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Stable Label-Specific Features Generation for
Multi-label Learning via Mixture-based Clustering

Ensemble
Yi-Bo Wang, Jun-Yi Hang, and Min-Ling Zhang

Abstract—Multi-label learning deals with objects associated
with multiple class labels, and aims to induce a predictive model
which can assign a set of relevant class labels for an unseen
instance. Since each class might possess its own characteristics,
the strategy of extracting label-specific features has been widely
employed to improve the discrimination process in multi-label
learning, where the predictive model is induced based on the
tailored features specific to each class label instead of the identical
instance representations. As a representative approach, LIFT
generates the label-specific features by conducting clustering
analysis. However, its performance may be degraded due to the
inherent instability of the single clustering algorithm. To improve
this, a novel multi-label learning approach named SENCE (stable
label-Specific features gENeration for multi-label learning via
mixture-based Clustering Ensemble) is proposed, which stabilizes
the generation process of the label-specific features via clustering
ensemble techniques. Specifically, more stable clustering results
are obtained by firstly augmenting the original instance repre-
sentation with the cluster assignments from base clusters and
then fitting a mixture model via the EM algorithm. Extensive
experiments on seventeen benchmark data sets show that SENCE
performs better than L IFT and other well-established multi-label
learning algorithms.

Index Terms—Multi-label learning, label-specific features, clus-
tering ensemble, Expectation-Maximization algorithm.

I. I NTRODUCTION

M ULTI-LABEL learning aims to build classification
models for objects assigned with multiple semantics

simultaneously, where each example is represented by a single
instance and a set of relevant class labels [1]. As multi-label
objects widely exist in the real world, multi-label learning has
diverse applications, such as text categorization [2], image
annotation [3], web mining [4], and bioinformatics analysis
[5], etc.

In recent years, significant amount of algorithms have
been proposed for multi-label learning. One common strategy
adopted by the most existing approaches is to build a predictive
model based on the identical instance representations for each
class label [1]. However, this strategy might be suboptimal as
each class label is supposed to have distinct characteristics of
its own. For instance, in text categorization, features corre-
sponding to word termsvoting, reformandgovernmentwould
be informative in discriminating political and non-political
documents, while features related to world termpiano, Mozart
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and sonata would be informative in discriminating musical
and non-musical documents. Therefore, the strategy oflabel-
specific features[6] has been proposed to benefit the discrim-
ination of different class labels.

As a representative approach for label-specific features,
L IFT [6] utilizes clustering techniques to investigate the un-
derlying properties of the feature space for each class label.
Nevertheless, the clustering in LIFT tends to be unstable due to
the inherent instability of the single clustering method [7]. To
address this, clustering ensemble techniques [8]–[10] can be
utilized to obtain clustering results with stronger stability and
robustness. With the assumption that the clustering results of
related labels should be similar, LIFTACE [8] employs cluster-
ing ensemble techniques to integrate the preliminary clustering
results of all class labels based on the consensus similarity
matrix. However, it fails to utilize the information embodied in
the original data representation during the combination process
of clustering ensemble.

To address above issues, a novel approach named SENCE,
i.e. stable label-Specific features gENeration for multi-label
learning via mixture-based Clustering Ensemble, is proposed,
which stabilizes the clustering process via a two-stage method.
Firstly, several base clusters are exploited to conduct clustering
analysis on positive and negative instances of each class label.
Then, base cluster assignments are combined via a tailored
EM procedure, where a mixture model is fitted on clustering-
augmented instances. After that, a predictive model is induced
based on the label-specific features derived from the improved
generation strategy.

In this paper, we advance label-specific features generation
via a novel clustering combination strategy, which is an
essential step in clustering ensemble. The novel strategy can
fully leverage the information hidden in the original data
representation and encoded in each cluster assignment to avoid
the suboptimal results of existing techniques. Comprehensive
experiments over 17 benchmark data sets indicate the effec-
tiveness of SENCE.

The rest of this paper is organized as follows. Section II
briefly reviews related works on multi-label learning. Section
III presents the proposed approach SENCE. Section IV reports
the experimental results on 17 benchmark datasets. Finally,
Section V concludes.

II. RELATED WORKS

The task of multi-label learning has been extensively studied
in recent years. Generally, the major challenge for multi-
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label learning is its huge output space which is exponential
to the number of class labels. Therefore, exploitinglabel
correlations is regarded as a common strategy to facilitate
the learning process. Roughly speaking, existing approaches
can be grouped into three categories based on the order of
correlations [1], [11], i.e.first-order approaches,second-order
approaches andhigh-orderapproaches. First-order approaches
tackle multi-label learning problem in a label-by-label manner
[3], [12]. Second-order approaches exploit pairwise relation-
ships between class labels [13], [14]. High-order approaches
exploit relationships among a subset of class labels or all class
labels [15]–[17].

In addition to exploiting label correlations in the output
space, another strategy for facilitating multi-label learning
is to manipulate the input space. The most straightforward
feature manipulation strategy is to conduct dimensionality
reduction [18]–[20] or feature selection [21]–[24], which is
also a common strategy used in multi-class learning, over
the original feature space. Besides, there are also some other
ways, such as generating meta-level features [25], [26] with
strong discriminative information from the original represen-
tation, constructing multi-view representations for multi-label
data [27]–[29], etc. Note that all these feature manipulation
strategies employ identical feature representation for all labels
in the discrimination process.

Instead, label-specific features generation serves as an al-
ternative feature manipulation strategy, which extracts the
most discriminative features for each individual label. Some
works generate label-specific features by selecting a different
subset of the original features for each class label [30]–
[33]. Based on the sparse assumption, the most pertinent and
discriminative features for each label can be identified using
spectral clustering and LASSO algorithms [34].

In addition to conducting label-specific feature selection
in the original feature space, it is also feasible to derive
label-specific features from a transformed feature space. For
example, LIFT [6] performs clustering analysis on the positive
and negative instances of each class label, and generates
label-specific features by querying the distances between the
instance and the clustering centers. To improve this, attribute
reduction [35] can be employed in the process of label-
specific features construction to remove redundant information
in generated label-specific features. Some other works aim
to enrich the label-specific features by exploiting the nearest
neighbor rule [36], exploring spatial topology structure [37],
jointly considering label-specific features generation and clas-
sification model induction [38], generating BiLabel-specific
features based on heuristic prototype selection and embedding
[39], or imposing structured sparsity regularization over the
label-specific features [40].

Recently, clustering ensemble techniques have been consid-
ered to enhance the process of label-specific features genera-
tion. However, the off-the-shelf clustering ensemble techniques
employed in previous methods fail to utilize the information
embodied in the original data representation [8], [41]. In
this paper, we propose a novel clustering ensemble strategy
for label-specific feature generation, where the information
hidden in the original data representation and encoded in each

cluster assignment is taken into consideration simultaneously
to facilitate the generation of more stable clustering. We will
detail our approach in the next section.

III. T HE PROPOSEDAPPROACH

A. Preliminaries

Formally, letX = Rd denote thed-dimensional input space
and Y = {l1, l2, . . . , lq} denote the label space includingq
class labels. Given the multi-label training setD = {(xi, Yi) |
1 ≤ i ≤ m} wherexi = [xi1, xi2, . . . , xid]T ∈ X is the d-
dimensional feature vector andYi ⊆ Y is the set of relevant
labels associated withxi, the task of multi-label learning is
to induce a predictive modelh : X → 2Y from D which can
assign a set of relevant labelsh(u) ⊆ Y for an unseen instance
u ∈ X . Specifically, LIFT learns fromD by taking two steps
i.e. label-specific features constructionand predictive model
induction.

In the first step, for each class labellk ∈ Y , instances are
divided into positive set and negative set as follows:

Pk = {xi | (xi, Yi) ∈ D, lk ∈ Yi}

Nk = {xi | (xi, Yi) ∈ D, lk /∈ Yi} (1)

Then LIFT performs k-means to partition both sets into
mk disjoint clusters where clustering centers are denoted
as {pk

1 , pk
2 , . . . , pk

mk
} and {nk

1 , nk
2 , . . . , nk

mk
} respectively.

