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Abstract. Multi-instance learning is regarded as a new learning framework where the training examples are

bags composed of instances without labels, and the task is to predict the labels of unseen bags through analyzing

the training bags with known labels. Recently, a multi-instance neural network named BP-MIP was proposed. In

this paper, BP-MIP is improved through adopting two different feature selection techniques, i.e. feature scaling

with Diverse Density and feature reduction with principal component analysis. In detail, before feature vectors

are fed to a BP-MIP neural network, they are scaled by the feature weights found by running Diverse Density on

the training data, or projected by a linear transformation matrix formed by principal component analysis.

Experiments show that these feature selection mechanisms can significantly improve the performance of BP-

MIP.
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1.  Introduction

In the middle of 1990’s, Dietterich et al. [7] investigated the problem of drug activity prediction. The goal is

to endow learning systems with the ability of predicting that whether a new molecule could be used to make

some drug, through analyzing a collection of known molecules. The qualification of the molecule to make some

drug is determined by some of its shapes with low energy. However, at present biochemists only know that

whether a known molecule is qualified to make some drug instead of knowing that which of its alternative

shapes is responsible for the qualification. In order to solve this problem, Dietterich et al. [7] initialized the

notion of multi-instance learning.

In multi-instance learning, the training set is composed of many bags each containing many instances. The

bags are labeled in the way that if a bag contains at least one positive instance then it is labeled as a positive bag.

Otherwise it is labeled as a negative bag. The task is to learn some concept from the training bags for correctly

labeling unseen bags. The difficulty of multi-instance learning lies in that unlike standard supervised learning

where all the training instances are labeled, the labels of the individual instances are unknown in multi-instance

learning. Dietterich et al. [7] showed that learning methods ignoring the characteristics of multi-instance

problem could not work well in this scenario. Due to its unique characteristics and extensive applicability,
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multi-instance learning has been regarded as a new learning framework different to supervised learning,

unsupervised learning, and reinforcement learning [11].

When the notion of multi-instance learning was coined, Dietterich et al. [7] indicated that a particular

interesting issue in this area is to design multi-instance modifications for neural networks. Recently, this open

problem has been addressed by a multi-instance neural network named BP-MIP [21], which extended the

popular BP [17] algorithm with a global error function defined at the level of bags instead of at the level of

instances. Experiments show that the performance of BP-MIP is comparable to many existing multi-instance

learning algorithms [21]. However, it is not so good as several algorithms with inbuilt feature selection

mechanisms, such as iterated-discrim APR [7] and Diverse Density [12]. Therefore, an interesting issue to be

explored is that whether the performance of BP-MIP could be significantly improved with the help of feature

selection. In this paper, two variants of BP-MIP, i.e. BP-MIP-DD incorporating feature scaling with Diverse

Density and BP-MIP-PCA incorporating feature reduction with principal component analysis (PCA) [9], are

presented. Experiments on the drug activity prediction data, which is the only real-world benchmark test data for

multi-instance learning at present, show that both methods significantly improve the performance of BP-MIP.

The rest of this paper is organized as follows. Section 2 reviews previous works on multi-instance learning.

Section 3 briefly introduces BP-MIP and then presents BP-MIP-DD and BP-MIP-PCA. Section 4 reports

experimental results on the drug activity prediction data. Finally, Section 5 concludes and indicates several

issues for future work.

2.  Previous Works Review

Long and Tan [10] described a high-order polynomial-time theoretical algorithm and show that if the

instances in the bags are independently drawn from product distribution, then the APR is PAC-learnable. Auer et

al. [3] showed that if the instances in the bags are not independent then APR learning under the multi-instance

learning framework is NP-hard. Moreover, they also presented a theoretical algorithm without requiring product

distribution and with reduced time and sample complexity than that of Long and Tan’s algorithm. Later, this

theoretical algorithm was transformed into a practical algorithm named MULTINST [2]. Blum and Kalai [5]

gave a reduction from the problem of PAC-learning under the multi-instance learning framework to PAC-

learning with one-sided or two-sided random classification noise, and presented a theoretical algorithm with

smaller sample complexity than that of Auer et al.’s algorithm. Unfortunately, all the above theoretical analyses

made the restrictive assumption that each bag contains the same number of independent instances, which is

usually not the case in practice.

