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Stable Label-Specific Features Generation for
Multi-label Learning via Mixture-based Clustering
Ensemble

Yi-Bo Wang, Jun-Yi Hang, and Min-Ling Zhang

Abstract—Multi-label learning deals with objects associated and sonatawould be informative in discriminating musical
with multiple class labels, and aims to induce a predictive model and non-musical documents. Therefore, the strategglugl-

which can assign a set of relevant class labels for an unseengyeific features] has been proposed to benefit the discrim-
instance. Since each class might possess its own characteristics

the strategy of extracting label-specific features has been widely ination of different c!ass labels. "
employed to improve the discrimination process in multi-label As a representative approach for label-specific features,
learning, where the predictive model is induced based on the LIFT [6] utilizes clustering techniques to investigate the un-

tailored features specific to each class label instead of the identical derlying properties of the feature space for each class label.
instance representations. As a representative approach, IET  Nayertheless, the clustering infT tends to be unstable due to

generates the label-specific features by conducting clustering . . . . .
analysis. However, its performance may be degraded due to the the inherent instability of the single clustering method [7]. To

inherent instability of the single clustering algorithm. To improve ~ address this, clustering ensemble techniques [8]-[10] can be
this, a novel multi-label learning approach named &NcCE (stable utilized to obtain clustering results with stronger stability and
label-Specific features gENeration for multi-label learning via robustness. With the assumption that the clustering results of
mixture-based Clustering Ensemblés proposed, which stabilizes related labels should be similarjiTACE [8] employs cluster-
the generation process of the label-specific features via clustering . . . S .
ensemble techniques. Specifically, more stable clustering results'"Y ensemble techniques to integrate the preliminary clgst_erlr_lg
are obtained by f|rst|y augmenting the 0r|g|na| instance repre_ reSU|tS Of a“ ClaSS |abe|S based on the consensus Slml|al’lty
sentation with the cluster assignments from base clusters and matrix. However, it fails to utilize the information embodied in
then fitting a mixture model via the EM algorithm. Extensive the original data representation during the combination process
experiments on seventeen benchmark data sets show thatSce ¢ clustering ensemble.
performs better than LIFT and other well-established multi-label .
learning algorithms. _ To address above issues, a novel apprc_;ach narﬂa@[%s
i.e. stable label-Specific features gENeration for multi-label

learning via mixture-based Clustering Ensemheproposed,
which stabilizes the clustering process via a two-stage method.
Firstly, several base clusters are exploited to conduct clustering

[. INTRODUCTION analysis on positive and negative instances of each class label.
ULTI-LABEL learning aims to build classification Then, base cluster assignments are combined via a tailored

models for objects assigned with multiple semantidsM procedure, where a mixture model is fitted on clustering-

simultaneously, where each example is represented by a sifgfi@mented instances. After that, a predictive model is induced
instance and a set of relevant class labels [1]. As multi-ladesed on the label-specific features derived from the improved
objects widely exist in the real world, multi-label learning hageneration strategy.
diverse applications, such as text categorization [2], imageln this paper, we advance label-specific features generation
annotation [3], web mining [4], and bioinformatics analysi¥ia @ novel clustering combination strategy, which is an
[5], etc. essential step in clustering ensemble. The novel strategy can

In recent years, significant amount of algorithms haJélly leverage the information hidden in the original data
been proposed for multi-label learning. One common strateffPresentation and encoded in each cluster assignment to avoid
adopted by the most existing approaches is to build a predicti¥ suboptimal results of existing techniques. Comprehensive
model based on the identical instance representations for e§¥Reriments over 17 benchmark data sets indicate the effec-
class label [1]. However, this strategy might be suboptimal f¥eness of ENCE
each class label is supposed to have distinct characteristics ofhe rest of this paper is organized as follows. Section II
its own. For instance, in text categorization, features corr@tiefly reviews related works on multi-label learning. Section
sponding to word termsoting reform andgovernmentvould !l presents the proposed approachN&E. Section IV reports
be informative in discriminating political and non-politicalthe experimental results on 17 benchmark datasets. Finally,
documents, while features related to world tesiano, Mozart Section V concludes.

Index Terms—Multi-label learning, label-specific features, clus-
tering ensemble, Expectation-Maximization algorithm.
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label learning is its huge output space which is exponentigluster assignment is taken into consideration simultaneously

to the number of class labels. Therefore, exploitiiadpel to facilitate the generation of more stable clustering. We will

correlations is regarded as a common strategy to facilitatéetail our approach in the next section.

the learning process. Roughly speaking, existing approaches

can be grouped into three categories based on the order of [1l. THE PROPOSEDAPPROACH

correlations [1], [11], i.efirst-order approachessecond-order a  preliminaries

approaches anlligh-orderapproaches. First-order approaches . . .

tackle multi-label learning problem in a label-by-label manner Formally, let’ = R denote thei-dimensional Input space

[3], [12]. Second-order approaches exploit pairwise relatioﬁ-ndy ~ {11’12.’ o lg} denlote the I".’lb.el space including

ships between class labels [13], [14]. High-order approach IQSS_ labels. Given the multi-label tralnlngTQBt: {(.mi’yi) |
< i < m} wherex; = [z;1,%2,...,3iq)" € X is thed-

exploit relationships among a subset of class labels or all class™ ~ — :
Iabpels [15][17] P 9 ds|menS|0naI feature vector arld C Y is the set of relevant

In addition to exploiting label correlations in the outpu abels associated witle;, the task of multi-label learning is

. - _ v :
space, another strategy for facilitating multi-label learnin '?drl‘lce atp:(erd'ft\'lviﬁ]ot?g ' XC_;JQf rframr? WE'?: tca:}n
is to manipulate the input space. The most straightforwal sign a set of relevant labeigu) C J for an unseen instance

feature manipulation strategy is to conduct dimensionalifflE X. Specifically, UFT learns fromD by taking two steps

reduction [18]-[20] or feature selection [21]-[24], which id-C: label-specific features constructicand predictive model

also a common strategy used in multi-class learning, O\)glductlon. .

the original feature space. Besides, there are also some othel,-P the. first ste_p, for each class !ati@l €YV, mstanc.eS are
ways, such as generating meta-level features [25], [26] Wi%wded into positive set and negative set as follows:
strong discriminative information from the original represen- P ={z; | (x;,Y;) €D,lx € Y;}

tation, constructing multi-view representations for multi-labe N ={zi | (z;,Yi) € D, ¢ Y3} (1)
data [27]—-[29], etc. Note that all these feature manipulation

strategies employ identical feature representation for all labelsT"€n. LFT performs k-means to partition both sets into
in the discrimination process. my, disjoint clusters where clustering centers are denoted

kL k k k k k i
Instead, label-specific features generation serves as an-?%érlégf%r’,‘fh’ep rnnwé}é)p?r?;k{th;\(ni' ' ékn?;égn rtisep%(;itgiﬁz
ternative feature manipulation strategy, which extracts tledimensional input spac&’ to the 2n,-dimensional label-
most discriminative features for each individual label. Sonspecific feature space w.rl, can be created as follows:
works generate label-specific features by selecting a different, \ k k k k
subset of the original features for each class label [30 (@) = [d(@,p1), -, d(@, Py ), (@, 03), -, d(@, )] (2)
[33]. Based on the sparse assumption, the most pertinent amtere, d(-,-) returns the Euclidean distance between two
discriminative features for each label can be identified usifigature vectors.
spectral clustering and LASSO algorithms [34]. In the second step, a new binary training ##t is con-