Thereafter, the mappingφk : X → Zk from the original
d-dimensional input spaceX to the 2mk-dimensional label-
specific feature space w.r.t.lk can be created as follows:

φk(x) = [d(x,pk
1), . . . , d(x,pk

mk
), d(x,nk

1), . . . , d(x,nk
mk

)] (2)

Here, d(∙, ∙) returns the Euclidean distance between two
feature vectors.

In the second step, a new binary training setBk is con-
structed from the original training setD according to the label-
specific features generated by the mappingφk:

Bk = {(φk(xi), Yi(k)) | (xi, Yi) ∈ D} (3)

where Yi(k) = +1 if lk ∈ Yi and Yi(k) = −1 otherwise.
Based onBk, a classification modelgk : Zk → R for lk is
induced by invoking any binary learnerL. Given an unseen
instanceu ∈ X , its relevant label set is predicted as:

Y = {lk | gk(φk(u)) > 0, 1 ≤ k ≤ q} (4)

B. SENCE

SENCE learns fromD by taking four elementary stages,
which aims to induce a multi-label classification model with
the generated label-specific features. The first two stages are
designed to stabilize the clustering process via clustering
ensemble techniques. Specifically, the first stage augments
the original instance representations based on the cluster
assignments from base clusters. The second stage fits a mixture
model on augmented instances via the EM algorithm to obtain
more stable clustering results. The third stage constructs label-
specific features, and the fourth stage induces the predictive
models, which are consistent with the corresponding stages in
LIFT. To facilitate understanding, the notations set in SENCE

are summarized in Table I.
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TABLE I: The set of notations for SENCE.

NotationsDescription

m number of training examples

d number of features in input space

q number of class labels in label space

X the d dimensional feature space, i.e.X = Rd

Y the label space whereY = {l1, l2, . . . , lq}

r the number of base clusters

mk the number of mixture components w.r.t. class labellk

αj the mixing coefficient ofjth mixture component

μj the d dimensional mean vector ofjth mixture component

Σj the covariance matrix ofjth mixture component

vpj(l) The probability of the instance belonging to thelth cluster inpth

base cluster ofjth mixturecomponent

D the multi-label training set whereD = {(xi, Yi) | 1 ≤ i ≤ m}

xi the ith feature vector wherexi = [xi1, xi2, . . . , xid]T ∈ X

ti the ith cluster assignment vector whereti = (t1i , t2i , . . . , tri )

Yi the ith set of relevant labels whereYi ⊆ Y

u the unseen instance whereu ∈ X

1) Clustering-based Feature Augmentation:For each class
labellk, SENCE divides instances into positive set and negative
set donated asPk and Nk respectively according to Eq.(1).
To mitigate the inherent instability of the single clustering
method, different from LIFT, SENCE employs multiple base
clusters onPk andNk to derive cluster assignments and re-
representsPk andNk as follows:

Pk = {[xi, ti] | xi ∈ Pk}

Nk = {[xi, ti] | xi ∈ Nk} (5)

Here, ti = (t1i , t
2
i , . . . , t

r
i ) is a cluster assignment vector,

wherer is the number of base clusters and thepth element
indicates the cluster assignment given by thepth base cluster.
The cluster assignment vectorti is regarded as extra fea-
tures to augment the original instancexi. Thus, such feature
representation of instancesin Pk and Nk can fully encode
the information embodied in the original data representation
and the cluster assignments, which makes the following label-
specific features extraction more stable and robust.

2) Clustering Combination via A Mixture Model:Existing
clustering ensemble methods work in two steps, i.e. clustering
generation and clustering combination. In the clustering gen-
eration step, similar to existing clustering ensemble methods,
SENCE exploits several base clusters to conduct clustering
analysis on positive and negative instances of each class label.
As the original features and the augmented features are gener-
ated in different ways, existing clustering combination meth-
ods might be suboptimal. Thus, in the clustering combination
step, instead of directly combining base cluster assignments as
existing clustering ensemble methods do, SENCE innovatively
performs another clustering analysis on augmented instances
which treat the original features and the augmented features
in different ways. This novel clustering combination strategy
can leverage the information hidden in the original data repre-
sentation and encoded in each cluster assignment to facilitate
the generation of more stable clustering.

Assume that instancesin Pk are drawn from a finite mixture
distribution parameterized byΘ = {αj , μj ,Σj , ϑj | 1 ≤ j ≤
mk}, i.e.

P ([xi, ti] | Θ) =
mk∑

j=1

αjPj([xi, ti] | θj)

=
mk∑

j=1

αjPj(xi | μj ,Σj)Pj(ti | ϑj) (6)

wheremk is the number of mixture components which also
corresponds to the number of clusters in the final ensemble
clustering. Each mixture component is parameterized byθj

while αj > 0 is regarded as the mixing coefficient corre-
sponding to the prior probability of each clusters. In addition,∑mk

j=1 αj = 1. Note that random variablesxi and ti are
assumed to be conditionally independent to make the problem
tractable. This assumption is reasonable sinceti describes the
inherent structure of the whole training set, which is relatively
immune to a certain data pointxi.

In this paper, the instancexi is modeled as a random
variable drawn from a marginal distribution described as a
mixture of Gaussian distributionsaccording to Eq.(6), i.e.

P (xi) =
∑

ti

P ([xi, ti] | Θ) =
mk∑

j=1

αjPj(xi | μj ,Σj)

=
mk∑

j=1

αj
1

(2π)
d
2 |Σj |

1
2

e−
1
2 (xi−μj)

T Σ
−1
j (xi−μj)(7)

Here, each mixture component is parameterized byμj andΣj ,
whereμj andΣj are thed-dimensionalmean vectorand the
covariance matrixfor each mixture component respectively.

Similarly, the cluster assignment vectorti is modeled as a
random variable drawn from a marginal distribution described
as a mixture ofmultinomial distributionsaccording to Eq.(6),
i.e.

P (ti) =
∑

xi

P ([xi, ti] | Θ) =
mk∑

j=1

αjPj(ti | ϑj) (8)

Here, each mixture component is parameterized byϑj . As-
sume that the elements of the cluster assignment vectorti are
conditionally independent, then:

Pj(ti | ϑj) =
r∏

p=1

P
(p)
j (tpi | ϑ

(p)
j ) =

r∏

p=1

k(p)
∏

l=1

vpj(l)
δ(tp

i ,l) (9)

wherek(p) is the number of clusters in thepth base cluster.
In addition,δ(tpi , l) is theKroneckerδ function which returns
1 if tpi is equal tol and 0 otherwise. The probability of the
instance belonging to thelth cluster is defined asvpj(l) with
∑k(p)

l=1 vpj(l) = 1.
Based on the above assumptions, the problem of clustering

combination is now transformed into a maximum likelihood
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TABLE II: The pseudo-code of SENCE.

Inputs:

D: the multi-label training set{(xi, Yi) | 1 ≤ i ≤ m} (X = Rd,Y = {l1, l2, . . . , lq},xi ∈ X , Yi ⊆ Y)

r, $: the number of base clusters and the ratio parameter$ ∈ [0, 1] in Eq.(17)
L: the binary training algorithm
u: an unseen instance
Outputs:
Y : the predicted label set foru

Process:

1: for k = 1 to q do
2: FormPk andNk according to Eq.(1);
3: Obtain cluster assignment vectorti for each instance by performing clustering onPk andNk several times;
4: Re-representPk andNk asPk andNk according to Eq.(5);

5: Initialize parametersΘPk = {αPk
j ,μ

Pk
j ,Σ

Pk
j ,ϑ

Pk
j | 1 ≤ j ≤ mk} andΘNk = {αNk

j ,μ
Nk
j ,Σ

Nk
j ,ϑ

Nk
j | 1 ≤ j ≤ mk};

6: repeat
7: Estimate the posterior distribution of the hidden variablezi for each instancein Pk according to Eq.(11);

8: Update parametersΘPk = {αPk
j ,μ

Pk
j ,Σ

Pk
j ,ϑ

Pk
j | 1 ≤ j ≤ mk} according to Eq.(12)-(15);

9: until convergence;
10: repeat
11: Estimate the posterior distribution of the hidden variablezi for each instancein Nk according to Eq.(11);

12: Update parametersΘNk = {αNk
j ,μ

Nk
j ,Σ

Nk
j ,ϑ

Nk
j | 1 ≤ j ≤ mk} according to Eq.(12)-(15);

13: until convergence;
14: DividePk into mk clustersCPk = {CPk

1 , CPk
2 , . . . , CPk

mk
} according to Eq.(16);

15: DivideNk into mk clustersCNk = {CNk
1 , CNk

2 , . . . , CNk
mk
} according to Eq.(16);

16: Create the mappingφk for lk defined in Eq.(2) based onCPk andCNk ;
17: end for
18: for k = 1 to q do
19: FormBk according to Eq.(3);
20: Inducegk by invokingL on Bk, i.e. gk ← L(Bk);
21: end for
22: Return the predicted label setY = {lk | gk(φk(u)) > 0, 1 ≤ k ≤ q}.

estimation problem. The optimal parameterΘ∗ w.r.t. Pk is
found by maximizing the log-likelihood function as follows:

Θ∗ = arg max
Θ

L(Pk|Θ) = arg max
Θ

ln(
|Pk|∏

i=1

P ([xi, ti] | Θ))

= arg max
Θ

|Pk|∑

i=1

ln(
mk∑

j=1

αjPj(xi | μj ,Σj)Pj(ti | ϑj))(10)

The optimal parameterΘ∗ w.r.t. Nk is found in the same
way.