A representative practical multi-instance learning algorithm is Diverse Density proposed by Maron and

Lozano-Pérez [12], which has been applied to several applications including learning a simple description of a

person from a series of images [12], stock prediction [12], natural scene classification [13], and content-based

image retrieval [19]. There are also many other practical algorithms. Wang and Zucker [18] extended k-nearest

neighbor algorithm for multi-instance learning through adopting Hausdorff distance, and provided two multi-

instance learning algorithm called Bayesian-kNN and Citation-kNN. Ruffo [16] presented a multi-instance

version of C4.5 decision tree named Relic and applied it to data mining. Chevaleyre and Zucker [6] derived
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ID3-MI and RIPPER-MI, which are multi-instance version of decision tree algorithm ID3 and rule learning

algorithm RIPPER. Zhou and Zhang [21] developed a multi-instance neural network named BP-MIP through

employing a new error function capturing the nature of multi-instance learning. Zhang and Goldman [20]

proposed EM-DD, which combines the EM and Diverse Density algorithms. Zhou and Zhang [22] applied

ensemble learning paradigms to multi-instance learning and obtained the best result up to now on a benchmark

test.

Recently, some researchers begin to investigate multi-instance regression tasks with real-valued outputs. Ray

and Page [15] showed that the general formulation of multi-instance regression is NP-hard, and proposed an

EM-based multi-instance regression algorithm. Dooly et al. [8] further proved that learning from real-valued

multi-instance examples is as hard as learning DNF. Amar et al. [1] extended Diverse Density and Citation-kNN

for multi-instance regression and designed a method for artificially generating data sets for multi-instance

regression.

3.  Feature Selection for BP-MIP

Suppose the training set is composed of N bags, i.e. {B1, B2, …, BN}, the i-th bag contains Mi instances, i.e.

{Bi1, Bi2, …, BiMi}, each instance is a p-dimensional feature vector, e.g. the j-th instance of the i-th bag is [Bij1,

Bij2, …, Bijp]T. The training set is further divided into n positive bags B1
+, B2

+, …, Bn
+ and m negative bags B1

-, B2
-

, …, Bm
- where n+m=N. The desired output of a positive training bag is 1, while that of a negative training bag is

0.

3.1 BP-MIP

Suppose a neural network with p input units and one output unit is used to learn from the training set. Since

the goal of multi-instance learning is to predict the labels of unseen bags, the global error of the network on the

training set is defined as:

2

11 1

1 ( max )
2 i

N N

i ij ij Mi i
E E o d

≤ ≤= =

= = −∑ ∑ (1)

where Ei is the error of the network on Bi, oij is the actual output of the network on Bij and di is the desired output

of Bi.

Note that the error function shown as Eq. (1) is defined at the level of training bags instead of at the level of

training instances. Thus, the nature of multi-instance learning, i.e. a positive bag contains at least one positive

instance while a negative bag contains no positive instances, is appropriately addressed.

With the defined error function, the BP algorithm [17] is easy to be updated for multi-instance learning. In

detail, in each training epoch of BP-MIP, the training bags are fed to the network one by one. For bag Bi, if it has

been correctly predicted then no weight in the network is changed. Otherwise the weights are modified

according to the error on the instance whose corresponding actual output is the maximal in Bi. After that, Bi+1 is

fed to the network and the training process is iterated until the global error E decreases to a threshold or the

number of training epochs increases to a threshold.

It is worth noting that although the predictive accuracy of BP-MIP on the drug activity prediction data is
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better than many multi-instance learning algorithms, it is not so good as several algorithms such as iterated-

discrim APR [7] and Diverse Density [12] that have inbuilt feature selection mechanisms. Therefore an intuitive

way to boost the performance of BP-MIP is to resort to feature selection techniques.

3.2 BP-MIP-DD

Diverse Density [12] is a famous multi-instance learning algorithm. The diverse density at a point in the

feature space is the measure of how many different positive bags have instances near that point and how far the

negative instances are from that point. Strictly speaking, for any point t in the feature space, the probability of t

being the target point (i.e. the diverse density of t), given all the positive and negative bags, is Pr(t|B1
+, …,

Bn
+,B1

-, …, Bm
-). So the target point that maximizes this probability is

1 1arg max Pr( | ,..., , ,..., )n mB B B B+ + − −

t
t (2)