In addition to conducting label-specific feature selectiogtructed from the original training sét according to the label-
in the original feature space, it is also feasible to derivpecific features generated by the mapping
label-specific features from a transformed feature space. For
exampFe, LFT [6] performs clustering analysis on the Bositive B = {(gx(@:), Yi(k)) | (=:,Y:) € D} 3)
and negative instances of each class label, and generatbsreY;(k) = +1 if I, € Y; andY;(k) = —1 otherwise.
label-specific features by querying the distances between Based onl3;, a classification modef; : Z, — R for [ is
instance and the clustering centers. To improve this, attributeluced by invoking any binary learné). Given an unseen
reduction [35] can be employed in the process of labdhstanceu € X, its relevant label set is predicted as:
specific features construction to remove redundant information
inIO generated label-specific features. Some other works aim Y= {l | gr(ér(u)) > 0,1 < k < g} “)
to enrich the label-specific features by exploiting the nearest
neighbor rule [36], exploring spatial topology structure [37[B- SENCE
jointly considering label-specific features generation and clas-SENCE learns fromD by taking four elementary stages,
sification model induction [38], generating BilLabel-specifigvhich aims to induce a multi-label classification model with
features based on heuristic prototype selection and embeddimg generated label-specific features. The first two stages are
[39], or imposing structured sparsity regularization over thgesigned to stabilize the clustering process via clustering
label-specific features [40]. ensemble techniques. Specifically, the first stage augments

Recently, clustering ensemble techniques have been consiigt original instance representations based on the cluster
ered to enhance the process of label-specific features genassignments from base clusters. The second stage fits a mixture
tion. However, the off-the-shelf clustering ensemble techniquesdel on augmented instances via the EM algorithm to obtain
employed in previous methods fail to utilize the informatiomore stable clustering results. The third stage constructs label-
embodied in the original data representation [8], [41]. Iapecific features, and the fourth stage induces the predictive
this paper, we propose a novel clustering ensemble strateggdels, which are consistent with the corresponding stages in
for label-specific feature generation, where the informatidniFT. To facilitate understanding, the notations set ENSE
hidden in the original data representation and encoded in earh summarized in Table .
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TABLE I: The set of notations for &\CE Assume that instancés P, are drawn from a finite mixture
distribution parameterized b§ = {o;, p;, 3;,9; |1 < j <
mk}, i.e.

NotationgDescription

m number of training examples
d number of features in input space m
q numbe.r of clgss labels in label space Pz, t;] | ©) = Z a; Pj([zi, ti] | 6;)
X the d dimensional feature space, i&. = R¢ =
N the label space whe® = {l1,1l2,...,14} "
k

r the number of base clusters

= o Py |y, 35)Pi(ts | 9) (6
Mg the number of mixture components w.r.t. class lakel Z; iPi(@i | g 25)P;(ti | 95) (6)
o the mixing coefficient ofjth mixture component =
i the d dimensional mean vector gth mixture component wheremy, is the number of mixture components which also
%5 the covariance matrix ofth mixture component

corresponds to the number of clusters in the final ensemble
clustering. Each mixture component is parameterizedpy
while a; > 0 is regarded as the mixing coefficient corre-

vp; (1)  |The probability of the instance belonging to thib cluster inpth
base cluster ofth mixture component

D he multi-I | trainin wh = LY 1<:< . . - .
the ' ulti-label training set wher® = {(z;, Yi) | e i< m} sponding to the prior probability of each clusters. In addition,

x; the ith feature vector where; = [z;1, zi2,...,2iq]" € X me .

) i D > % a; = 1. Note that random variables; and t; are
t; the ith cluster assignment vector whete= (t;,t7,...,t] J= " .

. ' assumed to be conditionally independent to make the problem
Y; the ith set of relevant labels wheig C Y . . . . X

. tractable. This assumption is reasonable sihadescribes the

u the unseen instance whetec X

inherent structure of the whole training set, which is relatively
immune to a certain data point;.

1) Clustering-based Feature Augmentatidfor each class 'T‘ this_paper, the mstanc_e:i IS _quel_ed as a _random
variable drawn from a marginal distribution described as a

labell;, SENCEdivides instances into positive set and negativr%ixture of Gaussian distributionsiccording to Eq.(6), i.e
set donated a®, and N} respectively according to Eq.(1). 9 q.05), 1.€.
To mitigate the inherent instability of the single clustering "
method, different from LFT, SENCE employs multiple base  p(g,) P(jx;, ] | ©) = o, Pi(x | s, 25)
clusters onP, and N}, to derive cluster assignments and re- tz ; Y e
represents?;, and A\, as follows: me 1 .

- , —3(@i—p))TS; (wq'—uj)(7)

Qj i ¢
(2m) 8|z}

P = {[zi, ti] | i € Py}

Nk = {[iL‘i,ti] | x; € Nk} (5)

j=1

Here, each mixture component is parameterizegkpgnd: ;,
Here, t; = (t;,t7,...,t]) is a cluster assignment vector wherey; ands:; are thed-dimensionaimean vectomand the
wherer is the number of base clusters and fite element covariance matrixfor each mixture component respectively.
indicates the cIu;ter assignment _given by fite base cluster. Similarly, the cluster assignment vectris modeled as a
The cluster assignment vectdy is regarded as extra fea-ranqom variable drawn from a marginal distribution described

tures to augment the original instanee. Thus, such feature 55 4 mixture ofnultinomial distributionsaccording to Eq.(6),
representation of instanceés P, and NV, can fully encode ;o

the information embodied in the original data representation

and the cluster assignments, which makes the following label- mk

specific features extraction more stable and robust. P(t;) = P(zit] | ©) =) a;Pi(t; | 9)) 8
2) Clustering Combination via A Mixture ModeEXxisting @i j=l1

clustering ensemble methods work in two steps, i.e. clusteri$ . . .
generation and clustering combination. In the clustering geH{€"®: €ach mixture component is parameterizeddby As-
me that the elements of the cluster assignment veéctme

eration step, similar to existing clustering ensemble method!™€ | :

SENCE exploits several base clusters to conduct clusterifg@nditionally independent, then:
analysis on positive and negative instances of each class label. L)
As the original features and the augmented features are gener- " , - »

ated in di?ferent ways, existing clugtering combination mgetth(ti |9)) = H Pj(p) (t7 | "95'1))) = H H ”P-j(l)é(tl Y ©)
ods might be suboptimal. Thus, in the clustering combination p=1 p=1i=1

step, instead of directly combining base cluster assignments as . )

existing clustering ensemble methods densE innovatively Where _k_(p) IS tpe number of clusters in theth base cluster.
performs another clustering analysis on augmented instan&?dg"ﬁ'on"s(ti’l) is theKroneckers function which returns
which treat the original features and the augmented featured %i 1S equal tol and O otherwise. The probability of the
in different ways. This novel clustering combination strateg§iStance belonging to thieh cluster is defined as,; () with

.(p
can leverage the information hidden in the original data repres,—; vp; () = 1.
sentation and encoded in each cluster assignment to facilitat®ased on the above assumptions, the problem of clustering
the generation of more stable clustering. combination is now transformed into a maximum likelihood
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TABLE II: The pseudo-code of BNCE.

Inputs:

D: the multi-label training sef(x;,Y;) | 1 <i <m} (X = R4, Y = {l1,1l2,...,lq},x; € X,Y; C V)
r,w: the number of base clusters and the ratio parameter [0, 1] in Eq.(17)

£ the binary training algorithm

u: an unseen instance

Outputs:

Y: the predicted label set far

Process:

1: for k=1toq do

2: Form P, and N}, according to Eq.(1);

3:  Obtain cluster assignment vecttyr for each instance by performing clustering ® and N} several times;
4:  Re-represenP; and Ny asP; and A}, according to Eq.(5);

5 Initialize parameter®7Px = {afk,uj k EP’“ 197)’* [1<j<my}and@Ne = {e N
6 repeat o

7 Estimate the posterior distribution of the hidden variahldor each instancén P, according to Eq.(11);
8: Update paramete@®7» = {af’”‘,pf’“, ka,ﬂfk | 1 < j < my} according to Eq.(12)-(15);

9:  until convergence;

,u]’“ EN" "9Nk|1<]<mk};

10:  repeat

11: pEstimate the posterior distribution of the hidden variahléor each instancén N, according to Eq.(11);
12: Update paramete@~k = {a?fk Ty N EN’“ 19N’< | 1 <j < my} according to Eq.(12)-(15);

13:  until convergence;

14:  Divide Py, into my clustersC™r = {Cpk CP"‘ . mk} according to Eq.(16);

15 Divide NV}, into my, clustersCNk = {CN”C CN" . mk} according to Eq.(16);

16: Create the mapping, for [;, defined in Eq.(2) based a@”x andCVk;

