Binary Relevance for Multi-Label Learning #### **Min-Ling Zhang** PALM Group, School of Computer Science and Engineering, MOE Key Laboratory of Computer Network & Information Integration Southeast University, China May 27, Jinan ## Outline - Multi-Label Learning (MLL) - Binary Relevance for MLL - Our Recent Studies - Towards Class-Imbalance Aware MLL - Leverage Relative Labeling-Importance for MLL - Conclusion # Traditional Supervised Learning # object instance label - Input space: represented by a single instance (feature vector) characterizing its properties - Output space: associated with a single label characterizing its semantics # Basic assumption real-world object has unique labeling # Multi-Label Objects Sunset Clouds Trees Countryside •••• # Multi-Label Objects Metabolism Transcription Protein synthesis • • • • • # Multi-Label Objects Piano Classical music Mozart Austria • • • • • #### Multi-label objects are ubiquitous! # Multi-Label Learning (MLL) #### object Multi-Label Learning (MLL) ## Formal Definition of MLL #### Settings $\mathcal{X}: d$ -dimensional feature space \mathbb{R}^d \mathcal{Y} : label space with q labels $\{y_1, y_2, \cdots, y_q\}$ #### Inputs \mathcal{D} : training set with m examples $\{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$ $\boldsymbol{x}_i \in \mathcal{X}$ is a d-dimensional feature vector $(\boldsymbol{x}_{i1}, \boldsymbol{x}_{i2}, \cdots, \boldsymbol{x}_{id})^{\mathrm{T}}$ $Y_i \subseteq \mathcal{Y}$ is the label set associated with \boldsymbol{x}_i #### **Outputs** h: multi-label predictor $\mathcal{X} \to 2^{\mathcal{Y}}$ ## Outline - Multi-Label Learning (MLL) - Binary Relevance for MLL - Our Recent Studies - Towards Class-Imbalance Aware MLL - Leverage Relative Labeling-Importance for MLL - Conclusion ## Binary Relevance (BR) [Boutell et al., PRJ04] #### The most intuitive solution to MLL decompose MLL into *q* independent binary problems for j=1 to q do Generate the *binary training set* \mathcal{D}_i from \mathcal{D} ; Train binary classifier: $g_i \leftarrow \mathcal{B}(\mathcal{D}_i)$ end $$h(\mathbf{x}^*) = \{y_j \mid g_j(\mathbf{x}^*) > 0, 1 \le j \le q\}$$ $$\mathcal{D} = \{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$$ (MLL training set) $$\mathcal{D}_{j} = \{ (\boldsymbol{x}_{i}, \phi(Y_{i}, y_{j})) \mid 1 \leq i \leq m \}$$ where $\phi(Y_{i}, y_{j}) = \begin{cases} 1, & \text{if } y_{j} \in Y_{i} \\ 0, & \text{otherwise} \end{cases}$ ## Binary Relevance (BR) [Boutell et al., PRJ04] #### The most intuitive solution to MLL decompose MLL into q independent binary problems $$\mathcal{D} = \{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$$ (MLL training set) $$\mathcal{D}_{j} = \{ (\boldsymbol{x}_{i}, \phi(Y_{i}, y_{j})) \mid 1 \leq i \leq m \}$$ where $\phi(Y_{i}, y_{j}) = \begin{cases} 1, & \text{if } y_{j} \in Y_{i} \\ 0, & \text{otherwise} \end{cases}$ ## Major Challenge – Huge Output Space $$q=5$$ \rightarrow 32 label sets $q=10 \rightarrow \sim 1$ k label sets $q=20 \rightarrow \sim 1M$ label sets #### Common Strategy #### Exploiting Label Correlations e.g.: An image labeled as lions and grassland would be likely annotated with label Africa # Endow BR with Label Correlations (1) ## Chaining-style methods [Read et al., ECML PKDD'09/MLJ11; Dembczyński et al., ICML'10/ECAI'12; Kumar et al., ECML PKDD'12; Senge et al., Gfkl'13; Li & Zhou, MCS'13; Mena et al., MLJ17] **Step I:** Specify a chaining order over all the class labels $$\tau: \{1, \dots, q\} \to \{1, \dots, q\}$$ **Step II:** Induce one binary classifier for each label along the chain, by treating preceding labels as extra features $$f_j: \mathcal{X} \times y_{\tau(1)} \times \cdots y_{\tau(j-1)} \to y_{\tau(j)} \ (1 \le j \le q)$$ #### Random correlations among labels # Endow BR with Label Correlations (2) ### Stacking-style methods [Godbole & Sarawagi, PAKDD'04; Tsoumakas et al., MLD'09; Zhang & Zhou, KDD'10; Montañes et al., PRJ14; Loza Mencía et al., MLJ16] #### **Step I:** Invoke the standard BR procedure $$g_j: \mathcal{X} \to y_j \ (1 \le j \le q)$$ **Step II:** Induce one binary classifier for each label, by treating BR classifiers' outputs as extra features $$f_j: \mathcal{X} \times g_1(\cdot) \times \cdots g_q(\cdot) \to y_j \ (1 \le j \le q)$$ #### Full-order correlations among labels ## To