Using Bayes’ rule, assuming an uninformative prior over the concept location Pr(t) and conditional

independence of the bags given the target concept t, the above equals

arg max Pr( | ) Pr( | )i i
i i

B B+ −∏ ∏t
t t (3)

This is a formal definition of maximizing Diverse Density. Maron and Lozano-Pérez [12] used the “noisy-or”

model [14] such that
 Pr( | ) 1 (1 Pr( ))i ij

j

B B+ += − − =∏t t (4)

   Pr( | ) (1 Pr( ))i ij
j

B B− −= − =∏t t (5)

and made the following assumption:
  ( )2Pr( ) exp || ||ij ijB B= = − −t t                (6)

where ||Bij - t|| is the distance between the two vectors. It is worth mentioning that not all dimensions are equally

important, so they defined the distance to be a weighted Euclidean distance:

   22 2

1

|| || ( )
p

ij k ijk k
k

B w B
=

− = −∑t t (7)

where Bijk is the k-th dimension in the vector Bij and |wk| is the corresponding non-negative weight (|x| denotes

the absolute value of x). Multiple gradient ascents (starting from every instance in all positive bags) are

performed to search for the point with maximal diverse density as well as the best feature weights corresponding

to that point.

BP-MIP-DD utilizes the weights found by Diverse Density to improve the performance of BP-MIP. In detail,

before feature vectors are fed to a BP-MIP neural network for training or testing, they are scaled by the weights

found by running Diverse Density on the training data. In fact, the intention of BP-MIP-DD is to rescale the

feature space to stress important features with larger weights and suppress insignificant features with smaller

weights.

3.3 BP-MIP-PCA

Experiments on the drug activity prediction data show that BP-MIP-DD achieves better results through
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feature scaling (as reported in Section 4), which indicates that some features may have little responsibility in

characterizing the original data. Therefore, eliminating these redundant features while remaining the relevant

ones may probably lead to better performance.

PCA [9] is the most popular method for the reduction of irrelevant features, which is usually employed to

discover the intrinsic dimensionality of a data set based on the eigenvalues of a covariance matrix R computed

from the data. The M eigenvectors corresponding to the M largest eigenvalues of R define a linear

transformation matrix T, which projects the N-dimensional space into an M-dimensional space in which the

features are uncorrelated. Note that M, i.e. the dimensionality of the transformed data, is generally much smaller

than N, i.e. the dimensionality of the original data.

BP-MIP-PCA incorporates PCA into BP-MIP to perform feature reduction. Specifically, feature vectors are

projected by the linear transformation matrix T before they are fed to a BP-MIP neural network. Experiments on

the drug activity prediction data show that BP-MIP-PCA can significantly increase the performance of BP-MIP

(as reported in Section 4). This observation supports Dietterich et al.’s [7] claim that the number of relevant

features of the drug activity prediction data will probably be substantially less than 166.

4.  Experiments

4.1 Experimental Setup

The Musk data is the only real-world benchmark test data for multi-instance learning at present. There are

two data sets, both of which are publicly available from UCI Machine Learning Repository [4]. Characteristics

of those two data sets are summarized in Table I.

  Table I. Some characteristics of the Musk data.

Data set Musk1 Musk2

Dimensionality 166 166

No. bags 92 102

No. positive bags 47 39

No. negative bags 45 63

No. instances 476 6,598

Ave. No. instances per bag 5.17 64.69

Max No. instances in a bag 40 1,044

Min No. instances in a bag 2 1

Leave-one-out test is performed on the Musk data. In detail, for N bags, one bag is used to test while the

others are used to train a neural network in a loop of N iterations. In each iteration, BP-MIP, BP-MIP-DD, and

BP-MIP-PCA are trained according to the rules described in Section 3 respectively. The iterations are repeated

in the way that each bag in the data set has been used as the test bag once. At the end of the loop, the final

predictive accuracy is calculated as the total number of correctly labeled test bags divided by N. Since the

computational cost of Diverse Density is even higher than that of training a BP-MIP neural network, in the
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experiments Diverse Density is run only once on the whole data set instead of in each iteration for BP-MIP-DD.

For fair comparison, PCA is also run only once so that the linear transformation matrix T used in all iterations of

BP-MIP-PCA is the same, that is, T is derived from all the instances in all N bags.

Feedforward neural networks with one output unit, one hidden layer with 80 units, and 166 input units each

corresponds to a dimension of the 166-dimensional feature vectors, are trained with the BP-MIP and BP-MIP-

DD algorithms. The learning rate is set to 0.05, while the number of training epochs varies from 50 to 1,000

with an interval of 50.