17: end for

18: for k =1 to q do

19: Form By, according to Eq.(3);

20: Inducegy, by invoking £ on By, i.e. g, — £(Bk);

21: end for

22: Return the predicted label sEt= {l; | gx(¢x(w)) > 0,1 < k < g}.

estimation problem. The optimal parame®r w.rt. P, is __b(@i|py, BB | 9))

found by maximizing the log-likelihood function as follows: Yl | e, X)) Pt | 90)
Prl In other word,v;; gives the posterior probability thék;, ¢;]

oF — argmaxL(Pk|®) _ argmaxln H P(lzi,t] | ©)) is drawn from thejth mixture component. Givclan.the value of
7i; from the E-step, theM-step aims to maximize the log-
Bl likelihood function L(Px|®). The mean vectop; and the

— arg malen ZO‘J (z: | 1y, 2,)Pi(t: | 9;)X10) covariance matrix®; are derived as follows:
Jj=

i=1

oLP1©) o Sl 12)
_ - 7]
The optimal paramete®* w.r.t. N, is found in the same On; Z‘f’;' Yij
Way. aL 7)7 @ |'Pk‘ €T N, — AYA
However, as all the paramete® = {a;,p;, X;,9; | (82! ) o= ;= iz i Z‘P 71)( )
1 < j < my} are unknown, the problem in Eq.(10) cannot J Dim1 Vig
generally be solved in a closed form. Thus, B algo- (13)

rithm is used to optimize Eq.(10). In order to perform the
EM algorithm, the hidden variable; € {1,2,...,my} is
introduced to represent the corresponding mixture compon
generating[xz;, t;], i.e. z; = j if [x;,t;] belongs to thejth - \Pkl
mixture component. According to tHgayes’ theoremthe E- O(L(Px | ©) + A(Z 15— 1) 0= o — Z (14)
step of the EM algorithm can be obtained by estimating the da; N 7 i
posterior distribution of the hidden variable as follows:

With the constramg =10 = 1, Lagrange multipliersare
doked to update the mixing coefficients:

Similarly, the optimal value of,;(l) is obtained as follows:
vij = Plzi=7|lziti])
Pz =j)P(miti] | 2 =J) O(L(Pk | ©) + ACH v = 1) _
P([i, t]) Aup; (1)
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TABLE IlI: Characteristics of the experimental data sets.

Data set [S] dim(S) L(S) LCard(S) LDen(S) DL(S) PDL(S) Domain
flags 194 19 7 3.392 0.485 54 0.278 images
CAL500 502 68 174 26.044 0.150 502 1.000 audio
emotions 593 72 6 1.868 0.311 27 0.046 audio
medical 978 1449 45 1.245 0.028 94 0.096 text
llog 1,208 484 74 1.180 0.016 286 0.196 text
enron 1,702 1001 53 3.378 0.064 753 0.442 text
image 2,000 294 5 1.236 0.247 20 0.010 image
scene 2,407 294 5 1.074 0.179 15 0.006 image
yeast 2,417 103 14 4.237 0.303 198 0.082 biology
slashdot 3,659 805 22 1.181 0.054 119 0.033 text
corel5k 5,000 410 374 3.522 0.009 3175 0.635 image
arts 5,000 462 26 1.636 0.063 462 0.092 text
reference 5,570 29 33 1.187 0.036 240 0.043 text
health 8,116 115 32 1.649 0.052 314 0.039 text
entertainment 8,166 99 21 1.437 0.068 278 0.034 text
business 8,718 132 30 1.623 0.054 211 0.024 text
NUS-WIDE-c 10,000 128 81 2.403 0.030 2,448 0.245 image
socity 10,973 55 27 1.674 0.062 885 0.081 xtte
] ZLZ’;‘ GALT 15 features are constructed for each class label (step 16); Then, a
= vp;(l) = |Pr| ~=k®) 57, 1) vs; (15) family of ¢ binary classification models are induced based on
i=1 =1 R 3

the constructed label-specific features (step 18 to 21); Finally,
In summary, for each iteration, th&-step estimates the an unseen instance is fed to the learned models for predicting
posterior distribution of the hidden variable according to the relevant labels (step 22).
the current parameters while thd-step updates the optimal
values of all parameters according to Eq.(12)-(15).

3) Label-Specific Features ConstructioAccording to the V. EXPERIMENTS
induced mixing distributionon P, P, is divided intom; A. Experimental Setup
disjoint clusters donated afC7™*,C;*,...,Clx }. The final  Giuen the multi-label data s& = (Y0 | 1<i<ml,
cluster assignment of each instanceAp can be defined as S|, dim(S) andL(S) denote the number of examples, number
follows: of features and number of possible class labels respectively.
A argmax 7, (16) In addition, several other multi-label properties [1], [15] are
je{1,2,...,mi} denoted as:
Similarly, AV is divided intom,, disjoint clusters denoted as * LCard(S) = ;> 7, |Yi|: label cardinality measures
{eNe,c)x, ..., cA} in the same way. Notice that the number  the average numlpcer S(fsl)abels per example; .
of clusters retained foPy, is equal to\;, in order to mitigate ~ * LDen(S) = =55~ label density normalizes
the risk ofclass-imbalancegi.e. |Py.| < |Vy|. Specifically, the LCard(S) by the number of possible labels;
value ofm;, is set as: e DL(S) = {Y | (=,Y) € S}|: distinct label setxounts
the number of distinct label sets existing $h
my = [ - min (|Pgl, |NVi|)] (17) . PDL(S) = DlLS(‘S): proportion of distinct label sets

Here, € [0,1] is a ratio parameter controlling the number of normalizesDL(S) by the number of examples.

clustersP, andA;, retained, and. | returns the set cardinality.  Table Il summarizes the detailed characteristics of the
Conceptually, cluster centers characterize the inherent str@gnchmark multi-label data sets employed in the experiments.

ture of the positive and negative instances. Thus, clusteriRgta sets shown in Table Il are roughly ordered|5Y. The

centers can be used as prototypes to construct label-spedificbenchmark data sets exhibit diversified multi-label prop-

features which are derived from more stable clustering. Simil@fties which provide a solid basis for thorough performance

to LIFT, the mappingpy, : X — Z;, can be created accordingevaluation.

to Eq.(2). To validate the effectiveness of the proposed approach, six
4) Predictive Model Induction:Similar to LIFT, SENCE state-of-the-art multi-label learning approaches are used for

transforms the training s@ into a new binary training se§, comparative studies.

for each class label according to Eq.(3). Any binary leaer o LPLC[42]: A second-order multi-label learning approach

can be applied to induce a classification moggt Z, — R which exploits the local positive and negative pairwise
for [, based onBj. After that, an associated label set is label correlations by maximizingNN-based posterior
predicted for an unseen examplec X according to Eq.(4) probability. [k = 10, « = 0.1]

Table Il summarizes the procedure afNCE. SENCE firstly o LIFT [6]: A first-order multi-label learning approach,

performs clustering several times to re-represent instances for which induces classifiers with the label-specific features
each label (step 2 to 4); After that, the EM algorithm is used generated via conducting clustering analysis for each
to yield more stable clustering (step 5 to 15) and label-specific class label. [Base learner: linear kernel SVivi= 0.1]
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TABLE IV: Experimental results of the comparing approaches on the first nine data séis émaller the bettef;: the larger
the better).