Enhance BR... Exploiting Label Correlations Necessary But Not Sufficient **Two Inherent Properties** - **□** Class-imbalance - ☐ Relative Labelingimportance ## Outline - Multi-Label Learning (MLL) - Binary Relevance for MLL - Our Recent Studies - Towards Class-Imbalance Aware MLL - Leverage Relative Labeling-Importance for MLL - Conclusion # Towards Class-Imbalance Aware Multi-Label Learning ## Class-Imbalance for MLL #### An inherent property for MLL: class-imbalance For each class label $y_j \in \mathcal{Y}$: \mathcal{D}_i^+ : the set of *positive* training examples w.r.t. y_j \mathcal{D}_i^- : the set of *negative* training examples w.r.t. y_j $$Im R_j = \frac{\max(|\mathcal{D}_j^+|, |\mathcal{D}_j^-|)}{\min(|\mathcal{D}_j^+|, |\mathcal{D}_j^-|)} \quad \textbf{(imbalance ratio)}$$ For the *rcv1* data set (with 42 class labels), we have: minimum $ImR_j (\min_{1 \le j \le q} ImR_j)$: >3 average $$ImR_j$$ ($\frac{1}{q}\sum_{j=1}^q ImR_j$): >15 maximum ImR_j ($\max_{1 \le j \le q} ImR_j$): >50 # Existing Approaches Towards Class-Imbalance MLL #### **Binary Decomposition** Decompose MLL into *q* independent binary learning problems - ✓ Over-sampling/Under-sampling apply over-sampling/under-sampling techniques [Spyromitros-Xioufis et al., IJCAI'11] [Tahir et al., PRJ12] [Charte et al., KBS15] - ✓ Parameter tuning optimizing the classification threshold [Fan & Lin, TechReport07] [Quevedo et al., PRJ12] [Pillai et al., PRJ13] - ✓ Optimizing imbalance-specific metric optimizing the F-measure [Petterson & Caetano, NIPS'10] [Dembczyński et al., ICML'13] # Existing Approaches Towards Class- Imbalance ML Ignoring Label Correlations! r-sampling s-Xioufis et al., IJCAI′11] J12] [Charte et al., KBS15] **Binary Decomposition** Decompose MLL into *q* independent binary learning problems - ✓ Parameter tuning optimizing the classification threshold [Fan & Lin, TechReport07] [Quevedo et al., PRJ12] [Pillai et al., PRJ13] - ✓ Optimizing imbalance-specific metric optimizing the F-measure [Petterson & Caetano, NIPS'10] [Dembczyński et al., ICML'13] ## The COCOA Approach #### Basic Strategy Cross-coupling + class-imbalance learner aggregation ### Training Phase Cross-coupling each labels Generate multi-class imbalance classifier ## Testing Phase Aggregate classifiers' outputs for each label Predict by querying aggregation results ## Training Phase For each class label $y_j \in \mathcal{Y}$, induce a real-valued function $f_j:\mathcal{X} \to \mathbb{R}$ by cross-coupling with other class labels suppose y_k $(k \neq j)$ is chosen to couple with y_j , a four-class training set \mathcal{D}_{jk} can be derived from \mathcal{D} as follows: $$\mathcal{D}_{jk} = \{ (\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq m \}$$ where $$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$ $\psi(Y_i, y_j, y_k)$ is determined by the joint assignment of y_j and y_k w.r.t. Y_i # Training Phase – Cont'd $$\mathcal{D}_{jk} = \{(\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq m\}$$ where $$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$ $$\text{Merge}$$ WLOG, suppose positive examples correspond to the *minority* class For \mathcal{D}_{jk} , the first class $(\psi(Y_i, y_j, y_k) = 0)$ would be largest and the fourth class $(\psi(Y_i, y_j, y_k) = +3)$ would be smallest The worst imbalance ratio would roughly turn into ImR_i*ImR_k # Training Phase – Cont'd $$\mathcal{D}_{jk} = \{(\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq N\}$$ where $$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$ Merge $$\mathcal{D}_{jk}^{\mathbf{tri}} = \left\{ \left(\boldsymbol{x}_{i}, \psi^{\mathbf{tri}}(Y_{i}, y_{j}, y_{k}) \right) \mid 1 \leq i \leq N \right\}$$ where $\psi^{\mathbf{tri}}(Y_{i}, y_{j}, y_{k}) = \begin{cases} 0, & \text{if } y_{j} \notin Y_{i} \text{ and } y_{k} \notin Y_{i} \\ +1, & \text{if } y_{j} \notin Y_{i} \text{ and } y_{k} \in Y_{i} \\ +2, & \text{if } y_{j} \in Y_{i} \end{cases}$ # Training Phase – Cont'd ``` for j=1 to q do Draw a random subset \mathcal{I}_K \subset \mathcal{Y} \setminus \{y_j\} containing K class labels; for y_k \in \mathcal{I}_K do Form the tri-class training set \mathcal{D}_{jk}^{\mathbf{tri}}; g_{jk} \leftarrow \mathcal{M} \mathcal{D}_{jk}^{\mathbf{tri}}); end Multi-class imbalance learner ``` # Testing Phase for j=1 