Configurations of BP-MIP-PCA are the same as that of BP-MIP and BP-MIP-DD except the number of input

units and the number of hidden units. In order to determine the number of input units, i.e. the number of

remained features after feature reduction, PCA is incorporated into another multi-instance learning algorithm

named Citation-kNN [18]. Figure 1 and Figure 2 show the predictive accuracy of Citation-kNN on Musk1 and

Musk2 with leave-one-out test respectively, where the horizontal axis indicates the number of remained features.

Figure 1 shows that Citation-kNN achieves the highest predictive accuracy 93.48% on Musk1 when 41 or 42

features are remained. This indicates the intrinsic dimensionality of the Musk1 data set may be around 40. As for

Musk2, Figure 2 shows that Citation-kNN reaches the highest predictive accuracy 86.27% when remaining 48,

49, 55 or 56 features. According to the above facts, the number of input units and the number of hidden units of

BP-MIP-PCA are set to 41 and 40 respectively for Musk1, while 48 and 40 respectively for Musk2.

4.2 Results

The predictive accuracy curves of BP-MIP, BP-MIP-DD, and BP-MIP-PCA on Musk1 and Musk2 are shown

in Figure 3 and Figure 4 respectively. The horizontal axis indicates the number of training epochs.

For Musk1 (as shown in Figure 3), the best performance of BP-MIP-PCA is 88.0%, which is better than

85.9% and 83.7%, i.e. the best performance achieved by BP- MIP-DD and BP-MIP respectively. Furthermore,

BP-MIP-PCA and BP-MIP-DD significantly and persistently perform better than BP-MIP after 50 and 500

training epochs correspondingly.

For Musk1, on the other hand, BP-MIP-PCA is better than BP-MIP-DD until the number of training epochs

increases to 900. It is expected that if BP-MIP-DD is trained with more epochs, its predictive accuracy can be

Figure 1. Predictive accuracy of Citation-kNN combined
with PCA on the Musk1 data set.

Figure 2. Predictive accuracy of Citation-kNN combined
with PCA on the Musk2 data set.
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further improved. In addition, although the architecture and parameters of BP-MIP-PCA have not been finely

tuned, its best performance on Musk1, i.e. 88.0% between training epochs 350 and 500, is comparable to 88.9%,

i.e. the result achieved by Diverse Density [12].

For Musk2 (as shown in Figure 4), as what has been exhibited on Musk1, the best performance of BP-MIP-

PCA, i.e. 83.33%, is also better than 80.39%, i.e. the best performance identically achieved by BP-MIP-DD and

BP-MIP. Furthermore, BP-MIP-PCA and BP-MIP-DD significantly and persistently perform better than BP-

MIP after 50 and 250 training epochs correspondingly.

For Musk2, on the other hand, BP-MIP-DD reaches the highest predictive accuracy 80.39% after 600

training epochs, while BP-MIP rarely reach the same highest predictive accuracy 350 training epochs later. In

addition, the best performance of BP-MIP-PCA, i.e. 83.33% on training epochs 850, is better than 82.50%, i.e.

the result achieved by Diverse Density [12], even though the architecture and parameters of BP-MIP-PCA have

not been finely tuned.

5.  Conclusion

BP-MIP is a multi-instance neural network derived from the popular BP algorithm through employing a new

error function capturing the nature of multi-instance learning. In this paper, two variants of BP-MIP, i.e. BP-

MIP-DD and BP-MIP-PCA are developed. BP-MIP-DD scales the features with Diverse Density; and BP-MIP-

PCA eliminates features with principal component analysis. Experiments on the drug activity prediction data

show that the performance of BP-MIP can be significantly improved with both methods. This indicates that

incorporating feature selection mechanisms may be a promising way to boost current multi-instance learning

algorithms.

It is worth noting that the experimental results reported in this paper is rather preliminary because due to the

time limitation, the architecture and parameters of the neural networks have not been finely tuned. It is obvious

that investigating better configurations of the neural networks is an important issue to be explored in the near

future. Furthermore, investigating other feature selection methods to further improve BP-MIP is another

interesting issue for future work.

Figure 3. Predictive accuracy on Musk1. Figure 4. Predictive accuracy on Musk2.
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