Comparing Hamming Tos$
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.271£0.042 0.1380.006 0.1740.019 0.0110.002 0.01A40.001  0.050£0.009  0.153t0.013 0.074:0.005 0.188-0.008
LpLC 0.292£0.035 0.158:0.006 0.216:0.024 0.018:0.003 0.026:0.001 0.0670.013 0.23@:0.012 0.128:0.009 0.2270.009
LIFT 0.267:0.058 0.138-0.006 0.183-0.019 0.012-0.003 0.018-0.001 0.049-0.008 0.154-0.014 0.078:0.006 0.19%0.007
LLSF 0.278£0.042  0.13A0.007  0.197-0.020 0.0130.003 0.018-0.001 0.048:0.008 0.193-0.011 0.113#0.006 0.199-0.008
MLSF 0.292£0.060 0.138:0.007 0.2020.022  0.01G0.002  0.018+0.001 0.05%0.010 0.18%:0.020 0.116:0.014 0.2130.013
LIFTACE 0.265+0.052  0.138+0.006 0.179-0.018 0.012:0.002  0.017:0.001 0.0470.008  0.155+0.013 0.078:0.005 0.196-0.007
WRAP 0.285+0.030  0.137-0.007  0.237:0.024 0.125-0.037 0.018-0.001 0.072:0.029 0.198-0.012 0.126-0.006 0.216-0.007
Comparing Ranking Tos$§
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.202£0.049 0.182:0.007 0.1380.029 0.024:0.012 0.134:0.019 0.08%0.018 0.1330.020 0.056:0.007 0.166:0.011
LpLC 0.226+0.046 0.228-0.016 0.178:0.028 0.072:0.011 0.338:0.018 0.208:0.046 0.199-0.026 0.10720.010 0.188-0.011
LIFT 0.220+0.049 0.183-0.007 0.146-0.023 0.025-0.012 0.1480.020 0.085:0.017  0.144+0.022 0.06%0.007 0.164-0.013
LLSF 0.232£0.048 0.188:0.014 0.172:0.022 0.032:0.016 0.223:0.021 0.104:0.014 0.1780.021 0.09%0.010 0.169-0.013
MLSF 0.256+0.059 0.216-0.009 0.176-0.032 0.0310.019  0.134t0.028  0.096+0.019 0.182-0.018 0.105-0.020 0.208-0.022
LIFTACE 0.222+0.055 0.183-0.007 0.14%0.027 0.028-0.012 0.154:0.021  0.085:0.019  0.145+0.023 0.066-0.005 0.164-0.012
WRAP 0.2370.048 0.18@-0.007 0.202:0.024 0.165-0.042 0.224:0.022 0.152:0.042 0.184-0.025 0.092:0.012 0.18%0.014
Comparing One-error],
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.186£0.092  0.116£0.028  0.231£0.059  0.14A-0.041 0.6520.050 0.2530.042  0.253t0.032 0.1790.022 0.2020.019
LpLC 0.240+£0.083 0.216:0.052 0.297%0.045 0.312:0.056 0.782:0.029 0.546:0.124 0.347:0.040 0.249-0.028 0.236:0.024
LIFT 0.251+0.105 0.124-0.031 0.242:0.051 0.162-0.042 0.643-0.044 0.25%:0.051 0.273:0.038 0.19720.022 0.214-0.018
LLSF 0.249+0.103 0.126-0.033 0.286-0.068 0.143-0.047 0.686-0.036 0.255-0.043 0.334-0.040 0.258-0.024 0.2230.021
MLSF 0.282£0.093 0.132:0.038 0.286:0.059  0.140+0.043  0.701:0.029 0.3280.055 0.348:0.043 0.292:0.046 0.252-0.033
LIFTACE 0.255£0.128 0.124-0.031 0.249-0.057 0.163-0.039  0.635:0.042 0.249:0.044  0.271:0.039 0.19%0.020 0.215-0.027
WRAP 0.212+£0.080  0.115+0.029  0.308+0.050 0.518-0.118 0.838-0.040 0.325-0.084 0.358:0.038 0.263-0.026 0.242-0.030
Comparing Coverage
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.524:0.047  0.754:0.014  0.27#0.033 0.0380.016 0.176£0.026  0.239:0.051 0.16%0.016 0.066:0.006 0.44%0.017
LpLC 0.550£0.045 0.8610.022 0.309-0.031 0.096-0.011 0.378:0.021 0.456-0.103 0.208-0.021 0.094-0.009 0.4710.016
LIFT 0.542£0.043 0.756:0.015 0.285-0.035 0.032-0.016 0.193-0.028 0.2430.048 0.169-0.018 0.064-0.006 0.453-0.019
LLSF 0.549£0.045  0.748t0.016  0.3070.030 0.042:0.016 0.273:0.027 0.2780.051 0.196:0.018 0.096:0.009 0.454-0.017
MLSF 0.558+0.054 0.826:0.026 0.299-0.047 0.047-0.024  0.172£0.035  0.255+0.055 0.19%-0.017 0.10%0.015 0.524-0.038
LIFTACE 0.540+£0.049 0.76€:0.013 0.284-0.037 0.042-0.016 0.206-0.030 0.243-0.053 0.176:0.018 0.064-0.004 0.454-0.018
WRAP 0.550£0.048 0.7530.014 0.33%0.047 0.188:0.043 0.274:0.029 0.356:0.080 0.198:0.021 0.092:0.011 0.466-0.019
Comparing Average precisioh
algorithm flags CAL500 emotions medical language Tog enron image scene yeast
SENCE 0.824:£0.045 0.502:0.015 0.826:0.036  0.887-0.032 0.448:0.045 0.6720.046  0.834:-0.019 0.896:0.012 0.776:0.012
LpLC 0.800£0.033 0.46%0.022 0.784:0.030 0.748-0.042 0.25@:0.021 0.4720.096 0.772:0.026 0.8430.014 0.753-0.015
LIFT 0.806£0.047 0.498:0.014 0.818:0.025 0.876:0.030 0.445-0.038 0.675:0.028 0.823:0.024 0.88720.011 0.772:0.012
LLSF 0.795:0.041  0.505+0.023  0.794£0.027  0.893+0.031  0.400+0.032 0.673:0.032 0.784-0.023 0.845-0.014 0.762-0.013
MLSF 0.783£0.047 0.473:0.014 0.795:0.037 0.88%0.032 0.393-0.030 0.623:0.049 0.783:0.022 0.824:0.029 0.7230.022
LIFTACE 0.804£0.052 0.498:0.016 0.8120.031 0.875:0.026  0.446£0.040 0.6870.051  0.824+0.024 0.882:0.010 0.772:0.013
WRAP 0.799+0.044 0.503-0.013 0.766-0.027 0.568-0.093 0.272-0.024 0.608-0.034 0.778:0.025 0.841#0.017 0.743-0.017
Comparing Macro-averaging AUC
algorithm flags CAL500 emotions medical language log enron image scene yeast
SENCE 0.699£0.050 0.527A0.027 0.858:£0.024  0.922+0.035 0.7330.033 0.69%0.023  0.8710.025 0.9530.005 0.70#0.015
LpLC 0.674£0.087 0.529-0.027 0.8210.034 0.8310.033 0.562-0.029 0.583-0.028 0.815-0.023 0.922-0.008 0.685-0.022
LIFT 0.699+0.057  0.529+0.020 0.844-0.025 0.923-0.035 0.747:0.034 0.704:0.033  0.860+0.026 0.949-0.005 0.694-0.017
LLSF 0.699£0.027 0.553:0.047  0.828:0.026 0.929-0.017 0.729:0.032 0.6670.034 0.824-0.024 0.922:0.008 0.693-0.017
MLSF 0.683£0.056 0.524-0.019 0.835:0.029  0.935:0.033  0.706+0.046 0.646:0.026 0.823:0.025 0.915-0.016 0.633-0.016
LIFTACE 0.689+0.047 0.524-0.024 0.844-0.026 0.918-0.032 0.738:0.032  0.704:0.025  0.860+0.026 0.949-0.006 0.693-0.013
WRAP 0.696+0.076 0.466:0.034 0.797%0.027 0.407:0.061 0.333:0.027 0.48%:0.056 0.816:0.026 0.9020.012 0.629-0.026

« LLSF[30]: A second-order multi-label learning approactshown in Table Il, the parameter configuration corresponds to

based on label-specific features generated by retainingva= 0.4 and r = 5. Moreover, LBSvM [43] is employed
different subset of original features for each class labels the binary learning algoritht and k-means algorithm is

[ =0.5,8=0.5,v=0.5] employed as the base clustering algorithm.
o MLsF [34]: A high-order multi-label learning approach In addition, given the test se&f = {(x;,Y;) | 1 <i < t}
based on label-specific features, which performs sparsed a family of ¢ learned functions{fi, fa,..., f;}, Six

regression to generate tailored features by retainingegaluation metrics [1] widely-used in multi-label learning are

different subset of original features for a group of classtilized in this paper to evaluate the performance of each

labels.[e = 0.01,a = 0.8,y = 0.01] comparing approach:
« LIFTACE [8]: A high-order multi-label learning approach Hamming loss
based on label-specific features generated by considering

label correlations via clustering ensemble techniques. 1<
[Base learner: linear kernel SVM,= 0.1, v = 10] hloss = n Z |h(x;) AY;]
« WRAP [38]: A high-order multi-label learning approach i=1

which performs label-specific feature generation and clas-

sification model induction in a joint mannen\;[ = 0.5, pairs which are misclassified. Heré(z;) = {l; |

A2 = 0.5, A3 = 0.1, a = 0.9] fr(x;) > 0,1 <k < q} corresponds to the predicted set

For each comparing approach, parameter configurations of relevant labels for;, andA stands for the symmetric
suggested in respective literature are stated above. EFocS difference between two sets.