However, as all the parametersΘ = {αj , μj ,Σj , ϑj |
1 ≤ j ≤ mk} are unknown, the problem in Eq.(10) cannot
generally be solved in a closed form. Thus, theEM algo-
rithm is used to optimize Eq.(10). In order to perform the
EM algorithm, the hidden variablezi ∈ {1, 2, . . . ,mk} is
introduced to represent the corresponding mixture component
generating[xi, ti], i.e. zi = j if [xi, ti] belongs to thejth
mixture component. According to theBayes’ theorem, theE-
step of the EM algorithm can be obtained by estimating the
posterior distribution of the hidden variablezi as follows:

γij = P (zi = j | [xi, ti])

=
P (zi = j)P ([xi, ti] | zi = j)

P ([xi, ti])

=
αjPj(xi | μj ,Σj)Pj(ti | ϑj)∑mk

l=1 αlPl(xi | μl,Σl)Pl(ti | ϑl)
(11)

In other word,γij gives the posterior probability that[xi, ti]
is drawn from thejth mixture component. Given the value of
γij from the E-step, theM -step aims to maximize the log-
likelihood function L(Pk|Θ). The mean vectorμj and the
covariance matrixΣj are derived as follows:

∂L(Pk | Θ)
∂μj

= 0 ⇒ μj =

∑|Pk|
i=1 γijxi
∑|Pk|

i=1 γij

(12)

∂L(Pk | Θ)
∂Σj

= 0 ⇒ Σj =

∑|Pk|
i=1 γij(xi − μj)(xi − μj)T

∑|Pk|
i=1 γij

(13)

With the constraint
∑mk

j=1 αj = 1, Lagrange multipliersare
invoked to update the mixing coefficients:

∂(L(Pk | Θ) + λ(
∑mk

j=1 αj − 1))

∂αj
= 0 ⇒ αj =

1
m

|Pk|∑

i=1

γij (14)

Similarly, the optimal value ofvpj(l) is obtained as follows:

∂(L(Pk | Θ) + λ(
∑k(p)

l=1 vpj(l) − 1))
∂vpj(l)

= 0
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TABLE III: Characteristics of the experimental data sets.

Data set |S| dim(S) L(S) LCard(S) LDen(S) DL(S) PDL(S) Domain
flags 194 19 7 3.392 0.485 54 0.278 images
CAL500 502 68 174 26.044 0.150 502 1.000 audio
emotions 593 72 6 1.868 0.311 27 0.046 audio
medical 978 1449 45 1.245 0.028 94 0.096 text
llog 1,208 484 74 1.180 0.016 286 0.196 text
enron 1,702 1001 53 3.378 0.064 753 0.442 text
image 2,000 294 5 1.236 0.247 20 0.010 image
scene 2,407 294 5 1.074 0.179 15 0.006 image
yeast 2,417 103 14 4.237 0.303 198 0.082 biology
slashdot 3,659 805 22 1.181 0.054 119 0.033 text
corel5k 5,000 410 374 3.522 0.009 3175 0.635 image
arts 5,000 462 26 1.636 0.063 462 0.092 text
reference 5,570 29 33 1.187 0.036 240 0.043 text
health 8,116 115 32 1.649 0.052 314 0.039 text
entertainment 8,166 99 21 1.437 0.068 278 0.034 text
business 8,718 132 30 1.623 0.054 211 0.024 text
NUS-WIDE-c 10,000 128 81 2.403 0.030 2,448 0.245 image
socity 10,973 55 27 1.674 0.062 885 0.081 text

⇒ vpj(l) =

∑|Pk|
i=1 δ(tpi , l)γij

∑|Pk|
i=1

∑k(p)

l=1 δ(tpi , l)γij

(15)

In summary, for each iteration, theE-step estimates the
posterior distribution of the hidden variablezi according to
the current parameters while theM -step updates the optimal
values of all parameters according to Eq.(12)-(15).

3) Label-Specific Features Construction:According to the
induced mixing distributionon Pk, Pk is divided into mk

disjoint clusters donated as{CPk
1 , CPk

2 , . . . , CPk
mk

}. The final
cluster assignment of each instance inPk can be defined as
follows:

λi = arg max
j∈{1,2,...,mk}

γij (16)

Similarly, Nk is divided intomk disjoint clusters denoted as
{CNk

1 , CNk
2 , . . . , CNk

mk
} in the same way. Notice that the number

of clusters retained forPk is equal toNk in order to mitigate
the risk ofclass-imbalance, i.e. |Pk| � |Nk|. Specifically, the
value ofmk is set as:

mk = d$ ∙ min (|Pk|, |Nk|)e (17)

Here,$ ∈ [0,1] is a ratio parameter controlling the number of
clustersPk andNk retained, and|∙| returns the set cardinality.

Conceptually, cluster centers characterize the inherent struc-
ture of the positive and negative instances. Thus, clustering
centers can be used as prototypes to construct label-specific
features which are derived from more stable clustering. Similar
to LIFT, the mappingφk : X → Zk can be created according
to Eq.(2).

4) Predictive Model Induction:Similar to LIFT, SENCE

transforms the training setD into a new binary training setBk

for each class label according to Eq.(3). Any binary learnerL
can be applied to induce a classification modelgk : Zk → R
for lk based onBk. After that, an associated label set is
predicted for an unseen exampleu ∈ X according to Eq.(4)

Table II summarizes the procedure of SENCE. SENCE firstly
performs clustering several times to re-represent instances for
each label (step 2 to 4); After that, the EM algorithm is used
to yield more stable clustering (step 5 to 15) and label-specific

features are constructed for each class label (step 16); Then, a
family of q binary classification models are induced based on
the constructed label-specific features (step 18 to 21); Finally,
an unseen instance is fed to the learned models for predicting
the relevant labels (step 22).

IV. EXPERIMENTS

A. Experimental Setup

Given the multi-label data setS = {(xi, Yi) | 1 ≤ i ≤ m},
|S|, dim(S) andL(S) denote the number of examples, number
of features and number of possible class labels respectively.
In addition, several other multi-label properties [1], [15] are
denoted as:

• LCard(S) = 1
m

∑m
i=1 |Yi|: label cardinality measures

the average number of labels per example;
• LDen(S) = LCard(S)

L(S) : label density normalizes
LCard(S) by the number of possible labels;

• DL(S) = |{Y | (x, Y ) ∈ S}|: distinct label setscounts
the number of distinct label sets existing inS;

• PDL(S) = DL(S)
|S| : proportion of distinct label sets

normalizesDL(S) by the number of examples.

Table III summarizes the detailed characteristics of the
benchmark multi-label data sets employed in the experiments.
Data sets shown in Table III are roughly ordered by|S|. The
17 benchmark data sets exhibit diversified multi-label prop-
erties which provide a solid basis for thorough performance
evaluation.

To validate the effectiveness of the proposed approach, six
state-of-the-art multi-label learning approaches are used for
comparative studies.

• LPLC [42]: A second-order multi-label learning approach
which exploits the local positive and negative pairwise
label correlations by maximizingkNN-based posterior
probability. [k = 10, α = 0.1]

• LIFT [6]: A first-order multi-label learning approach,
which induces classifiers with the label-specific features
generated via conducting clustering analysis for each
class label. [Base learner: linear kernel SVM,r = 0.1]
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TABLE IV: Experimental results of the comparing approaches on the first nine data sets (↓: the smaller the better;↑: the larger
the better).