to q do Draw a *random* subset $\mathcal{I}_K \subset \mathcal{Y} \setminus \{y_j\}$ containing K class labels; for $y_k \in \mathcal{I}_K$ do Form the tri-class training set $\mathcal{D}_{ik}^{\mathbf{tri}}$; $$g_{jk} \leftarrow \mathcal{M}(\mathcal{D}_{jk}^{\mathbf{tri}});$$ end end Multi-class imbalance learner for j=1 to q do $$f_j(\boldsymbol{x}) = \sum_{y_k \in \mathcal{I}_K} g_{jk}(+2 \mid \boldsymbol{x})$$ predictive confidence that \boldsymbol{x} has positive assignment w.r.t. y_i end $$Y = \{y_j \mid \forall 1 \leq j \leq q : f_j(\boldsymbol{x}) > t_j\}$$ threshold obtained by optimizing empirical F-measure w.r.t. y_j # Testing Phase ## Experimental Setup – Data Sets | Table 2: Chara | acteristics of | of the | benchmark | multi-label | data sets. | |----------------|----------------|--------|-----------|-------------|------------| |----------------|----------------|--------|-----------|-------------|------------| | Data set | $ \mathcal{S} = dim(\mathcal{S}) - L(\mathcal{S}) - F(\mathcal{S}) - LCard(\mathcal{S}) - LDen(\mathcal{S}) - DL(\mathcal{S})$ | dim(S) | L(S) | F(S) | LCard(S) | L.Den(S) | DL(S) | PDL(S) | Imbalance Ratio | | | |-----------------|---|-------------------|--------|---------|----------|----------|-------|--------|-----------------|--------|--------| | Data set | | $DL(\mathcal{O})$ | IDL(O) | min | max | avg | | | | | | | CAL500 | 502 | 68 | 124 | numeric | 25.058 | 0.202 | 502 | 1.000 | 1.040 | 24.390 | 3.846 | | Emotions | 593 | 72 | 6 | numeric | 1.869 | 0.311 | 27 | 0.046 | 1.247 | 3.003 | 2.146 | | Medical | 978 | 144 | 14 | numeric | 1.075 | 0.077 | 42 | 0.043 | 2.674 | 43.478 | 11.236 | | Enron | 1702 | 50 | 24 | nominal | 3.113 | 0.130 | 547 | 0.321 | 1.000 | 43.478 | 5.348 | | Scene | 2407 | 294 | 6 | numeric | 1.074 | 0.179 | 15 | 0.006 | 3.521 | 5.618 | 4.566 | | Yeast | 2417 | 103 | 13 | numeric | 4.233 | 0.325 | 189 | 0.078 | 1.328 | 12.500 | 2.778 | | Slashdot | 3782 | 53 | 14 | nominal | 1.134 | 0.081 | 118 | 0.031 | 5.464 | 35.714 | 10.989 | | Corel5k | 5000 | 499 | 44 | nominal | 2.214 | 0.050 | 1037 | 0.207 | 3.460 | 50.000 | 17.857 | | Rcv1 (subset 1) | 6000 | 472 | 42 | numeric | 2.458 | 0.059 | 574 | 0.096 | 3.344 | 50.000 | 15.152 | | Rcv1 (subset 2) | 6000 | 472 | 39 | numeric | 2.170 | 0.056 | 489 | 0.082 | 3.215 | 47.619 | 15.873 | | Eurlex-sm | 19348 | 250 | 27 | numeric | 1.492 | 0.055 | 497 | 0.026 | 3.509 | 47.619 | 16.393 | | Tmc2007 | 28596 | 500 | 15 | nominal | 2.100 | 0.140 | 637 | 0.022 | 1.447 | 34.483 | 5.848 | | Mediamill | 43907 | 120 | 29 | numeric | 4.010 | 0.138 | 3540 | 0.079 | 1.748 | 45.455 | 7.092 | #### Thirteen benchmark multi-label data sets - ✓ average imbalance ratio ranges from 2.146 to 17.857 - ✓ ten times of random train/test splits (50%/50%) + pairwise *t*-test - ✓ imbalance-specific metrics: (macro-averaging) *F-measure* and *AUC* ## Experimental Setup — Comparing Algorithms **COCOA**: $K = \min(q - 1, 10)$ First Series Binary decomposition + imbalance learning techniques Usam: under-sampling USAM-EN, SMOTE-EN: **SMOTE:** over-sampling ensemble version RML: optimizing F-measure [Petterson & Caetano, NIPS'10] **Second Series** Well-established MLL learning algorithms ML-KNN: First-order approach [Zhang & Zhou, PRJ07] CLR: Second-order approach [Fürnkranz et al., MLJ08] Ecc: High-order approach [Read et al., MLJ11] RAKEL: High-order approach [Tsoumakas et al., TKDE11] ## Experimental Results – F-measure Table 3: Performance of each comparing algorithm (mean±std. deviation) in terms of *macro-averaging F-measure* (MACRO-F). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise *t*-test at 1% significance level). | Algorithm | | | | Data Set | | | | |-------------|-----------------|--------------------|----------------------------|-------------------------|---------------------------|-------------------|---------------------| | Aigoridiiii | CAL500 | Emotions | Medical | Enron | Scene | Yeast | Slashdot | | COCOA | 0.207 ± 0.009 | 0.662 ± 0.013 | 0.690 ± 0.015 | 0.324 ± 0.009 | 0.732 ± 0.013 | 0.457 ± 0.015 | 0.327 ± 0.009 | | USAM | 0.217±0.0060 | 0.591±0.016 ■ | 0.670±0.012• | 0.266 ± 0.011 | 0.624 ± 0.008 | 0.432 ± 0.010 | 0.259 ± 0.010 | | USAM-EN | 0.246±0.0040 | 0.590±0.018 ■ | 0.665 ± 0.025 | 0.274 ± 0.010 | 0.620±0.011• | 0.437 ± 0.012 | 