Hamming loss evaluates the fraction of instance-label
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TABLE V: Experimental results of the comparing approaches on the other nine data :séie €maller the better}: the
larger the better).

Comparing Hamming los$
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.055£0.002  0.01G£0.000 0.052£0.001  0.036+0.001 0.0420.005 0.062£0.001  0.030G:0.001 0.026:0.000  0.059£0.001
LpLC 0.105+0.008 0.016-0.009 0.09%0.007 0.038:0.001 0.058-0.001 0.07%0.002 0.042:0.002 0.022:0.000 0.065-0.001
LIFT 0.058+0.003 0.016:0.000  0.052+0.001  0.042+0.013 0.05%0.006 0.07%0.011 0.03%+0.003  0.026+0.000  0.059+0.001
LLSF 0.063:0.002  0.009t0.000  0.054+0.001  0.035+0.001 0.04%0.001 0.066:0.002  0.043+0.001 0.0270.000 0.052-0.001
MLsF 0.061£0.002  0.009£0.000  0.054+0.004  0.037%0.002 0.048:0.002  0.066+0.002 0.03&:0.001  0.027A0.001 0.0592-0.001
LIFTACE 0.058+0.003 0.016-0.000 0.053:0.001 0.03%:0.009 0.056-0.017 0.085-0.029 0.04%+0.015  0.026:0.000  0.06G+0.009
WRAP 0.076£0.002  0.009£0.000  0.062+0.002 0.036:0.001 0.0470.001  0.068:0.002  0.030£0.001  0.030:0.000  0.058:0.001
Comparing Ranking los$
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.1070.013 0.19%0.046 0.1020.007  0.112£0.005 0.08%0.007 0.1410.007 0.050t£0.005  0.102£0.004  0.1470.004
LpLC 0.469£0.025 0.714-0.018 0.424:0.022 0.31%0.018 0.192:0.011 0.286-0.015 0.13#0.011 0.27#0.013 0.313-0.008
LIFT 0.119£0.010 0.2010.043 0.118:0.006 0.11%0.014 0.0810.006 0.146-0.008 0.05%0.005 0.108-0.003 0.148-0.004
LLSF 0.122+0.009 0.416:0.081 0.13#0.013 0.138-0.009 0.136:0.009 0.185-0.013 0.1820.011 0.106-0.003 0.185-0.010
MLsF 0.130+£0.007 0.212-0.044 0.1120.016 0.1130.005 0.082:0.006 0.174-0.030 0.062:0.007 0.13#0.046 0.149-0.004
LIFTACE 0.117:£0.014  0.20%:0.044 0.118:0.006 0.113-0.009 0.08%0.015 0.15%-0.033 0.052-0.014 0.102:0.003 0.156:0.010
WRAP 0.179+0.015 0.223-0.043 0.146-0.008  0.108+0.004 0.07#0.003  0.143:0.007  0.049:£0.003  0.128t0.005  0.144t+0.005
Comparing One-error]
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.342£0.026  0.765£0.055  0.445t0.015  0.564+0.029 0.5020.069 0.64%0.019  0.139:0.014 0.462%0.018 0.475:0.013
LpLC 0.705£0.024  0.874:0.072 0.826:0.014  0.558-0.028 0.485-0.018 0.6170.024 0.143-0.013 0.545-0.017 0.518-:0.015
LIFT 0.373£0.026 0.765:0.054 0.442:0.018 0.657%0.177 0.54%0.114 0.67#0.084  0.139+0.014  0.472+0.017 0.4780.014
LLSF 0.342£0.021  0.816+0.027 0.466:0.018  0.546+0.026 0.43%0.016 0.5820.022  0.278+0.014 0.474:0.017 0.504-0.011
MLsSF 0.401£0.018 0.7720.044 0.474:0.039 0.564-0.027 0.458-0.017 0.636:0.014 0.148:0.014 0.512-0.029 0.4790.012
LIFTACE 0.368+0.021 0.75%0.052 0.4520.015 0.604-0.119 0.5730.207 0.733:0.171 0.393:0.374 0.4720.014 0.514-0.126
WRAP 0.493t0.022  0.745+0.069  0.605+0.029 0.566-0.029 0.47#0.016 0.6470.017  0.139+0.014  0.644+0.012 0.4810.013
Comparing Coverage
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.124£0.013 0.43%0.077 0.16£0.008  0.127A0.005 0.1240.007 0.17A40.006  0.091£0.007  0.199£0.007  0.215£0.005
LpLC 0.325£0.017 0.826-0.053 0.3330.014  0.26%0.014 0.225-0.012 0.282-0.013 0.168-0.011 0.302:0.012 0.326:0.008
LIFT 0.136+0.010 0.445-0.070 0.1620.007 0.133-0.014 0.124-0.007 0.186-0.007 0.092:0.007 0.208-0.005 0.216-0.004
LLSF 0.140+£0.009 0.736:0.071 0.21%0.015 0.159-0.008 0.208:0.011 0.228-0.014 0.246-0.012 0.208:0.005 0.262-0.013
MLsSF 0.148+0.007 0.462-0.075 0.18%+0.024  0.12#0.005 0.1320.011 0.233-0.045 0.1180.012 0.27&:0.097 0.21%0.005
LIFTACE 0.133£0.015 0.449-0.071 0.168-0.007 0.129-0.010 0.125-0.014 0.192-0.030 0.108:0.013 0.21%0.005 0.21%0.010
WRAP 0.196+0.015 0.495-0.063 0.202-0.009  0.124+0.005 0.12%0.004  0.178:0.006  0.090:£0.005  0.240:0.007  0.212+0.006
Comparing Average precisioh
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.745£0.020 0.216:0.038 0.63£0.014 0.542£0.018 0.61%0.040 0.5280.016 0.8550.011 0.53%0.011 0.576:0.009
LpLC 0.445+0.021 0.0910.031 0.358:0.013 0.52%0.019 0.603:0.012 0.498-0.019 0.814:0.012 0.4620.012 0.524-0.009
LIFT 0.722+£0.020 0.20%:0.042 0.633:0.011 0.495-0.092 0.595:0.061 0.509-0.045 0.854:0.011 0.525-0.012 0.568-0.010
LLSF 0.742£0.015 0.142-0.017 0.6220.015  0.5610.019 0.644-0.008 0.556:0.017  0.723:0.012  0.542+0.012  0.551-0.009
MLsF 0.701£0.012 0.198-0.028 0.613-0.028 0.546-0.018 0.636-0.009 0.526-0.009 0.856:0.012 0.486:-0.031 0.566-0.009
LIFTACE 0.727£0.018  0.210£0.039  0.632+0.011 0.523-0.061 0.586-0.108 0.472:0.111 0.738:0.168 0.525-0.011 0.553-0.057
WRAP 0.628+0.016 0.209-0.043 0.522-0.019 0.546-0.018 0.636-0.009 0.528-:0.013  0.85#0.010  0.410+0.008  0.573+0.010
Comparing Macro-averaging AUG
algorithm slashdot corel5k arts reference health entertainment business NUS-WIDE-csociety
SENCE 0.871£0.012 0.6010.048 0.74%0.016 0.5420.031 0.6120.022 0.586:0.024 0.525:0.023 0.736:0.016 0.534:0.023
LpLC 0.654+0.012 0.51%0.025 0.575:0.015 0.5670.014 0.61%0.016 0.587:0.011 0.5780.018 0.622:0.017 0.5530.011
LIFT 0.867:0.011  0.603£0.044  0.748:0.019 0.566-0.030 0.628-0.045 0.592-0.032 0.575:0.032 0.683-0.010 0.545-0.018
LLSF 0.875t0.012  0.595+0.043  0.749+0.016 0.626:0.033 0.692:0.042 0.628-0.017 0.6710.024 0.7630.011 0.603-0.013
MLSF 0.846+0.011 0.5610.029 0.7320.014  0.555-0.032 0.636:0.026 0.5910.020 0.578:0.026 0.706:-0.015 0.5510.011
LIFTACE 0.871£0.014  0.592-0.040 0.7420.014  0.555-0.034 0.63#0.039 0.593-0.035 0.618-0.032 0.678:0.021 0.566-0.021
WRAP 0.774+0.020 0.234-0.075 0.606-0.021 0.432-0.060 0.484-0.038 0.555-0.031 0.538:0.030 0.533-0.016 0.5670.019
« Ranking loss « Coverage
t
rloss = 11
coverage = —(— max rank(x;,lx) — 1)
t — q t 4 k€Y
1 3 (e, ) | fr(i) < f (@), (ks 1) € Vi X i} =
t = hahd Coverage evaluates the average number of steps needed