Comparing Hamming loss↓
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.271±0.042 0.138±0.006 0.177±0.019 0.011±0.002 0.017±0.001 0.050±0.009 0.153±0.013 0.074±0.005 0.188±0.008
LPLC 0.292±0.035 0.150±0.006 0.216±0.024 0.018±0.003 0.020±0.001 0.067±0.013 0.230±0.012 0.128±0.009 0.227±0.009
LIFT 0.267±0.058 0.138±0.006 0.183±0.019 0.012±0.003 0.018±0.001 0.049±0.008 0.154±0.014 0.078±0.006 0.191±0.007
LLSF 0.278±0.042 0.137±0.007 0.197±0.020 0.011±0.003 0.018±0.001 0.048±0.008 0.193±0.011 0.111±0.006 0.199±0.008
MLSF 0.292±0.060 0.138±0.007 0.207±0.022 0.010±0.002 0.018±0.001 0.055±0.010 0.185±0.020 0.110±0.014 0.211±0.013

LIFTACE 0.265±0.052 0.138±0.006 0.179±0.018 0.012±0.002 0.017±0.001 0.047±0.008 0.155±0.013 0.078±0.005 0.190±0.007
WRAP 0.285±0.030 0.137±0.007 0.237±0.024 0.125±0.037 0.018±0.001 0.072±0.029 0.198±0.012 0.120±0.006 0.210±0.007

Comparing Ranking loss↓
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.202±0.049 0.182±0.007 0.138±0.029 0.024±0.012 0.134±0.019 0.085±0.018 0.133±0.020 0.056±0.007 0.160±0.011
LPLC 0.226±0.046 0.228±0.016 0.178±0.028 0.072±0.011 0.330±0.018 0.208±0.046 0.199±0.026 0.107±0.010 0.188±0.011
LIFT 0.220±0.049 0.183±0.007 0.146±0.023 0.025±0.012 0.148±0.020 0.085±0.017 0.144±0.022 0.061±0.007 0.164±0.013
LLSF 0.232±0.048 0.188±0.014 0.172±0.022 0.032±0.016 0.223±0.021 0.104±0.014 0.178±0.021 0.091±0.010 0.169±0.013
MLSF 0.256±0.059 0.210±0.009 0.170±0.032 0.031±0.019 0.134±0.028 0.096±0.019 0.182±0.018 0.105±0.020 0.208±0.022

LIFTACE 0.222±0.055 0.183±0.007 0.147±0.027 0.028±0.012 0.154±0.021 0.085±0.019 0.145±0.023 0.060±0.005 0.164±0.012
WRAP 0.237±0.048 0.180±0.007 0.202±0.024 0.165±0.042 0.224±0.022 0.152±0.042 0.184±0.025 0.092±0.012 0.181±0.014

Comparing One-error↓
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.186±0.092 0.116±0.028 0.231±0.059 0.147±0.041 0.652±0.050 0.253±0.042 0.253±0.032 0.179±0.022 0.209±0.019
LPLC 0.240±0.083 0.210±0.052 0.297±0.045 0.312±0.056 0.789±0.029 0.540±0.124 0.347±0.040 0.249±0.028 0.236±0.024
LIFT 0.251±0.105 0.124±0.031 0.242±0.051 0.162±0.042 0.643±0.044 0.255±0.051 0.273±0.038 0.197±0.022 0.214±0.018
LLSF 0.249±0.103 0.120±0.033 0.280±0.068 0.143±0.047 0.686±0.036 0.255±0.043 0.334±0.040 0.258±0.024 0.221±0.021
MLSF 0.282±0.093 0.132±0.038 0.286±0.059 0.140±0.043 0.701±0.029 0.328±0.055 0.340±0.043 0.292±0.046 0.252±0.033

LIFTACE 0.255±0.128 0.124±0.031 0.249±0.057 0.163±0.039 0.635±0.042 0.249±0.044 0.271±0.039 0.191±0.020 0.215±0.027
WRAP 0.212±0.080 0.115±0.029 0.308±0.050 0.518±0.118 0.838±0.040 0.325±0.084 0.350±0.038 0.263±0.026 0.242±0.030

Comparing Coverage↓
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.524±0.047 0.754±0.014 0.277±0.033 0.038±0.016 0.176±0.026 0.239±0.051 0.161±0.016 0.060±0.006 0.447±0.017
LPLC 0.550±0.045 0.861±0.022 0.309±0.031 0.090±0.011 0.370±0.021 0.456±0.103 0.208±0.021 0.094±0.009 0.471±0.016
LIFT 0.542±0.043 0.756±0.015 0.285±0.035 0.039±0.016 0.193±0.028 0.241±0.048 0.169±0.018 0.064±0.006 0.453±0.019
LLSF 0.549±0.045 0.748±0.016 0.307±0.030 0.042±0.016 0.273±0.027 0.278±0.051 0.196±0.018 0.090±0.009 0.454±0.017
MLSF 0.558±0.054 0.820±0.026 0.299±0.047 0.047±0.024 0.172±0.035 0.255±0.055 0.197±0.017 0.101±0.015 0.524±0.038

LIFTACE 0.540±0.049 0.760±0.013 0.284±0.037 0.042±0.016 0.200±0.030 0.243±0.053 0.170±0.018 0.064±0.004 0.454±0.018
WRAP 0.550±0.048 0.753±0.014 0.337±0.047 0.188±0.043 0.274±0.029 0.356±0.080 0.198±0.021 0.092±0.011 0.466±0.019

Comparing Average precision↑
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.824±0.045 0.502±0.015 0.826±0.036 0.887±0.032 0.440±0.045 0.672±0.046 0.834±0.019 0.896±0.012 0.776±0.012
LPLC 0.800±0.033 0.461±0.022 0.784±0.030 0.748±0.042 0.250±0.021 0.472±0.096 0.772±0.026 0.843±0.014 0.753±0.015
LIFT 0.806±0.047 0.498±0.014 0.818±0.025 0.876±0.030 0.445±0.038 0.675±0.028 0.823±0.024 0.887±0.011 0.772±0.012
LLSF 0.795±0.041 0.505±0.023 0.794±0.027 0.893±0.031 0.400±0.032 0.673±0.032 0.784±0.023 0.845±0.014 0.762±0.013
MLSF 0.783±0.047 0.473±0.014 0.795±0.037 0.887±0.032 0.393±0.030 0.623±0.049 0.783±0.022 0.824±0.029 0.721±0.022

LIFTACE 0.804±0.052 0.498±0.016 0.817±0.031 0.875±0.026 0.446±0.040 0.687±0.051 0.824±0.024 0.889±0.010 0.772±0.013
WRAP 0.799±0.044 0.503±0.013 0.766±0.027 0.568±0.093 0.272±0.024 0.600±0.034 0.778±0.025 0.841±0.017 0.743±0.017

Comparing Macro-averaging AUC↑
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.699±0.050 0.527±0.027 0.858±0.024 0.922±0.035 0.733±0.033 0.695±0.023 0.871±0.025 0.953±0.005 0.707±0.015
LPLC 0.674±0.087 0.529±0.027 0.821±0.034 0.831±0.033 0.562±0.029 0.583±0.028 0.815±0.023 0.922±0.008 0.685±0.022
LIFT 0.699±0.057 0.529±0.020 0.844±0.025 0.923±0.035 0.747±0.034 0.704±0.033 0.860±0.026 0.949±0.005 0.694±0.017
LLSF 0.699±0.027 0.553±0.047 0.828±0.026 0.929±0.017 0.729±0.032 0.667±0.034 0.824±0.024 0.922±0.008 0.693±0.017
MLSF 0.683±0.056 0.524±0.019 0.835±0.029 0.935±0.033 0.706±0.046 0.646±0.026 0.823±0.025 0.915±0.016 0.633±0.016

LIFTACE 0.689±0.047 0.524±0.024 0.844±0.026 0.918±0.032 0.738±0.032 0.704±0.025 0.860±0.026 0.949±0.006 0.693±0.013
WRAP 0.696±0.076 0.466±0.034 0.797±0.027 0.407±0.061 0.333±0.027 0.485±0.056 0.816±0.026 0.907±0.012 0.629±0.026

