. In the second case, we focused on
Ito’s performance when she played against different opponents.

5.2.1 Case 1: Ito’s push is not good enough. The match in this case
is the final of women singles in 2019 ITTF World Tour, Swedish Open
between Ito and Chen Meng. Current methods (e.g., the three-phase



Figure 7: Case 1: (A), (B), (C) display the performance of Ito’s
technique evaluated by the direct scoring rates, Tac-Valuer,
and analysts, respectively. (D) shows the evaluation scores
of all strokes performed with push.

method [34, 35]) mostly use the direct scoring rates as an important
indicator for stroke evaluation. In a table tennis match, the direct
scoring rate of Player B’s A-type strokes is computed as follows:

𝑅 = 𝑁𝑤𝑖𝑛/(𝑁𝑤𝑖𝑛 + 𝑁𝑙𝑜𝑠𝑒 ) (3)

where 𝑁𝑤𝑖𝑛 refers to the number of rallies where Player B performs
an A-type stroke, and his opponent fails to receive it, and 𝑁𝑙𝑜𝑠𝑒
refers to the number of rallies where Player B fails to receive his
opponent’s stroke using A-type stroke. In this way, it considers the
A-type strokes that directly lead to the results of rallies. However,
the indicator omits many strokes that can potentially affect the
results. Tac-Valuer has solved this limitation.

We analyzed Ito’s techniques since she uses pimpled rubber,
which other players rarely use. Figure 7A, B, and C display the
scoring rates, evaluation of Tac-Valuer, and evaluation of analysts
of Ito’s techniques, respectively. Analysts’ evaluation was collected
by other analysts in advance. According to Figure 7B, C, the evalu-
ation results of Tac-Valuer almost conformed to those of analysts.
However, the results of the direct scoring rate were quite different,
especially the result of “Push”. We examined the result of each
stroke performed by “Push” (Figure 7D). Most of these strokes’
scores are below 0. We examined the first stroke with the lowest
evaluation score (-0.42). This stroke is the third stroke of the rally.
Ito served in this rally, however, she did not take preemptive actions.
Instead, she used “Push” to try to control the ball. After her “Push”,
Chen seized the chance to attack first by using the offensive tech-
nique, “Topspin”. In such a condition, Ito totally lost the advantage
in this rally. Through this case, we concluded that Ito’s push is not
as good as the traditional indicators presented.

5.2.2 Case 2: Ito should reduce errors in matches. The matches here
include the final, the semi-final, and the quarter-final of women
singles in 2019 ITTF World Tour, Swedish Open between Ito (purple)
and Chen Meng, Sun Yingsha, and Wang Manyu (orange). We first
examined the stroke performance from the perspective of stroke
technique (Figure 8A). We found that when playing against Sun and
Wang, Ito’s technique performed better than her opponents. She
had fewer techniques whose scores were substantially below zero,
especially when she was against Wang. Her control techniques,
“Push” and “Short” were much better than Wang’s. However, when
playing against Chen, Ito did not display many advantages, which
may explain her losing the final. We further examined the stroke
performance of this match in Figure 8B.

We sum the evaluation scores of a player’s strokes within a rally
as the evaluation score of this player in the rally. Then, we visualize
the difference between the summed scores of two players within a
rally in a customized bar chart (Figure 8A). The height of the bars
presents the absolute values of difference. Thus, if the evaluation
score of Chen’s strokes is large than that of Ito’s strokes, the bar
is encoded by orange and towards up, and vice versa. The dots in
the middle of the chart indicate the winner of each rally. There are
seven games in this match, and the numbers in orange and purple
indicate the scores of the two players in each game.

We found some interesting rallies where the playerwhose strokes
were better lost the rally. The most obvious one was the eighth rally
of the second game. We investigated the strokes within this rally
(Figure 8C). According to the bar chart, Ito performed all strokes
well except the last one. This condition was rare and abnormal.
To verify it, we examined the stroke video and found that Ito did
perform the first three strokes well. After she served, she seized the
chance to use topspin to attack first. However, her offense did not
last for many strokes since she made a mistake when performing
the last stroke, which was a pity for her.

6 DISCUSSION
Significance: We have solved a critical domain problem that heavily
relies on analysts’ labour and domain knowledge in an automatic
manner for efficient match analysis. The significance of Tac-Valuer
lies in four aspects. First, Tac-Valuer can benefit all analysts and



Figure 8: (A) presents the performance of different players in three matches. (B) visualizes summary difference between the
evaluation scores of two players within each rally. (C) is a rally where Ito’s performance is better than Chen’s but Ito lost.

table tennis teams. It can automatically evaluate strokes without
extra input or interactions. Second, Tac-Valuer can be implemented
with a small amount of labeled data by using abductive learning.
It combines machine learning models and analysts’ knowledge
to improve model performance with unlabeled data, alleviating
analysts’ burden on data annotation. Third, Tac-Valuer facilitates
knowledgemining. The insights from the cases not only verify some
empirical knowledge but also renew analysts’ findings discovered
by traditional methods. Fourth, Tac-Valuer is efficient enough for
real-time analysis. It finishes the stroke evaluation of a match in
half an hour, making real-time stroke evaluation becomes practical.

Insights: We obtain two insights. First, the interpretability of a
machine learning model is important for domain experts and often
the key for successful deployment. During our collaboration with
the Chinese national table tennis team, the coaches and players
were always concerned with the interpretability of our methods.
They would not accept the model’s results unless the results are
interpretable. Second, a semi-supervised learning framework can
benefit the domain. The application of machine learning models
to a domain problem often requires a large amount of labeled data.
The labeling process demands proficient domain knowledge and

is time-consuming and error-prone. A semi-supervised learning
framework can greatly alleviate the burden of data labeling.

Limitation: The lack of real-world high-quality videos is a major
limitation of this work. The effectiveness of our work could largely
depend on the quality of the training match videos. For instance,
the low resolution and slow frame rate of existing broadcast match
videos could affect the performance of stroke embedding. To ad-
dress this issue, we have adopted data augmentation to extend our
training data in video resolution, brightness, contrast, and rotation.
In the future, we plan to extend our training dataset by incorpo-
rating more real-world high-quality videos from different sources.

Generalizability: Tac-Valuer is not limited to table tennis stroke
evaluation. It can easily be extended to other similar racket sports,
such as tennis and badminton by following our data format to
prepare the training data and rules of inference. Moreover, given
the use of ABL, analysts can achieve a decent result with limited
labeled training data, which lowers the cost of extension.

7 CONCLUSION
In this work, we establish the problem of stroke evaluation in table
tennis. To solve this problem, we introduce a knowledge-based



framework, Tac-Valuer for automatic stroke evaluation. Tac-Valuer
is the first attempt to extract and embed stroke features from videos
based on analysts’ knowledge for comprehensive stroke evaluation.
Besides, Tac-Valuer enables decent model performance with limited
labeled training data. We evaluate the usefulness and priority of
the framework by two use cases and discover valuable insights
approved by analysts in the Chinese national table tennis team.

In the future, we plan to improve the framework from two as-
pects. First, we will try to improve the robustness of the framework.
We plan to expand the types of training data so that we can cover
sufficient types of videos. Second, we plan to refer to the concept
of causality and use causal models to construct the relationships
among multiple strokes in the framework. Third, we plan to extend
our framework to other similar sports like tennis.
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