to move down the ranked label list in order to cover all
Ranking loss evaluates the fraction of relevant-irrelevant ~ relevant labels. Hereyank(x;, lv) = 327, [f;(xi) >

label pairs which are reversely orderddere,Y; is the fr(zi)] retuns the rank ofi, when all class la-
complementary set of; C ). bels in Y are sorted in descending order according to
« One-error {fi(@i), falzi), ..., folza)}-
« Average precision
t
1 t
one—error = — Z[[arg max fi(x;) ¢ Yi] _Is b R (i, )|
t ey avgprec t z; Y| l;/ rank(xz;, )
= KEY

One-error evaluates the fraction of examples whose top- Average precision evaluates the average fraction of rel-
ranked predicted label is not in the ground-truth relevant evant labels which rank higher than a particular rele-
label set. Here[r] returns 1 if predicater holds and O vant label. Here,R(z;,lx) = {l; | rank(x;,l;) <
otherwise. rank(x;, li),l; € i}
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« Macro-averaging AUC « Among approaches with label-specific featuresNSE
significantly outperforms Lsr, MLSF and WRAP in

AU(IC’"”CO - terms ofranking lossandcoverage SENCE is comparable
}Z H{(x,2") | fr(x') > fr(x"), (x',2") € Pr x Ni}| to LIFT in terms of all evaluation metrics. Furthermore,
q = |Pr| [Nk pairwise t¢-tests at 0.05 significance level show that

SENCE achieves superior or at least comparable perfor-
Macro-averaging AUC evaluates the average AUC value mance than LET in 97.2% cases out of 108 cases (18
across all class labels. data setsx 6 evaluation metrics). These results clearly
indicate our proposed clustering ensemble-based strategy
for label-specific features serves a more effective way

S in achieving stable clustering and strong generalization
Ten-fold cross-validation is performed on each benchmark performance.

data set, where the mean metric value as well as standard sgnceis comparable to IETACE in terms of all evalua-
deviation are recorded. Tables IV and V report the detailed tion metrics. Further pairwisetests at 0.05 significance
experimental results in terms of each evaluation metric where |eve| show that SNCE achieves superior or at least
the best performance on each data set is shown in boldface. Comparab'e performance thanrtACE in 963% cases

out of 109 cases (18 data sets6 evaluation metrics).
These results clearly validate the effectiveness of the pro-
posed clustering ensemble strategy employedanc;,

as both &NcE and LIFTACE utilize clustering ensemble

B. Experimental Results

TABLE VI: Friedman statisticd» in terms of each evaluation
metric as well as the critical value at 0.05 significance level
(# comparing approaches= 7, # data setsV = 18).

Evaluation metric Fr critical value to facilitate the label-specific features construction.

Hamming loss 10.1962 All metric values are normalized in [0,1], where for the

(F;anking los %79%%%6 first four metrics the smaller the metric value the better the
ne-error . . .

Coverage 24,9081 2.1888 performance and for the other two metrics the larger the metric

Average precision 9.7773 value the better the performance.

Macro-averaging AUC 14.5575

In addition, the widely-accepteriedman testf44] is em- C. Further Analysis
ployed here for statistical comparisons of multiple algorithms 1) parameter SensitivityAs shown in Table II, there are
over a number of data sets. Table VI summarizes the Friedmgpg parameters for ENCE to be tuned, i.e. the number of base
statistics Fi» and the corresponding critical values on eacfysters and the ratio parametes. Fig.2 illustrates how
evaluation metric atv = 0.05 significance level. As shown in the performance of B\CE changes with varying parameter

Table VI, the null hypothesis of "equal” performance amongpnfigurationse € {0.1,0.2,--- ,1} andr € {1,2,--- ,10}
comparing approaches should be clearly rejected in termsgyf three benchmark data sets (evaluation mettiesnming
each evaluation metric. lossandranking los$. As shown in Fig.2, the performance of

Therefore, theBonferroni-Dunn tesf45] is employed as the Sence is relatively stable as the value ofincreases under
post-hoc tesf44] to analyze the relative performance amongxed value ofw. On the other hand, the performance of
comparing approaches where&E is treated as the control Sence becomes stable as the value of increases beyond
approach. Here, the difference between the average rank)f under fixed value of. Therefore, the value af andr is
SENCE and one comparing approach is calibrated with thged to be 0.4 and 5 respectively for comparative studies in
critical difference(CD). Here, their performance difference ighis paper.
deemed to be significant if the average ranks aN&E and 2) Base LearnerAmong the six comparing algorithms em-
one comparing algorithm differ by at least one CD. In thigjoyed in Subsection IV-A, three of them are tailored towards
paper, we have CD=1.8996 at significance levek 0.05 as concrete learning techniques. SpecificallypLt is adapted

k=7andN = 18. from k-nearest neighbowhile LLsF and WRAP adapted from
Based on the reported experimental results, the followiigear regression On the other hand, [ET, LIFTACE and
observations can be made: MLsF work in similar way as 8NCE by transforming the

« As shown in Fig. 1, it is impressive thaeSCE achieves multi-label learning problem so that any base learner can be
the lowest rank in terms of all evaluation metrics exapplied thereafter. Considering thaesCE, LIFT, LIFTACE
cept macro-averaging AUCFurthermore, all comparing and MLSF rely on the choice of base leangrto instantiate
approaches exceptrl.c and WRAP achieve statistically the learning approaches, Table VII reports the performance
comparable performance in terms bpfacro-averaging of them on 8 data sets instantiated with different choices
AUC. of base learnef (£ € {SVM, k-Nearest NeighborikNN),

« Comparing with approaches without label-specific fea&lassification And Regression Tree (CARJ.) As shown
tures, ENCE significantly outperforms kLC in terms in Table VII, the following observations can be made: (a)
of all evaluation metrics. These results clearly indicatéhe choice of base learner has significant influence on the
the effectiveness of constructed label-specific features foerformance of each algorithm; (bESCE achieves superior
multi-label label learning. or comparable performance than other algorithms in most
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Fig. 1: Comparison of BNCE (control approach) against six comparing approaches witiBtmderroni-Dunn testApproaches
not connected with &NCE in the CD diagram are considered to have significantly different performance from the control
approach (CD=1.8996 at 0.05 significance level).
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Fig. 2: Performance of BNCE changes with varying parameter configuratiense {0.1,0.2,--- ,1} andr € {1,2,---,10}
(Data setsemotions , image , yeast ; First row: hamming lossthe smaller the better; Second ranking loss the smaller
the better).

cases with different base learners; (EN&E tends to perform These results clearly validate the usefulness of multiple base
better when SVM is used as the base learner other AN  clusters which augment the original instance representations
and CART. with cluster assignments. Compared witlEN&E", SENCE
: - achieves statistically superior or comparable performance in
3) Ablation Study:In training phase, SNCE employs mul- I .