• LLSF [30]: A second-order multi-label learning approach
based on label-specific features generated by retaining a
different subset of original features for each class label.
[α = 0.5, β = 0.5, γ = 0.5]

• MLSF [34]: A high-order multi-label learning approach
based on label-specific features, which performs sparse
regression to generate tailored features by retaining a
different subset of original features for a group of class
labels.[ε = 0.01, α = 0.8, γ = 0.01]

• LIFTACE [8]: A high-order multi-label learning approach
based on label-specific features generated by considering
label correlations via clustering ensemble techniques.
[Base learner: linear kernel SVM,r = 0.1, γ = 10]

• WRAP [38]: A high-order multi-label learning approach
which performs label-specific feature generation and clas-
sification model induction in a joint manner. [λ1 = 0.5,
λ2 = 0.5, λ3 = 0.1, α = 0.9]

For each comparing approach, parameter configurations
suggested in respective literature are stated above. For SENCE

shown in Table II, the parameter configuration corresponds to
$ = 0.4 and r = 5. Moreover, LIBSVM [43] is employed
as the binary learning algorithmL andk-means algorithm is
employed as the base clustering algorithm.

In addition, given the test setT = {(xi, Yi) | 1 ≤ i ≤ t}
and a family of q learned functions{f1, f2, . . . , fq}, six
evaluation metrics [1] widely-used in multi-label learning are
utilized in this paper to evaluate the performance of each
comparing approach:

• Hamming loss:

hloss =
1
t

t∑

i=1

|h(xi)4Yi|

Hamming loss evaluates the fraction of instance-label
pairs which are misclassified. Here,h(xi) = {lk |
fk(xi) > 0, 1 ≤ k ≤ q} corresponds to the predicted set
of relevant labels forxi, and4 stands for the symmetric
difference between two sets.
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TABLE V: Experimental results of the comparing approaches on the other nine data sets (↓: the smaller the better;↑: the
larger the better).

Comparing Hamming loss↓
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.055±0.002 0.010±0.000 0.052±0.001 0.036±0.001 0.049±0.005 0.067±0.001 0.030±0.001 0.026±0.000 0.059±0.001
LPLC 0.105±0.008 0.010±0.009 0.091±0.007 0.038±0.001 0.058±0.001 0.077±0.002 0.049±0.002 0.029±0.000 0.065±0.001
LIFT 0.058±0.003 0.010±0.000 0.052±0.001 0.042±0.013 0.051±0.006 0.071±0.011 0.031±0.003 0.026±0.000 0.059±0.001
LLSF 0.063±0.002 0.009±0.000 0.054±0.001 0.035±0.001 0.047±0.001 0.066±0.002 0.043±0.001 0.027±0.000 0.059±0.001
MLSF 0.061±0.002 0.009±0.000 0.054±0.004 0.037±0.002 0.048±0.002 0.066±0.002 0.030±0.001 0.027±0.001 0.059±0.001

LIFTACE 0.058±0.003 0.010±0.000 0.053±0.001 0.037±0.009 0.056±0.017 0.085±0.029 0.041±0.015 0.026±0.000 0.060±0.009
WRAP 0.076±0.002 0.009±0.000 0.062±0.002 0.036±0.001 0.047±0.001 0.068±0.002 0.030±0.001 0.030±0.000 0.058±0.001

Comparing Ranking loss↓
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.107±0.013 0.197±0.046 0.109±0.007 0.112±0.005 0.081±0.007 0.141±0.007 0.050±0.005 0.102±0.004 0.147±0.004
LPLC 0.469±0.025 0.714±0.018 0.424±0.022 0.311±0.018 0.192±0.011 0.286±0.015 0.137±0.011 0.277±0.013 0.313±0.008
LIFT 0.119±0.010 0.201±0.043 0.110±0.006 0.117±0.014 0.081±0.006 0.146±0.008 0.051±0.005 0.108±0.003 0.148±0.004
LLSF 0.122±0.009 0.410±0.081 0.137±0.013 0.138±0.009 0.136±0.009 0.185±0.013 0.182±0.011 0.106±0.003 0.185±0.010
MLSF 0.130±0.007 0.212±0.044 0.119±0.016 0.111±0.005 0.082±0.006 0.174±0.030 0.062±0.007 0.137±0.046 0.149±0.004

LIFTACE 0.117±0.014 0.205±0.044 0.110±0.006 0.113±0.009 0.081±0.015 0.157±0.033 0.059±0.014 0.109±0.003 0.150±0.010
WRAP 0.179±0.015 0.223±0.043 0.146±0.008 0.108±0.004 0.077±0.003 0.143±0.007 0.049±0.003 0.128±0.005 0.144±0.005

Comparing One-error↓
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.342±0.026 0.765±0.055 0.445±0.015 0.564±0.029 0.509±0.069 0.645±0.019 0.139±0.014 0.469±0.018 0.475±0.013
LPLC 0.705±0.024 0.874±0.072 0.826±0.014 0.558±0.028 0.485±0.018 0.617±0.024 0.143±0.013 0.545±0.017 0.518±0.015
LIFT 0.373±0.026 0.765±0.054 0.449±0.018 0.657±0.177 0.547±0.114 0.677±0.084 0.139±0.014 0.472±0.017 0.478±0.014
LLSF 0.342±0.021 0.816±0.027 0.460±0.018 0.546±0.026 0.431±0.016 0.582±0.022 0.278±0.014 0.474±0.017 0.504±0.011
MLSF 0.401±0.018 0.779±0.044 0.474±0.039 0.564±0.027 0.458±0.017 0.630±0.014 0.140±0.014 0.512±0.029 0.479±0.012

LIFTACE 0.368±0.021 0.757±0.052 0.452±0.015 0.604±0.119 0.573±0.207 0.733±0.171 0.393±0.374 0.472±0.014 0.514±0.126
WRAP 0.493±0.022 0.745±0.069 0.605±0.029 0.566±0.029 0.477±0.016 0.647±0.017 0.139±0.014 0.644±0.012 0.481±0.013

Comparing Coverage↓
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.124±0.013 0.437±0.077 0.167±0.008 0.127±0.005 0.124±0.007 0.177±0.006 0.091±0.007 0.199±0.007 0.215±0.005
LPLC 0.325±0.017 0.826±0.053 0.333±0.014 0.261±0.014 0.225±0.012 0.282±0.013 0.168±0.011 0.309±0.012 0.320±0.008
LIFT 0.136±0.010 0.445±0.070 0.169±0.007 0.133±0.014 0.124±0.007 0.180±0.007 0.092±0.007 0.208±0.005 0.216±0.004
LLSF 0.140±0.009 0.736±0.071 0.211±0.015 0.159±0.008 0.200±0.011 0.228±0.014 0.246±0.012 0.200±0.005 0.262±0.013
MLSF 0.148±0.007 0.469±0.075 0.181±0.024 0.127±0.005 0.132±0.011 0.233±0.045 0.118±0.012 0.270±0.097 0.217±0.005

LIFTACE 0.133±0.015 0.449±0.071 0.168±0.007 0.129±0.010 0.125±0.014 0.192±0.030 0.100±0.013 0.211±0.005 0.217±0.010
WRAP 0.196±0.015 0.495±0.063 0.209±0.009 0.124±0.005 0.121±0.004 0.178±0.006 0.090±0.005 0.240±0.007 0.212±0.006

Comparing Average precision↑
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.745±0.020 0.210±0.038 0.637±0.014 0.542±0.018 0.611±0.040 0.528±0.016 0.855±0.011 0.535±0.011 0.570±0.009
LPLC 0.445±0.021 0.091±0.031 0.358±0.013 0.521±0.019 0.603±0.012 0.498±0.019 0.814±0.012 0.469±0.012 0.524±0.009
LIFT 0.722±0.020 0.207±0.042 0.633±0.011 0.495±0.092 0.595±0.061 0.509±0.045 0.854±0.011 0.525±0.012 0.568±0.010
LLSF 0.742±0.015 0.142±0.017 0.622±0.015 0.561±0.019 0.644±0.008 0.550±0.017 0.723±0.012 0.542±0.012 0.551±0.009
MLSF 0.701±0.012 0.198±0.028 0.613±0.028 0.540±0.018 0.636±0.009 0.526±0.009 0.850±0.012 0.486±0.031 0.566±0.009