0.296±0.007• | | SMOTE | 0.237±0.0060 | 0.584 ± 0.020 | 0.672 ± 0.022 | 0.266±0.006• | 0.619±0.007• | 0.430 ± 0.006 | 0.326 ± 0.005 | | SMOTE-EN | 0.239±0.0040 | 0.582±0.017• | 0.672 ± 0.022 | 0.275±0.004• | 0.624±0.007 • | 0.431 ± 0.005 | 0.315 ± 0.007 | | RML | 0.209 ± 0.008 | 0.645 ± 0.016 | 0.666 ± 0.018 | 0.309 ± 0.010 | 0.684±0.013• | 0.471 ± 0.014 | 0.311 ± 0.009 | | ML-KNN | 0.074 ± 0.002 | 0.592±0.026• | 0.474 ± 0.031 | 0.174 ± 0.011 | 0.715 ± 0.011 | 0.380 ± 0.008 | 0.198 ± 0.014 | | CLR | 0.081 ± 0.007 | 0.595±0.017• | 0.650 ± 0.012 | 0.229 ± 0.006 | 0.631±0.013• | 0.413 ± 0.010 | 0.233±0.007• | | Ecc | 0.102±0.004 | 0.642±0.014• | 0.647±0.021• | 0.241±0.006• | 0.716 ± 0.009 | 0.394 ± 0.008 | 0.250 ± 0.007 | | RAKEL | 0.193±0.003• | 0.613±0.018• | 0.576 ± 0.014 | 0.256 ± 0.006 | 0.686±0.008 | 0.420 ± 0.005 | 0.248 ± 0.006 | | ====== | ====== | =====: | = = = = = D ata | a Set | ======: | ====== | win/tie/loss | | Algorithm | Core15k | Rcv1
(subset 1) | Rcv1
(subset 2) | Eurlex-sm | Tmc2007 | Mediamill | counts for
COCOA | | COCOA | 0.195 ± 0.004 | 0.363 ± 0.008 | 0.337 ± 0.009 | 0.703 ± 0.007 | 0.669 ± 0.002 | 0.459 ± 0.004 | | | USAM | 0.141 ± 0.004 | 0.318 ± 0.005 | 0.306 ± 0.005 | 0.562±0.007 • | 0.607±0.002• | 0.337±0.003• | 12/0/1 | | USAM-EN | 0.150±0.002• | 0.317±0.005 ■ | 0.303 ± 0.005 | 0.563 ± 0.004 | 0.608 ± 0.002 | 0.337±0.003• | 11/1/1 | | SMOTE | 0.125±0.003• | 0.314±0.006• | 0.305 ± 0.004 | 0.552±0.003• | 0.566±0.003• | 0.338 ± 0.001 | 10/2/1 | | SMOTE-EN | 0.126±0.002• | 0.313±0.004• | 0.304 ± 0.004 | 0.553 ± 0.003 | 0.567±0.003• | 0.341 ± 0.001 | 10/2/1 | | RML | 0.215±0.009o | 0.387±0.020o | 0.363±0.0290 | 0.059 ± 0.003 | $0.568 \pm 0.039 \bullet$ | 0.268±0.019• | 6/4/3 | | ML-KNN | 0.028 ± 0.004 | 0.122±0.008• | 0.103 ± 0.008 | 0.525±0.012• | 0.479±0.008• | 0.245±0.004• | 12/1/0 | | CLR | 0.049 ± 0.004 | 0.227±0.007• | 0.226 ± 0.006 | $0.599\pm0.006 \bullet$ | 0.623±0.003• | 0.268 ± 0.004 | 13/0/0 | | Ecc | 0.064 ± 0.004 | 0.216±0.007• | 0.199 ± 0.004 | 0.619 ± 0.009 | 0.642±0.003• | 0.277±0.002• | 12/1/0 | | RAKEL | 0.084±0.005• | 0.272±0.007◆ | 0.263±0.005◆ | 0.632±0.008• | 0.643±0.004• | 0.378±0.002• | 13/0/0 | ## Experimental Results – F-measure Table 3: Performance of each comparing algorithm (mean±std. deviation) in terms of *macro-averaging F-measure* (MACRO-F). In addition, •/o indicates whether COCOA is statistically superior/inferior to the comparing algorithm on each data set (pairwise *t*-test at 1% significance level). ## Experimental Results – AUC Table 4: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging AUC (MACRO-AUC). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 1% significance level). | Algorithm | | | | Data Set | | | | | |-----------|--|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|----------------------------|--| | Aigorium | CAL500 | Emotions | Medical | Enron | Scene | Yeast | Slashdot | | | COCOA | 0.557 ± 0.005 | 0.843 ± 0.010 | 0.958 ± 0.006 | 0.731 ± 0.006 | 0.943 ± 0.003 | 0.710 ± 0.006 | 0.736 ± 0.005 | | | USAM | 0.514 ± 0.005 | 0.708 ± 0.019 | 0.855±0.012• | 0.606 ± 0.010 | 0.790±0.009• | $0.578\pm0.006 \bullet$ | 0.617 ± 0.004 | | | USAM-EN | 0.513 ± 0.004 | 0.708 ± 0.015 | $0.860 \pm 0.024 \bullet$ | $0.600 \pm 0.004 \bullet$ | 0.788 ± 0.009 | $0.583 \pm 0.006 \bullet$ | 0.618 ± 0.004 | | | SMOTE | 0.513 ± 0.005 | 0.703±0.019• | 0.874±0.019• | $0.617 \pm 0.007 \bullet$ | 0.776 ± 0.008 | $0.579\pm0.006 \bullet$ | $0.688 \pm 0.008 \bullet$ | | | SMOTE-EN | 0.513±0.004• | 0.704 ± 0.013 | 0.874±0.019• | $0.617 \pm 0.007 \bullet$ | 0.777±0.011• | $0.581 \pm 0.007 \bullet$ | $0.686 \pm 0.008 \bullet$ | | | RML | _ | _ | _ | _ | _ | _ | _ | | | ML-KNN | 0.516±0.007• | 0.806 ± 0.015 | $0.909 \pm 0.008 \bullet$ | 0.663 ± 0.006 | 0.926 ± 0.005 | 0.679 ± 0.004 | 0.676 ± 0.006 | | | CLR | 0.561±0.004° | 0.796±0.010• | 0.948±0.008• | 0.709 ± 0.007 | $0.894 \pm 0.005 \bullet$ | 0.650 ± 0.004 | $0.698 \pm 0.009 \bullet$ | | | Ecc | 0.549±0.007• | 0.841 ± 0.009 | 0.925±0.009• | 0.723±0.006• | $0.938 \pm 0.003 \bullet$ | $0.689 \pm 0.006 \bullet$ | 0.706±0.009• | | | RAKEL | $0.528 \pm 0.005 \bullet$ | 0.797±0.015• | $0.828 \pm 0.006 \bullet$ | $0.640 \pm 0.003 \bullet$ | $0.892 \pm 0.004 \bullet$ | $0.640 \pm 0.004 \bullet$ | $0.612 \pm 0.002 \bullet$ | | | =====: | ====================================== | | | | | | | | | | 0 151 | Rcv1 | Rcv1 | | TD 2007 | 3.5 11 111 | win/tie/loss