) y gp oy all cases. These results clearly indicate that the mixture

tiple base clusters and a mixture model to yield the final cIumodel miaht be more effective for intearating the preliminar
tering. To analyze the rationality of these components, ablatio 9 9 9 P y

study on two variants of B\NCE is further conducted in this cnjstenng results.
subsection. Specifically,ESicE® employsk-means to obtain 4) Algorithmic Complexity:Let F(m,b) be the training

clustering results on augmented instances instead of a miXtHB?nplexity of the binary learneg w.r.t. m training examples
mOdel;_$NCEM employs one mixture gaussian model to yield, 4, _gimensional features, the training complexity EN&E
clustering results on original instance representations W|thocut

feature augmentation. orresponds 10 (Q(I(md2 +rfw - m]? + [@ - m]d®) +
Table VIII reports the detailed experimental results of e(m, [@ - mD))’ whered® is derived from the covariance
SENCE and its two variants BNCEF, SENCEM on 8 bench- matrix inversion and is the number of iterations. The testing
mark data sets. Compared witrelce™!, SENCE achieves complexity of SENCE over unseen instance corresponds to
statistically superior or comparable performance in all case®/ ¢(d[w - m] +]-")'3([w~m1))), whereFg(b)' is the testing
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TABLE VII: Experimental results of the comparing approaches instantiated with different base lefr(grg {SVM, k-
Nearest NeighborkNN), Classification And Regression Tree (CARY.)In addition,e/o indicates whether the performance of
SENCE is statistically superior/inferior to the comparing approaches on each data set (pairwise t-test at 0.05 significate level).

Base Comparing Hamming los$ o
learner algorithm CAL500 emotions Scene yeast arts reference ealtl - -C winftie/loss counts
LIFT 0.138£0.006 0.18%0.01I% 0.078:0.006» 0.191£0.007% 0.052£0.001 0.0420.013 0.05%0.006 0.026:0.000 47410
o —sVM MLSF 0.138+0.007 0.20%0.022 0.110+0.01% 0.2114+0.013 0.054+0.004 0.037%:0.002 0.048-0.002 0.0270.001s 4/4/0
LIFTACE 0.138£0.006 0.1720.018 0.0780.005 0.190+0.007 0.053+0.001 0.0370.009 0.056:0.017 0.026:0.000 3/5/0
SENCE 0.138£0.006 0.17#0.019 0.074:0.005 0.188:0.008 0.052:0.001 0.036:0.001 0.049-0.005 0.026:0.000 In Total: 11/13/0
””””” CIFT ~ 7|~ 0.153£0.007 ~ ~ ~0.2140.021 ~ ~ ~ 0.096:0.005 ~ ~ 0.21#0.004 ~ ~ 0.059£0.00f ~ ~ "0.03&0.00I ~ ~ ~0.05&0.001 ~ ~ 0.0280.00 |~~~ "2/6/0 ~
@ — kNN MLsF 0.148+0.0060 0.214+0.026 0.096:0.008 0.216-0.010 0.083-0.002 0.038+0.002 0.051+0.002 0.029:0.000 3/4/1
’ LIFTACE 0.154£0.007 0.21%0.021 0.096:0.006 0.2120.005 0.059+0.001s 0.036+0.001 0.05%0.00%s 0.028+0.001 4/4/0
SENCE 0.152£0.008 0.2120.017 0.098:0.005 0.20720.005 0.059-0.001 0.036:0.001 0.058:0.001 0.027#0.001 In Total: 9/14/1
LIFT 0.190£0.00% 0.258+0.026 0.128:0.010 0.258:0.008 0.0820.003 0.048+0.001 0.064-0.002 0.039+0.00% 47410
& —CART MLSF 0.201£0.010» 0.268+0.033 0.145:0.013 0.285+0.008 0.082+0.003 0.049+0.002 0.069£0.003 0.045+0.001s 7/1/0
LIFTACE 0.190£0.004 0.268+0.023 0.127%0.006 0.258:0.009 0.0810.002 0.048+0.001» 0.064+0.001e 0.039+0.001s 5/3/0
SENCE 0.185+0.005 0.266:0.023 0.129-0.007 0.257-0.008 0.074:0.002 0.047-0.002 0.062-0.002 0.036:0.001 In Total: 16/8/0
Base Comparing One-error] e
learner algorithm CAL500 emotions scene yeast arts reference health  NUS-WIDE-Cc win/tie/loss counts
LIFT 0.124£0.031 0.2420.051 0.19%£0.02> 0.214£0.018 0.4490.018 0.6520.177 0.54%0.114 0.4720.017 1770
¢ —SVM MLsF 0.132£0.038 0.286:0.05% 0.292+0.0460 0.252+0.033 0.474+0.03% 0.564+0.027 0.458:0.01% 0.512+0.02% 5/2/1
-~ LIFTACE 0.124£0.031 0.2420.05% 0.19140.020» 0.215+0.027 0.452:0.015 0.604:0.119 0.5730.207 0.4720.014 2/6/0
SENCE 0.116£0.028 0.23%0.059 0.172:0.022 0.209-0.019 0.445:0.015 0.564:0.029 0.509-0.069 0.462:0.018 In Total: 8/15/1
LIFT 0.092£0.027 0.2920.059 0.221#0.015 0.2210.023 0.5370.032 0.542+0.040 0.442:0.015 0.4810.023 17710
@ — kNN MLSF 0.104£0.023 0.276:0.038 0.2480.027 0.169:0.02% 0.766+0.017% 0.556+0.029 0.467:0.028 0.526:0.051» 2/5/1
LIFTACE 0.116£0.044 0.2830.053 0.23%0.035 0.2210.016 0.526:0.033 0.541+0.034 0.453-0.014 0.4780.017 1/7/0
SENCE 0.104+0.034 0.29%0.073 0.232:0.022 0.224:0.027 0.504-0.030 0.5410.033 0.449-0.022 0.4830.016 In Total: 4/19/1
””””” CIFT ~ 7|~ 0.012£0.014 ~ ~ ~0.3340.081 ~ ~ ~ 0.3130.035" ~ ~ 0.20#0.024 ~ ~ 0.613£0.014 ~ ~ "0.6640.025 ~ ~ ~0.5530.026  ~ ~ 0.586:0.011 |~~~ "L/77l0 ~ ~ ~ ~
& —CART MLSF 0.022£0.026 0.3710.081 0.383:0.045 0.213+0.032 0.561+0.024 0.661+0.031 0.559-0.025 0.6410.051 3/4/1
LIFTACE 0.010£0.014 0.33%0.065 0.30%:0.028 0.2110.026» 0.616+0.023 0.684+0.019 0.565:0.024 0.5620.014 2/6/0
SENCE 0.006£0.013 0.344:0.068 0.309-0.033 0.176-0.036 0.592:0.026 0.686-0.018 0.55@-0.012 0.564:0.020 In Total: 6/17/1
Base Comparing Average precisioh .
learner algorithm CAL500 emotions scene yeast arts reference health NUS-WIDE-c win/tie/loss counts
LIFT 0.498£0.01% 0.818:0.025 0.8870.011» 0.772£0.01> 0.633£0.011 0.4950.092 0.5950.061 0.525:0.01> 47410
& —SVM MLSF 0.473£0.01% 0.795+0.037% 0.824+0.02% 0.721+0.022 0.613+0.028 0.540£0.018 0.636:0.009 0.486:0.031e 6/2/0
- LIFTACE 0.498£0.016 0.8170.031s 0.889+0.010» 0.772+0.013 0.632+0.011 0.523:0.061 0.586:0.108 0.525:0.011 4/4/0
SENCE 0.502£0.015 0.826:0.036 0.896:0.012 0.776:0.012 0.6370.014 0.542:0.018 0.6130.040 0.535:0.011 In Total: 14/10/0
””””” CIFT ~ 7|~ 0.407£0.021 ~ ~ ~0.7640.046 = ~ ~ 0.83&:0.011" ~ ~ 0.72£0.010 ~ ~ 0.46%0.020 ~ ~ "0.46%0.028 =~ ~ ~0.53&0.01® ~ 0.425:0.008& |~~~ ~0/6/2 =~~~
& — kNN MLSF 0.412£0.017 0.7780.032 0.83%:0.016 0.726:0.011 0.376+0.015 0.479£0.027% 0.551+0.01% 0.385+0.03% 3/3/2
- LIFTACE 0.405+0.020» 0.768+0.032 0.834:0.017 0.727#0.011 0.4720.01% 0.458+0.024 0.526-0.010 0.426+0.00% 21412
SENCE 0.410£0.019 0.7630.051 0.822:0.010 0.7280.010 0.466-0.016 0.4520.022 0.526-0.009 0.4180.006 In Total: 5/13/6
””””” CIFT ~ 7|~ 0.306£0.008 ~ ~ ~0.70%0.038 ~ ~ ~ 0.764:0.021" ~ ~ 0.638:0.0I3° ~ ~ 0.43#0.01T ~ ~ "0.4230.018 =~ ~ ~0.4660.015 ~  0.3080.01k |~ ~ ~ ~0/7/11 ~
& —CART MLSF 0.286+0.018 0.690+0.045 0.71%0.03> 0.609:0.0160 0.453+0.01% 0.428+0.026 0.462-0.018 0.264:0.025 4/3/1
- LIFTACE 0.307:0.011 0.696:0.033 0.776:0.019 0.628:0.009 0.429-0.020 0.409-0.012 0.466:0.013 0.3140.00% 0/7/1
SENCE 0.310£0.016 0.6930.039 0.75%0.019 0.624:0.014 0.436:0.021 0.416:0.011 0.468:0.009 0.296:0.011 In Total: 4/17/3