LIFTACE 0.727±0.018 0.210±0.039 0.632±0.011 0.523±0.061 0.586±0.108 0.472±0.111 0.738±0.168 0.525±0.011 0.553±0.057
WRAP 0.628±0.016 0.209±0.043 0.529±0.019 0.546±0.018 0.636±0.009 0.528±0.013 0.857±0.010 0.410±0.008 0.573±0.010

Comparing Macro-averaging AUC↑
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.871±0.012 0.601±0.048 0.747±0.016 0.542±0.031 0.619±0.022 0.586±0.024 0.525±0.023 0.736±0.016 0.534±0.023
LPLC 0.654±0.012 0.517±0.025 0.575±0.015 0.567±0.014 0.611±0.016 0.587±0.011 0.578±0.018 0.622±0.017 0.551±0.011
LIFT 0.867±0.011 0.603±0.044 0.748±0.019 0.566±0.030 0.628±0.045 0.592±0.032 0.575±0.032 0.683±0.010 0.545±0.018
LLSF 0.875±0.012 0.595±0.043 0.749±0.016 0.620±0.033 0.692±0.042 0.628±0.017 0.671±0.024 0.763±0.011 0.603±0.013
MLSF 0.846±0.011 0.561±0.029 0.739±0.014 0.555±0.032 0.636±0.026 0.591±0.020 0.578±0.026 0.706±0.015 0.551±0.011

LIFTACE 0.871±0.014 0.599±0.040 0.742±0.014 0.555±0.034 0.637±0.039 0.593±0.035 0.618±0.032 0.678±0.021 0.566±0.021
WRAP 0.774±0.020 0.234±0.075 0.606±0.021 0.432±0.060 0.484±0.038 0.555±0.031 0.538±0.030 0.533±0.016 0.567±0.019

• Ranking loss:

rloss =

1
t

t∑

i=1

|{(lk, lj) | fk(xi) ≤ fj(xi), (lk, lj) ∈ Yi × Yi}|

|Yi||Yi|

Ranking loss evaluates the fraction of relevant-irrelevant
label pairs which are reversely ordered.Here, Yi is the
complementary set ofYi ⊆ Y .

• One-error:

one–error =
1
t

t∑

i=1

Jarg max
lk∈Y

fk(xi) /∈ YiK

One-error evaluates the fraction of examples whose top-
ranked predicted label is not in the ground-truth relevant
label set. Here,JπK returns 1 if predicateπ holds and 0
otherwise.

• Coverage:

coverage =
1
q
(
1
t

t∑

i=1

max
lk∈Yi

rank(xi, lk) − 1)

Coverage evaluates the average number of steps needed
to move down the ranked label list in order to cover all
relevant labels. Here,rank(xi, lk) =

∑q
j=1Jfj(xi) ≥

fk(xi)K returns the rank oflk when all class la-
bels in Y are sorted in descending order according to
{f1(xi), f2(xi), . . . , fq(xi)}.

• Average precision:

avgprec =
1
t

t∑

i=1

1
|Yi|

∑

lk∈Yi

|R(xi, lk)|
rank(xi, lk)

Average precision evaluates the average fraction of rel-
evant labels which rank higher than a particular rele-
vant label. Here,R(xi, lk) = {lj | rank(xi, lj) ≤
rank(xi, lk), lj ∈ Yi}
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• Macro-averaging AUC:

AUCmarco =

1
q

q∑

k=1

|{(x′, x′′) | fk(x′) ≥ fk(x′′), (x′, x′′) ∈ Pk ×Nk}|
|Pk||Nk|

Macro-averaging AUC evaluates the average AUC value
across all class labels.

B. Experimental Results

Ten-fold cross-validation is performed on each benchmark
data set, where the mean metric value as well as standard
deviation are recorded. Tables IV and V report the detailed
experimental results in terms of each evaluation metric where
the best performance on each data set is shown in boldface.

TABLE VI: Friedman statisticsFF in terms of each evaluation
metric as well as the critical value at 0.05 significance level
(# comparing approachesn = 7, # data setsN = 18).

Evaluation metric FF critical value

Hamming loss 10.1962
Ranking los 27.0046
One-error 5.9978

2.1888
Coverage 24.9081
Average precision 9.7773
Macro-averaging AUC 14.5575

In addition, the widely-acceptedFriedman test[44] is em-
ployed here for statistical comparisons of multiple algorithms
over a number of data sets. Table VI summarizes the Friedman
statisticsFF and the corresponding critical values on each
evaluation metric atα = 0.05 significance level. As shown in
Table VI, the null hypothesis of ”equal” performance among
comparing approaches should be clearly rejected in terms of
each evaluation metric.

Therefore, theBonferroni-Dunn test[45] is employed as the
post-hoc test[44] to analyze the relative performance among
comparing approaches where SENCE is treated as the control
approach. Here, the difference between the average ranks of
SENCE and one comparing approach is calibrated with the
critical difference(CD). Here, their performance difference is
deemed to be significant if the average ranks of SENCE and
one comparing algorithm differ by at least one CD. In this
paper, we have CD=1.8996 at significance levelα = 0.05 as
k = 7 andN = 18.

Based on the reported experimental results, the following
observations can be made:

• As shown in Fig. 1, it is impressive that SENCE achieves
the lowest rank in terms of all evaluation metrics ex-
cept macro-averaging AUC. Furthermore, all comparing
approaches except LPLC and WRAP achieve statistically
comparable performance in terms ofmacro-averaging
AUC.

• Comparing with approaches without label-specific fea-
tures, SENCE significantly outperforms LPLC in terms
of all evaluation metrics. These results clearly indicate
the effectiveness of constructed label-specific features for
multi-label label learning.

• Among approaches with label-specific features, SENCE

significantly outperforms LLSF, MLSF and WRAP in
terms ofranking lossandcoverage. SENCE is comparable
to LIFT in terms of all evaluation metrics. Furthermore,
pairwise t-tests at 0.05 significance level show that
SENCE achieves superior or at least comparable perfor-
mance than LIFT in 97.2% cases out of 108 cases (18
data sets× 6 evaluation metrics). These results clearly
indicate our proposed clustering ensemble-based strategy
for label-specific features serves a more effective way
in achieving stable clustering and strong generalization
performance.

• SENCE is comparable to LIFTACE in terms of all evalua-
tion metrics. Further pairwiset-tests at 0.05 significance
level show that SENCE achieves superior or at least
comparable performance than LIFTACE in 96.3% cases
out of 109 cases (18 data sets× 6 evaluation metrics).
These results clearly validate the effectiveness of the pro-
posed clustering ensemble strategy employed in SENCE,
as both SENCE and LIFTACE utilize clustering ensemble
to facilitate the label-specific features construction.

All metric values are normalized in [0,1], where for the
first four metrics the smaller the metric value the better the
performance and for the other two metrics the larger the metric
value the better the performance.

C. Further Analysis

1) Parameter Sensitivity:As shown in Table II, there are
two parameters for SENCE to be tuned, i.e. the number of base
clustersr and the ratio parameter$. Fig.2 illustrates how
the performance of SENCE changes with varying parameter
configurations$ ∈ {0.1, 0.2, ∙ ∙ ∙ , 1} and r ∈ {1, 2, ∙ ∙ ∙ , 10}
on three benchmark data sets (evaluation metrics:hamming
lossandranking loss). As shown in Fig.2, the performance of
SENCE is relatively stable as the value ofr increases under
fixed value of $. On the other hand, the performance of
SENCE becomes stable as the value of$ increases beyond
0.4 under fixed value ofr. Therefore, the value of$ andr is
fixed to be 0.4 and 5 respectively for comparative studies in
this paper.