counts for | | | Algorithm | Corel5k | (subset 1) | (subset 2) | Eurlex-sm | Tmc2007 | Mediamill | COCOA | | | COCOA | 0.719 ± 0.004 | 0.889 ± 0.003 | 0.882 ± 0.002 | 0.957 ± 0.002 | 0.930 ± 0.001 | 0.843 ± 0.001 | | | | USAM | 0.572±0.003• | 0.674 ± 0.010 | 0.672±0.009• | 0.788 ± 0.009 | $0.801 \pm 0.003 \bullet$ | 0.655±0.004• | 13/0/0/ | | | USAM-EN | 0.574±0.002• | 0.676 ± 0.010 | 0.671±0.010• | $0.789 \pm 0.006 \bullet$ | $0.800 \pm 0.003 \bullet$ | 0.654 ± 0.006 | 13/0/0/ | | | SMOTE | 0.597±0.004• | 0.625 ± 0.009 | $0.620 \pm 0.008 \bullet$ | 0.795±0.005• | 0.793±0.003• | 0.669 ± 0.002 | 13/0/0/ | | | SMOTE-EN | 0.596 ± 0.004 | 0.626 ± 0.006 | 0.620 ± 0.009 | 0.795±0.004• | 0.793±0.003• | 0.670 ± 0.002 | 13/0/0/ | | | RML | _ | _ | _ | _ | _ | _ | | | | ML-KNN | 0.590 ± 0.005 | 0.718 ± 0.009 | 0.710 ± 0.009 | $0.887 \pm 0.004 \bullet$ | $0.849 \pm 0.003 \bullet$ | 0.767±0.001• | 13/0/0/ | | | CLR | $0.740 \pm 0.002 \circ$ | 0.891 ± 0.003 | 0.882 ± 0.002 | 0.944 ± 0.001 | 0.906 ± 0.001 | $0.805 \pm 0.001 \bullet$ | 8/3/2 | | | Ecc | 0.697±0.006● | 0.864±0.002● | 0.855±0.003• | 0.945±0.002• | 0.921±0.001• | 0.826 ± 0.001 | 12/1/0 | | | RAKEL | 0.552±0.002• | 0.728±0.003• | 0.721±0.003• | 0.872±0.005• | $0.859 \pm 0.002 \bullet$ | 0.737±0.001• | 13/0/0/ | | MACRO-AUC not applicable to RML, which does not yield real-valued outputs on each class label [Petterson and Caetano, 2010]. ## Experimental Results – AUC Table 4: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging AUC (MACRO-AUC). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 1% significance level). | Algorithm | | | | Data Set | | | | |-----------|---------------------------|-------------------|---------------------------|---------------------------|---------------------------|---------------------------|---------------------------| | | CAL500 | Emotions | Medical | Enron | Scene | Yeast | Slashdot | | COCOA | 0.557 ± 0.005 | 0.843 ± 0.010 | 0.958 ± 0.006 | 0.731 ± 0.006 | 0.943 ± 0.003 | 0.710 ± 0.006 | 0.736 ± 0.005 | | USAM | 0.514 ± 0.005 | 0.708 ± 0.019 | 0.855±0.012• | 0.606 ± 0.010 | 0.790 ± 0.009 | $0.578\pm0.006 \bullet$ | 0.617 ± 0.004 | | USAM-EN | $0.513 \pm 0.004 \bullet$ | 0.708 ± 0.015 | $0.860 \pm 0.024 \bullet$ | $0.600 \pm 0.004 \bullet$ | $0.788 \pm 0.009 \bullet$ | $0.583 \pm 0.006 \bullet$ | 0.618 ± 0.004 | | SMOTE | 0.513 ± 0.005 | | | | | 006• | $0.688 \pm 0.008 \bullet$ | | SMOTE-EN | 0.513 ± 0.00 | | | | | 07∙ | 0.686 ± 0.008 | | RML | _ | Cocoa si | onificant | dy outpe | rforms t | he l | _ | | ML-KNN | 0.516 ± 0.00 | | 51111104111 | cry outpo | | 04• | 0.676 ± 0.006 | | CLR | 0.561 ± 0.00 | CI . | C | | 1 | 04∙ | $0.698 \pm 0.009 \bullet$ | | Ecc | 0.549 ± 0.00 | first seri | es of cor | nparing . | algorithi | ms be- | 0.706 ± 0.009 | | RAKEL | 0.528 ± 0.00 | | | P 8 | | 4. | 0.612±0.002• | | ====== | ====== | . 11 | | | | / =: | win/tie/loss | | | | in all cas | es | | | | counts for | | Algorithm | Corel5k | | | | | | COCOA | | COCOA | 0.719 ± 0.004 | 0.889 ± 0.003 | 0.882 ± 0.002 | 0.957 ± 0.002 | 0.930 ± 0.001 | 0.843±0.001 | L L | | USAM | 0.5 | | | | | 0.655±0.004 | 13/0/0/ | | USAM-EN | of Coco | A is outp | erforme | d by CLR | ? in only | .654±0.006● | 13/0/0/ | | SMOTE | | ii ib oacp | | a by dhi | t III OIII | .669±0.002• | 13/0/0/ | | SMOTE-EN | 0 trazo | cacac an | dachiou | oc cunor | ior or | .670±0.002• | 13/0/0/ | | RML | | cases, an | u acmev | es super | 101 01 | _ | 10, 0, 0 | | ML-KNN | 0 . 1 | | 1.1 | C | | 767+0.001• | 13/0/0/ | | CLR | at lea | ast comp | arable b | erformai | nce in | | 8/3/2 | | ECC | 0. | r | 1 | | | 0.001 | 12/1/0 | | RAKEL | of the re | est cases | | | | 0.737±0.001• | 13/0/0/ | | KAKEL | w the r | cst cases | | | | 1.131±0.001€ | 15/0/0/ | | | | | | | | | | ## Experimental Results – Further Analysis Figure 1: Performance gain between Cocoa and the comparing algorithm (PG_k) changes as the level of imbalance ratio (I_k) increases. On either data set, the performance of each algorithm is evaluated based on F-measure. H-axis: Level of imbalance ratio V-axis: Performance gain between COCOA and the comparing algorithm ## Experimental Results – Further Analysis # Leverage Relative