TABLE VIII: Experimental results of 8NCE and its two ablated variants on eight data sets. In addisénindicates whether
the performance of B\NCE is statistically superior/inferior to the variants on each data set (pairwise t-test at 0.05 significate
level).

Comparin Hamming los o
algo[r)ithmg CAL500 emotions scene yeast g loss arts reference health NUS-WIDE-c win/tie/loss counts
SENCEY 0.138£0.007 0.186:0.018 0.086:0.005% 0.195+0.008 0.055£0.00% 0.036£0.001 0.05%0.010 0.026-0.000» 4/4/0
SENCE® 0.137:-0.007 0.199-0.0160 0.087:0.004 0.201-0.010 0.056+0.002 0.037:-0.007 0.048:0.008 0.026-0.000» 5/3/0
SENCE 0.138+0.006 0.17#0.019 0.074:0.005 0.188:0.008 0.052-0.001 0.036:0.001 0.042-0.005 0.026-0.000 In Total: 9/7/0
Comparin Ranking los: o
algo?ithmg CAL500 emotions scene yeast 4 1oss arts reference health  NUS-WIDE-c win/tiefloss counts
SENCEY 0.181:0.006 0.1530.022 0.066+0.0060 0.1674-0.010 0.136+0.007% 0.114+0.007 0.0820.007 0.114-0.005 5/3/0
SENCE® 0.1810.005 0.166:0.025 0.071£0.00% 0.173:0.011e 0.1370.005 0.118+0.009 0.0720.010 0.1130.00% 5/3/0
SENCE 0.182+0.007 0.1380.029 0.056:0.007 0.16€-0.011 0.109-0.007 0.112:0.005 0.08%0.007 0.102:0.004 In Total: 10/6/0
Comparin One-error] o
algo'?ithmg CAL500 emotions scene yeast - arts reference health NUS-WIDE-c win/tie/loss counts
SENCEY 0.118+0.027 0.242-0.051 0.204-0.025 0.225+0.02% 0.511-0.018 0.569+0.031 0.527-0.148 0.4770.018 4/4/0
SENCE® 0.12G+0.030 0.2780.052 0.21A0.01% 0.227:-0.028 0.514+0.01% 0.598+0.092 0.488:0.138 0.48€-0.017% 5/3/0
SENCE 0.116+0.028 0.2330.059 0.1720.022 0.202-0.019 0.445:-0.015 0.564:0.029 0.502-0.069 0.462-0.018 In Total: 9/7/0
Comparin Covera L
algo’rJithmg CAL500 emotions scene yeast = arts reference health NUS-WIDE-c win/tie/loss counts
SENCEY 0.750£0.018 0.296:0.03% 0.069£0.00% 0.454£0.015 0.199+0.00% 0.129+0.007 0.126-0.007 0.218-0.007 5/3/0
SENCE® 0.752+0.012 0.294-0.033 0.073+0.003 0.462+:0.014% 0.200+0.007% 0.134+0.011 0.125-0.010 0.214-0.0060 5/3/0
SENCE 0.754+0.014 0.27#0.033 0.066-0.006 0.44%0.017 0.1670.008 0.12#0.005 0.124-0.007 0.199-0.007 In Total: 10/6/0
Comparin Average precisio o
algorrJithmg CAL500 emotions scene yeastg 5 " arts reference health  NUS-WIDE-c win/tiefloss counts
SENCEY 0.499+0.013 0.814:-0.027 0.886:0.013 0.766+0.014% 0.581+0.014 0.536+0.024 0.60%0.070 0.512-0.011 4/4/0
SENCE® 0.498+0.012 0.80€-0.032 0.872+0.00% 0.757-0.014% 0.578+0.012 0.524+0.040 0.626-0.067 0.526-0.012 5/3/0
SENCE 0.502£0.015 0.826-0.036 0.896:0.012 0.776:0.012 0.6370.014 0.542-0.018 0.6130.040 0.535:0.011 In Total: 9/7/0
Comparini Macro-averaging AU .
algof')ithmg CAL500 emotions scene yeast 9 ¢arts reference health NUS-WIDE-c win/tie/loss counts
SENCEY 0.516+0.013 0.834-0.028 0.945+0.0060 0.654+:0.02% 0.637:0.024 0.565+0.038 0.597-0.03% 0.611-0.013 6/2/0
SENCE® 0.520+0.026 0.828:0.025 0.937:-0.005 0.641-0.018 0.632+0.020» 0.554+0.029 0.596-0.032 0.6210.017% 5/3/0
SENCE 0.527A:-0.027 0.858-0.024 0.953:0.005 0.70#0.015 0.74%0.016 0.542:0.031 0.612:0.022 0.736:0.016 In Total: 11/5/0

complexity of £ in predicting one unseen instance with 374 respectively. The training time ofeSCE is relatively
dimensional features. comparable to the comparing approaches exceptclLand

{-SF. Furthermore, the test time ofeSCE is higher than

4SF and WRAP while relatively comparable to the other com-
paring approaches. Note that due to the cubic computational
complexity of EENCE w.r.t. d (i.e. the number of features in
g&ut space), the proposed approach may have problem when
{aboplied to data sets with high-dimensionality features. We will

Fig.3 illustrates the execution time (training phase as wi
as testing phase) of all the comparing algorithms investigat
in Subsection IV-A on five benchmark data setaotions ,
enron , image , corel5k , and NUS-WIDE-c. Across the
5 data sets, their number of examples, features and cl
labels range from 593 to 10,000, 72 to 1001, and 5
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(a) Training time of comparing approaches

Fig. 3: Running time (training/test) of each comparing approach on five benchmark data sets. For histogram illustration, the

y-axis corresponds to the logarithm of running time.

leave it for future work. [11]

V. CONCLUSION (12]

In this paper, the problem of generating label-specific fea-
tures for multi-label learning is investigated. A novel approadhs3]
for label-specific features generation is proposed, which sta-
bilizes the generation process of the label-specific features
via clustering ensemble techniques. Specifically, the finia#]
clustering used to construct label-specific features is obtained
by fitting a mixture model on instances augmented with tqgﬂ
base cluster assignments via the EM algorithm. Comprehen-
sive experimental studies validate the effectiveness of the
proposed approach against state-of-the-art multi-label IearnH@
algorithms. In the future, it is interesting to consider generating
label-specific features by exploiting label correlations baséd]
on the proposed BNCE and investigate a more general joint
distribution by taking dependency of the original instance al’ﬂfg]

corresponding cluster assignment vector into account.
[19]
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