2) Base Learner:Among the six comparing algorithms em-
ployed in Subsection IV-A, three of them are tailored towards
concrete learning techniques. Specifically, LPLC is adapted
from k-nearest neighborwhile LLSF and WRAP adapted from
linear regression. On the other hand, LIFT, LIFTACE and
MLSF work in similar way as SENCE by transforming the
multi-label learning problem so that any base learner can be
applied thereafter. Considering that SENCE, LIFT, LIFTACE

and MLSF rely on the choice of base leanerL to instantiate
the learning approaches, Table VII reports the performance
of them on 8 data sets instantiated with different choices
of base learnerL (L ∈ {SVM, k-Nearest Neighbor (kNN),
Classification And Regression Tree (CART)}). As shown
in Table VII, the following observations can be made: (a)
The choice of base learner has significant influence on the
performance of each algorithm; (b) SENCE achieves superior
or comparable performance than other algorithms in most
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(b) Ranking loss
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(c) One-error
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(d) Coverage
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(e) Average precision
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LLSF

LIFT

LIFTACE

SENCE
MLSF

LPLC

WRAP

(f) Macro-averaging AUC

Fig. 1: Comparison of SENCE (control approach) against six comparing approaches with theBonferroni-Dunn test. Approaches
not connected with SENCE in the CD diagram are considered to have significantly different performance from the control
approach (CD=1.8996 at 0.05 significance level).

(a) emotions (hamming loss) (b) image (hamming loss) (c) yeast (hamming loss)

(d) emotions (ranking loss) (e) image (ranking loss) (f) yeast (ranking loss)

Fig. 2: Performance of SENCE changes with varying parameter configurations$ ∈ {0.1, 0.2, ∙ ∙ ∙ , 1} and r ∈ {1, 2, ∙ ∙ ∙ , 10}
(Data sets:emotions , image , yeast ; First row:hamming loss, the smaller the better; Second row:ranking loss, the smaller
the better).

cases with different base learners; (c) SENCE tends to perform
better when SVM is used as the base learner other thankNN
and CART.

3) Ablation Study:In training phase, SENCE employs mul-
tiple base clusters and a mixture model to yield the final clus-
tering. To analyze the rationality of these components, ablation
study on two variants of SENCE is further conducted in this
subsection. Specifically, SENCEK employsk-means to obtain
clustering results on augmented instances instead of a mixture
model; SENCEM employs one mixture gaussian model to yield
clustering results on original instance representations without
feature augmentation.

Table VIII reports the detailed experimental results of
SENCE and its two variants SENCEK, SENCEM on 8 bench-
mark data sets. Compared with SENCEM, SENCE achieves
statistically superior or comparable performance in all cases.

These results clearly validate the usefulness of multiple base
clusters which augment the original instance representations
with cluster assignments. Compared with SENCEK, SENCE

achieves statistically superior or comparable performance in
all cases. These results clearly indicate that the mixture
model might be more effective for integrating the preliminary
clustering results.

4) Algorithmic Complexity:Let FL(m, b) be the training
complexity of the binary learnerL w.r.t. m training examples
andb-dimensional features, the training complexity of SENCE

corresponds toO
(
q
(
I(md2 + rd$ ∙ me2 + d$ ∙ med3) +

FL(m, d$ ∙ me)
))

, whered3 is derived from the covariance
matrix inversion andI is the number of iterations. The testing
complexity of SENCE over unseen instanceu corresponds to
O
(
q
(
dd$ ∙me+F

′

L(d$ ∙me)
))

, whereFL(b)
′

is the testing
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TABLE VII: Experimental results of the comparing approaches instantiated with different base learnersL (L ∈ {SVM, k-
Nearest Neighbor (kNN), Classification And Regression Tree (CART)}). In addition,•/◦ indicates whether the performance of
SENCE is statistically superior/inferior to the comparing approaches on each data set (pairwise t-test at 0.05 significate level).

Base Comparing Hamming loss↓ win/tie/loss countslearner algorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c

L =SVM

LIFT 0.138±0.006 0.183±0.019• 0.078±0.006• 0.191±0.007• 0.052±0.001 0.042±0.013 0.051±0.006 0.026±0.000• 4/4/0
MLSF 0.138±0.007 0.207±0.022• 0.110±0.014• 0.211±0.013• 0.054±0.004 0.037±0.002 0.048±0.002 0.027±0.001• 4/4/0

LIFTACE 0.138±0.006 0.179±0.018 0.078±0.005• 0.190±0.007• 0.053±0.001 0.037±0.009 0.056±0.017 0.026±0.000• 3/5/0
SENCE 0.138±0.006 0.177±0.019 0.074±0.005 0.188±0.008 0.052±0.001 0.036±0.001 0.049±0.005 0.026±0.000 In Total: 11/13/0

L = kNN

LIFT 0.153±0.007 0.214±0.021 0.096±0.005 0.211±0.004• 0.059±0.001 0.036±0.001 0.050±0.001 0.028±0.001• 2/6/0
MLSF 0.148±0.006◦ 0.214±0.026 0.096±0.008 0.210±0.010 0.083±0.002• 0.038±0.002• 0.051±0.002 0.029±0.000• 3/4/1

LIFTACE 0.154±0.007 0.211±0.021 0.096±0.006 0.212±0.005• 0.059±0.001• 0.036±0.001 0.051±0.001• 0.028±0.001• 4/4/0
SENCE 0.152±0.008 0.212±0.017 0.098±0.005 0.207±0.005 0.059±0.001 0.036±0.001 0.050±0.001 0.027±0.001 In Total: 9/14/1

L =CART

LIFT 0.190±0.005• 0.258±0.026 0.128±0.010 0.258±0.008 0.082±0.003• 0.048±0.001 0.064±0.002• 0.039±0.001• 4/4/0
MLSF 0.201±0.010• 0.268±0.033 0.145±0.013• 0.285±0.008• 0.082±0.003• 0.049±0.002• 0.069±0.002• 0.045±0.001• 7/1/0

LIFTACE 0.190±0.004• 0.268±0.023 0.127±0.006 0.258±0.009 0.081±0.002• 0.048±0.001• 0.064±0.001• 0.039±0.001• 5/3/0
SENCE 0.185±0.005 0.260±0.023 0.129±0.007 0.257±0.008 0.074±0.002 0.047±0.002 0.062±0.002 0.036±0.001 In Total: 16/8/0

Base Comparing One-error↓ win/tie/loss countslearner algorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c

L =SVM

LIFT 0.124±0.031 0.242±0.051 0.197±0.022• 0.214±0.018 0.449±0.018 0.657±0.177 0.547±0.114 0.472±0.017 1/7/0
MLSF 0.132±0.038 0.286±0.059• 0.292±0.046• 0.252±0.033• 0.474±0.039• 0.564±0.027 0.458±0.017◦ 0.512±0.029• 5/2/1

LIFTACE 0.124±0.031 0.249±0.057• 0.191±0.020• 0.215±0.027 0.452±0.015 0.604±0.119 0.573±0.207 0.472±0.014 2/6/0
SENCE 0.116±0.028 0.231±0.059 0.179±0.022 0.209±0.019 0.445±0.015 0.564±0.029 0.509±0.069 0.469±0.018 In Total: 8/15/1

L = kNN

LIFT 0.092±0.027 0.292±0.059 0.221±0.015 0.221±0.023 0.537±0.032• 0.542±0.040 0.442±0.015 0.481±0.023 1/7/0
MLSF 0.104±0.023 0.276±0.038 0.248±0.027 0.169±0.029◦ 0.766±0.017• 0.556±0.029 0.467±0.028 0.520±0.051• 2/5/1

LIFTACE 0.116±0.044 0.283±0.053 0.231±0.035 0.221±0.016 0.526±0.033• 0.541±0.034 0.453±0.014 0.478±0.017 1/7/0
SENCE 0.104±0.034 0.297±0.073 0.232±0.022 0.224±0.027 0.504±0.030 0.541±0.033 0.449±0.022 0.483±0.016 In Total: 4/19/1

L =CART

LIFT 0.012±0.014 0.334±0.081 0.313±0.035 0.207±0.024• 0.613±0.014 0.664±0.025 0.553±0.026 0.580±0.011 1/7/0
MLSF 0.022±0.026 0.371±0.081 0.385±0.045• 0.213±0.032• 0.561±0.024◦ 0.661±0.031 0.559±0.025 0.641±0.051• 3/4/1

LIFTACE 0.010±0.014 0.337±0.065 0.305±0.028 0.211±0.026• 0.616±0.023• 0.684±0.019 0.565±0.024 0.569±0.014 2/6/0
SENCE 0.006±0.013 0.344±0.068 0.309±0.033 0.170±0.036 0.592±0.026 0.680±0.018 0.550±0.012 0.564±0.020 In Total: 6/17/1

Base Comparing Average precision↑ win/tie/loss countslearner algorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c

L =SVM

LIFT 0.498±0.014• 0.818±0.025 0.887±0.011• 0.772±0.012• 0.633±0.011 0.495±0.092 0.595±0.061 0.525±0.012• 4/4/0
MLSF 0.473±0.014• 0.795±0.037• 0.824±0.029• 0.721±0.022• 0.613±0.028• 0.540±0.018 0.636±0.009 0.486±0.031• 6/2/0

LIFTACE 0.498±0.016 0.817±0.031• 0.889±0.010• 0.772±0.013• 0.632±0.011 0.523±0.061 0.586±0.108 0.525±0.011• 4/4/0
SENCE 0.502±0.015 0.826±0.036 0.896±0.012 0.776±0.012 0.637±0.014 0.542±0.018 0.611±0.040 0.535±0.011 In Total: 14/10/0

L = kNN

LIFT 0.407±0.021 0.764±0.046 0.836±0.011 0.727±0.010 0.469±0.020 0.465±0.028 0.536±0.010◦ 0.425±0.008◦ 0/6/2
MLSF 0.412±0.017 0.778±0.032 0.835±0.016 0.720±0.011• 0.376±0.015• 0.479±0.027◦ 0.551±0.019◦ 0.385±0.039• 3/3/2

LIFTACE 0.405±0.020• 0.768±0.032 0.834±0.017 0.727±0.011 0.477±0.015◦ 0.458±0.024 0.520±0.010• 0.426±0.007◦ 2/4/2
SENCE 0.410±0.019 0.763±0.051 0.829±0.010 0.728±0.010 0.460±0.016 0.459±0.022 0.526±0.009 0.418±0.006 In Total: 5/13/6

L =CART

LIFT 0.306±0.008 0.701±0.038 0.764±0.021 0.630±0.013 0.431±0.011 0.423±0.018 0.466±0.015 0.308±0.011◦ 0/7/1
MLSF 0.286±0.018• 0.690±0.045 0.711±0.032• 0.609±0.016• 0.453±0.019◦ 0.428±0.026 0.462±0.018 0.264±0.025• 4/3/1

LIFTACE 0.307±0.011 0.696±0.033 0.770±0.019 0.628±0.009 0.429±0.020 0.409±0.012 0.460±0.013 0.314±0.009◦ 0/7/1
SENCE 0.310±0.016 0.693±0.039 0.755±0.019 0.624±0.014 0.436±0.021 0.416±0.011 0.468±0.009 0.290±0.011 In Total: 4/17/3

TABLE VIII: Experimental results of SENCE and its two ablated variants on eight data sets. In addition,•/◦ indicates whether
the performance of SENCE is statistically superior/inferior to the variants on each data set (pairwise t-test at 0.05 significate
level).

Comparing Hamming loss↓ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.138±0.007 0.186±0.018 0.080±0.005• 0.195±0.008• 0.055±0.001• 0.036±0.001 0.051±0.010 0.026±0.000• 4/4/0
SENCEK 0.137±0.007 0.199±0.016• 0.087±0.004• 0.201±0.010• 0.056±0.002• 0.037±0.007 0.048±0.008 0.026±0.000• 5/3/0
SENCE 0.138±0.006 0.177±0.019 0.074±0.005 0.188±0.008 0.052±0.001 0.036±0.001 0.049±0.005 0.026±0.000 In Total: 9/7/0

Comparing Ranking loss↓ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.181±0.006 0.151±0.022• 0.066±0.006• 0.167±0.010• 0.136±0.007• 0.114±0.007 0.082±0.007 0.114±0.005• 5/3/0
SENCEK 0.181±0.005 0.160±0.025• 0.071±0.004• 0.173±0.011• 0.137±0.005• 0.118±0.009 0.079±0.010 0.111±0.004• 5/3/0
SENCE 0.182±0.007 0.138±0.029 0.056±0.007 0.160±0.011 0.109±0.007 0.112±0.005 0.081±0.007 0.102±0.004 In Total: 10/6/0

Comparing One-error↓ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.118±0.027 0.242±0.051 0.204±0.025• 0.225±0.024• 0.511±0.018• 0.569±0.031 0.527±0.148 0.477±0.018• 4/4/0
SENCEK 0.120±0.030 0.278±0.052• 0.217±0.019• 0.227±0.028• 0.514±0.017• 0.598±0.092 0.488±0.138 0.480±0.017• 5/3/0
SENCE 0.116±0.028 0.231±0.059 0.179±0.022 0.209±0.019 0.445±0.015 0.564±0.029 0.509±0.069 0.469±0.018 In Total: 9/7/0

Comparing Coverage↓ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.750±0.018 0.290±0.035• 0.069±0.004• 0.454±0.015• 0.199±0.009• 0.129±0.007 0.126±0.007 0.218±0.007• 5/3/0
SENCEK 0.752±0.012 0.294±0.033• 0.073±0.003• 0.462±0.014• 0.200±0.007• 0.134±0.011 0.125±0.010 0.214±0.006• 5/3/0
SENCE 0.754±0.014 0.277±0.033 0.060±0.006 0.447±0.017 0.167±0.008 0.127±0.005 0.124±0.007 0.199±0.007 In Total: 10/6/0

Comparing Average precision↑ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.499±0.013 0.814±0.027 0.880±0.013• 0.766±0.014• 0.581±0.014• 0.536±0.024 0.601±0.070 0.519±0.011• 4/4/0
SENCEK 0.498±0.012 0.800±0.032• 0.872±0.009• 0.757±0.014• 0.578±0.012• 0.524±0.040 0.626±0.067 0.520±0.012• 5/3/0
SENCE 0.502±0.015 0.826±0.036 0.896±0.012 0.776±0.012 0.637±0.014 0.542±0.018 0.611±0.040 0.535±0.011 In Total: 9/7/0

Comparing Macro-averaging AUC↑ win/tie/loss countsalgorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c
SENCEG 0.516±0.013 0.834±0.028• 0.945±0.006• 0.654±0.021• 0.637±0.024• 0.565±0.038 0.597±0.034• 0.611±0.013• 6/2/0
SENCEK 0.520±0.026 0.828±0.025• 0.937±0.005• 0.641±0.018• 0.639±0.020• 0.554±0.029 0.596±0.032 0.621±0.017• 5/3/0
SENCE 0.527±0.027 0.858±0.024 0.953±0.005 0.707±0.015 0.747±0.016 0.542±0.031 0.619±0.022 0.736±0.016 In Total: 11/5/0

complexity of L in predicting one unseen instance withb-
dimensional features.

Fig.3 illustrates the execution time (training phase as well
as testing phase) of all the comparing algorithms investigated
in Subsection IV-A on five benchmark data setsemotions ,
enron , image , corel5k , and NUS-WIDE-c . Across the
5 data sets, their number of examples, features and class
labels range from 593 to 10,000, 72 to 1001, and 5 to

374 respectively. The training time of SENCE is relatively
comparable to the comparing approaches except LPLC and
LLSF. Furthermore, the test time of SENCE is higher than
LLSF and WRAP while relatively comparable to the other com-
paring approaches. Note that due to the cubic computational
complexity of SENCE w.r.t. d (i.e. the number of features in
input space), the proposed approach may have problem when
applied to data sets with high-dimensionality features. We will
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(a) Training time of comparing approaches (b) Test time of comparing approaches

Fig. 3: Running time (training/test) of each comparing approach on five benchmark data sets. For histogram illustration, the
y-axis corresponds to the logarithm of running time.

leave it for future work.

V. CONCLUSION

In this paper, the problem of generating label-specific fea-
tures for multi-label learning is investigated. A novel approach
for label-specific features generation is proposed, which sta-
bilizes the generation process of the label-specific features
via clustering ensemble techniques. Specifically, the final
clustering used to construct label-specific features is obtained
by fitting a mixture model on instances augmented with the
base cluster assignments via the EM algorithm. Comprehen-
sive experimental studies validate the effectiveness of the
proposed approach against state-of-the-art multi-label learning
algorithms. In the future, it is interesting to consider generating
label-specific features by exploiting label correlations based
on the proposed SENCE and investigate a more general joint
distribution by taking dependency of the original instance and
corresponding cluster assignment vector into account.
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