Labeling-Importance for Multi-Label Learning # Labeling-Importance for MLL ## Labeling-importance is relative by nature An image annotated with multiple labels *sky*, *water*, *building* and *cloud* Multi-category document Different topical importance Multi-functionality gene Different expression level # Labeling-Importance for MLL ## Labeling-importance is relative by nature Multi-category document Different topical importance Multi-functionality gene Different expression level # Relative Labeling-Importance (RLI) #### Definition: Relative Labeling-Importance (RLI) Degree Given any instance $x \in \mathcal{X}$, the RLI degree of label $y_l \in \mathcal{Y}$ for \boldsymbol{x} is denoted as $\mu_{\boldsymbol{x}}^{y_l}$, which satisfies the following constraints: - (i) non-negativity: $\mu_{\mathbf{x}}^{y_l} \geq 0$ - (ii) normalization: $\sum_{u \in \mathcal{V}} \mu_{\boldsymbol{x}}^{y_l} = 1$ #### The RELIAB Approach Implicit RLI degree estimation Prediction Model Induction # Relative Labeling-Importance (RLI) # Implicit RLI Degree Estimation ### Weighted Graph Construction $$G = (V, E, W)$$ - $V = \{ \boldsymbol{x}_i \mid 1 \le i \le m \}$ $E = \{ (\boldsymbol{x}_i, \boldsymbol{x}_j) \mid j \ne i \}$ fully-connected graph over all the training examples • $$\mathbf{W} = [w_{ij}]_{m \times m}$$ $$\forall_{i,j=1}^m: \quad w_{ij} = \begin{cases} \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||^2}{2\sigma^2}\right), & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}$$ $$\mathbf{D} = \operatorname{diag}[d_1, d_2, \dots, d_m] \qquad d_i = \sum_{j=1}^m w_{ij}$$ # Implicit RLI Degree Estimation (Cont.) #### Iterative Label Propagation Set the label propagation matrix: $\mathbf{P} = \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$ Assume a matrix $\mathbf{F} = [f_{il}]_{m \times q}$ with non-negative entries $f_{il} \geq 0$: proportional to the labeling-importance $\mu_{\boldsymbol{x}_i}^{y_l}$ $(1 \leq i \leq q; \ y_l \in \mathcal{Y})$ initialize $$\mathbf{F}^{(0)} = \mathbf{\Phi} = [\phi_{il}]_{m \times q} : \phi_{il} = \begin{cases} 1, & \text{if } y_l \in Y_i \\ 0, & \text{otherwise} \end{cases}$$ Update **F** iteratively by propagating labeling-importance information $$\mathbf{F}^{(t)} = \alpha \mathbf{P} \mathbf{F}^{(t-1)} + (1 - \alpha) \mathbf{\Phi} \quad \mathbf{\Sigma}$$ Converges to: $$\mathbf{F}^* = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{P})^{-1} \mathbf{\Phi}$$ #### Prediction Model Induction #### Estimated RLI Information $$\mathcal{U} = \{ \mu_{\boldsymbol{x}_i}^{y_l} \mid 1 \le i \le q; \ y_l \in \mathcal{Y} \}$$ $$\mathbf{F}^* \longrightarrow \mu_{\boldsymbol{x}_i}^{y_l} = \frac{f_{il}^*}{\sum_{k=1}^q f_{ik}^*}$$ ## Maximum Entropy Classification Model $$f(y_l \mid \boldsymbol{x}, \boldsymbol{\Theta}) = rac{1}{Z(\boldsymbol{x})} \exp\left(\boldsymbol{\theta}_l^{ op} \boldsymbol{x}\right)$$ $\boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_q]$ $Z(\boldsymbol{x}) = \sum_{k=1}^q \exp\left(\boldsymbol{\theta}_l^{ op} \boldsymbol{x}\right)$ # Prediction Model Induction (Cont.) ### Objective Function $$V(f, \mathcal{U}, \mathcal{D}) = V_{dis}(f, \mathcal{U}) + \beta \cdot V_{emp}(f, \mathcal{D})$$ How f fits the estimated RLI information How f classifies training samples #### KL divergence $$V_{dis}(f, \mathcal{U}) = \sum_{i=1}^{m} \sum_{l=1}^{q} \left(\mu_{\boldsymbol{x}_i}^{y_l} \ln \frac{\mu_{\boldsymbol{x}_i}^{y_l}}{f(y_l \mid \boldsymbol{x}_i, \boldsymbol{\Theta})} \right)$$ Empirical ranking loss Minimized by the quasi-newton L-BFGS algorithm # Experimental Setup — Data Sets Table III CHARACTERISTICS OF THE BENCHMARK MULTI-LABEL DATA SETS. | Data set | S | dim(S) | L(S) | F(S) | LCard(S) | LDen(S) | DL(S) | PDL(S) | Domain | |-----------|--------|--------|------|---------|----------|---------|-------|--------|---------| | cal500 | 502 | 68 | 174 | numeric | 26.044 | 0.150 | 502 | 1.000 | audio | | emotions | 593 | 72 | 6 | numeric | 1.868 | 0.311 | 27 | 0.046 | audio | | medical | 978 | 1,449 | 45 | nominal | 1.245 | 0.028 | 94 | 0.096 | text | | llog | 1,460 | 1,004 | 75 | nominal | 1.180 | 0.016 | 304 | 0.208 | text | | msra | 1,868 | 898 | 19 | numeric | 6.315 | 0.332 | 947 | 0.507 | image | | image | 2,000 | 294 | 5 | numeric | 1.236 | 0.247 | 20 | 0.010 | image | | scene | 2.407 | 294 | 5 | numeric | 1.074 | 0.179 | 15 | 0.006 | image | | yeast | 2.417 | 103 | 14 | numeric | 4.237 | 0.303 | 198 | 0.082 | biology | | slashdot | 3,782 | 1,079 | 22 | nominal | 1.181 | 0.054 | 156 | 0.041 | text | | corel5k | 5,000 | 499 | 374 | nominal | 3.522 | 0.009 | 3,175 | 0.635 | image | | rcv1-s1 | 6,000 | 500 | 101 | nominal | 2.880 | 0.029 | 1,028 | 0.171 | text | | rcv1-s2 | 6,000 | 500 | 101 | nominal | 2.634 | 0.026 | 954 | 0.159 | text | | rcv1-s3 | 6,000 | 500 | 101 | nominal | 2.614 | 0.026 | 939 | 0.156 | text | | rcv1-s4 | 6,000 | 500 | 101 | nominal | 2.484 | 0.025 | 816 | 0.136 | text | | rcv1-s5 | 6,000 | 500 | 101 | nominal | 2.642 | 0.026 | 946 | 0.158 | text | | bibtex | 7,395 | 1836 | 159 | nominal | 2.402 | 0.015 | 2,856 | 0.386 | text | | mediamill | 43,907 | 120 | 101 | numeric | 4.376 | 0.043 | 6,555 | 0.149 | video | #### Seventeen benchmark multi-label data sets # regular-scale: 9; # large-scale: 8 ## Experimental Setup – Algorithms & Evaluation #### Comparing Algorithms **B**R (first-order) **Reliab versus** Clr (second-order) ECC, RAKEL (high-order) #### **Evaluation Metrics** **Example-based**: one-error, coverage, ranking loss, average **Label-based**: macro-averaging F1, micro-averaging F1 #### **Evaluation Protocol** N-fold cross-validation + Friedman test # Experimental Results – Regular-Scale | Table IV | |---| | PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE NINE REGULAR-SCALE DATA SETS. | | Comparing | | | | | One-error ↓ | | | | | |---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | algorithm | cal500 | emotions | medical | llog | msra | image | scene | yeast | slashdot | | RELIAB | 0.129 ± 0.019 | 0.273 ± 0.019 | 0.160 ± 0.012 | 0.745 ± 0.007 | 0.066 ± 0.014 | 0.348 ± 0.016 | 0.248 ± 0.007 | 0.223 ± 0.011 | 0.509 ± 0.014 | | BR | 0.906 ± 0.025 | 0.375 ± 0.027 | 0.306 ± 0.031 | 0.885 ± 0.013 | 0.362 ± 0.013 | 0.527 ± 0.011 | 0.472 ± 0.016 | 0.284 ± 0.010 | 0.731 ± 0.014 | | CLR | 0.375 ± 0.118 | 0.356 ± 0.030 | 0.706 ± 0.149 | 0.883 ± 0.023 | 0.152 ± 0.009 | 0.502 ± 0.016 | 0.367 ± 0.017 | 0.272 ± 0.012 | 0.978 ± 0.003 | | Ecc | 0.255 ± 0.028 | 0.353 ± 0.040 | 0.187 ± 0.016 | 0.794 ± 0.011 | 0.211 ± 0.011 | 0.475 ± 0.011 | 0.378 ± 0.015 | 0.261 ± 0.010 | 0.476 ± 0.015 | | RAKEL | 0.672 ± 0.029 | 0.394 ± 0.027 | 0.252 ± 0.025 | 0.876 ± 0.015 | 0.288 ± 0.014 | 0.498 ± 0.013 | 0.440 ± 0.016 | 0.297 ± 0.012 | 0.596 ± 0.011 | | Comparing | | ======== | ======== | ======== | Coverage ↓ | | ======== | | ========= | | algorithm | cal500 | emotions | medical | llog | msra | image | scene | yeast | slashdot | | RELIAB | 0.744 ± 0.008 | 0.304 ± 0.014 | 0.045 ± 0.007 | 0.156 ± 0.005 | 0.545 ± 0.012 | 0.204 ± 0.005 | 0.099 ± 0.003 | 0.453 ± 0.007 | 0.138 ± 0.002 | | BR | 0.877 ± 0.009 | 0.364 ± 0.015 | 0.117 ± 0.018 | 0.380 ± 0.006 | 0.716 ± 0.004 | 0.297 ± 0.009 | 0.209 ± 0.010 | 0.479 ± 0.007 | 0.261 ± 0.009 | | CLR | 0.792 ± 0.014 | 0.351 ± 0.016 | 0.134 ± 0.026 | 0.234 ± 0.019 | 0.636 ± 0.004 | 0.285 ± 0.009 | 0.119 ± 0.004 | 0.496 ± 0.006 | 0.271 ± 0.004 | | Ecc | 0.796 ± 0.008 | 0.356 ± 0.013 | 0.052 ± 0.007 | 0.195 ± 0.006 | 0.665 ± 0.004 | 0.271 ± 0.008 | 0.144 ± 0.008 | 0.479 ± 0.006 | 0.138 ± 0.006 | | RAKEL | 0.958 ± 0.003 | 0.386 ± 0.016 | 0.113 ± 0.012 | 0.360 ± 0.007 | 0.698 ± 0.006 | 0.293 ± 0.008 | 0.190 ± 0.009 | 0.573 ± 0.008 | 0.219 ± 0.005 | | Comparing | [======= | ========= | ======== | ======== | Ranking loss ↓ | | ======== | | | | algorithm | cal500 | emotions | medical | llog | msra | image | scene | yeast | slashdot | | RELIAB | 0.179 ± 0.003 | 0.165 ± 0.011 | 0.030 ± 0.006 | 0.121 ± 0.004 | 0.134 ± 0.008 | 0.185 ± 0.006 | 0.081 ± 0.002 | 0.171 ± 0.006 | 0.122 ± 0.002 | | BR | 0.266 ± 0.005 | 0.233 ± 0.016 | 0.089 ± 0.013 | 0.329 ± 0.005 | 0.287 ± 0.004 | 0.309 ± 0.010 | 0.230 ± 0.012 | 0.191 ± 0.005 | 0.242 ± 0.009 | | CLR | 0.248 ± 0.029 | 0.222 ± 0.014 | 0.114 ± 0.024 | 0.197 ± 0.017 | 0.207 ± 0.003 | 0.291 ± 0.010 | 0.125 ± 0.005 | 0.200 ± 0.005 | 0.258 ± 0.005 | | Ecc | 0.218 ± 0.004 | 0.227 ± 0.017 | 0.036 ± 0.006 | 0.156 ± 0.005 | 0.238 ± 0.004 | 0.273 ± 0.010 | 0.154 ± 0.008 | 0.193 ± 0.005 | 0.121 ± 0.006 | | RAKEL | 0.342 ± 0.003 | 0.260 ± 0.016 | 0.087 ± 0.009 | 0.309 ± 0.006 | 0.260 ± 0.004 | 0.303 ± 0.009 | 0.209 ± 0.010 | 0.254 ± 0.006 | 0.198 ± 0.005 | | Comparing | | | | | verage precision | | | | | | algorithm | cal500 | emotions | medical | llog | msra | image | scene | yeast | slashdot | | RELIAB | 0.503 ± 0.007 | 0.796 ± 0.011 | 0.876 ± 0.010 | 0.394 ± 0.009 | 0.816 ± 0.012 | 0.774 ± 0.008 | 0.853 ± 0.004 | 0.760 ± 0.007 | 0.613 ± 0.010 | | BR | 0.301 ± 0.006 | 0.730 ± 0.015 | 0.756 ± 0.025 | 0.214 ± 0.014 | 0.626 ± 0.005 | 0.656 ± 0.007 | 0.692 ± 0.012 | 0.733 ± 0.007 | 0.427 ± 0.013 | | CLR | 0.383 ± 0.048 | 0.742 ± 0.016 | 0.403 ± 0.051 | 0.209 ± 0.019 | 0.722 ± 0.003 | 0.672 ± 0.010 | 0.781 ± 0.008 | 0.729 ± 0.008 | 0.251 ± 0.007 | | Ecc | 0.431 ± 0.005 | 0.740 ± 0.021 | 0.856 ± 0.011 | 0.335 ± 0.009 | 0.684 ± 0.004 | 0.690 ± 0.008 | 0.763 ± 0.010 | 0.738 ± 0.007 | 0.631 ± 0.012 | | RAKEL | 0.323 ± 0.006 | 0.713 ± 0.017 | 0.782 ± 0.017 | 0.228 ± 0.012 | 0.661 ± 0.005 | 0.670 ± 0.008 | 0.713 ± 0.011 | 0.697 ± 0.006 | 0.529 ± 0.009 | | Comparing | | | | Mo | cro-averaging F | <i>i</i> ↑ | | | | | algorithm | cal500 | emotions | medical | llog | msra | image | scene | yeast | slashdot | | RELIAB | 0.171 ± 0.007 | 0.642 ± 0.009 | 0.419 ± 0.049 | 0.128±0.032 | 0.565 ± 0.015 | 0.586±0.014 | 0.664 ± 0.031 | 0.409±0.013 | 0.324 ± 0.047 | | BR | 0.172 ± 0.003 | 0.564 ± 0.022 | 0.422 ± 0.032 | 0.110 ± 0.022 | 0.454 ± 0.005 | 0.473 ± 0.006 | 0.541 ± 0.011 | 0.392 ± 0.006 | 0.290 ± 0.011 | | CLR | 0.108 ± 0.037 | 0.575 ± 0.018 | 0.175 ± 0.048 | 0.105 ± 0.032 | 0.481 ± 0.007 | 0.472 ± 0.007 | 0.581 ± 0.008 | 0.398 ± 0.008 | 0.104 ± 0.003 | | Ecc | 0.116 ± 0.005 | 0.557 ± 0.022 | 0.464 ± 0.039 | 0.121 ± 0.026 | 0.455 ± 0.007 | 0.473 ± 0.012 | 0.575 ± 0.015 | 0.393 ± 0.006 | 0.399 ± 0.012 | | RAKEL | 0.174 ± 0.004 | 0.569 ± 0.021 | 0.443 ± 0.040 | 0.119 ± 0.020 | 0.435 ± 0.010 | 0.486 ± 0.011 | 0.556 ± 0.014 | 0.420 ± 0.006 | 0.346 ± 0.009 | | Comparing | | ========= | ======== | Mi | cro-averaging F |
/ ↑ | | | | | algorithm | cal500 | emotions | medical | llog | msra | image | scene | veast | slashdot | | RELIAB | 0.468±0.006 | 0.642±0.008 | 0.695±0.013 | 0.182±0.014 | 0.683±0.012 | 0.577±0.016 | 0.644±0.029 | 0.637±0.004 | 0.430±0.010 | | BR | 0.331 ± 0.004 | 0.574 ± 0.023 | 0.643 ± 0.028 | 0.130 ± 0.007 | 0.546 ± 0.005 | 0.474 ± 0.006 | 0.536 ± 0.010 | 0.613 ± 0.006 | 0.281 ± 0.012 | | CLR | 0.286 ± 0.084 | 0.581 ± 0.018 | 0.270 ± 0.136 | 0.101 ± 0.043 | 0.604 ± 0.006 | 0.472 ± 0.007 | 0.568 ± 0.007 | 0.610 ± 0.006 | 0.011 ± 0.002 | | Ecc | 0.353 ± 0.005 | 0.566 ± 0.024 | 0.751 ± 0.017 | 0.149 ± 0.015 | 0.575 ± 0.003 | 0.472 ± 0.012 | 0.568 ± 0.014 | 0.617 ± 0.006 | 0.480 ± 0.015 | | RAKEL | 0.353+0.007 | 0.576 ± 0.020 | 0.689 ± 0.022 | 0.148 ± 0.010 | 0.576 ± 0.006 | 0.486 ± 0.012 | 0.546 ± 0.012 | 0.613 ± 0.007 | 0.378 ± 0.012 | | *************************************** | | | | | | | 2.10_0.012 | | | Across all evaluation metrics RELIAB ranks 1st in 83.3% cases ranks 2nd in 11.1% cases # Experimental Results – Large-Scale | Table V | |--| | PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE EIGHT LARGE-SCALE DATA SETS. | | Comparing | | | | One-e | | | | | | | | |-----------|---|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--| | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.795 ± 0.009 | 0.510 ± 0.005 | 0.479 ± 0.006 | 0.487 ± 0.007 | 0.466 ± 0.008 | 0.467 ± 0.012 | 0.418 ± 0.007 | 0.192 ± 0.007 | | | | | BR | 0.921 ± 0.004 | 0.736 ± 0.006 | 0.758 ± 0.008 | 0.755 ± 0.003 | 0.737 ± 0.010 | 0.763 ± 0.008 | 0.880 ± 0.004 | 0.185 ± 0.004 | | | | | CLR | 0.748 ± 0.011 | 0.503 ± 0.006 | 0.549 ± 0.006 | 0.549 ± 0.025 | 0.584 ± 0.076 | 0.678 ± 0.092 | 0.514 ± 0.003 | 0.147 ± 0.002 | | | | | Ecc | 0.911 ± 0.004 | 0.490 ± 0.005 | 0.515 ± 0.007 | 0.512 ± 0.006 | 0.485 ± 0.004 | 0.495 ± 0.005 | 0.907 ± 0.003 | 0.158 ± 0.002 | | | | | RAKEL | 0.867 ± 0.004 | 0.626 ± 0.008 | 0.622 ± 0.008 | 0.637 ± 0.008 | 0.618 ± 0.010 | 0.614 ± 0.013 | 0.779 ± 0.015 | 0.200 ± 0.003 | | | | | Comparing | Coverage ↓ | | | | | | | | | | | | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.342 ± 0.008 | 0.158 ± 0.002 | 0.128 ± 0.004 | 0.130 ± 0.004 | 0.118 ± 0.005 | 0.123 ± 0.004 | 0.113 ± 0.003 | 0.198 ± 0.002 | | | | | BR | 0.757 ± 0.007 | 0.411 ± 0.004 | 0.377 ± 0.006 | 0.366 ± 0.003 | 0.314 ± 0.005 | 0.366 ± 0.004 | 0.434 ± 0.007 | 0.136 ± 0.001 | | | | | CLR | 0.311 ± 0.011 | 0.123 ± 0.002 | 0.122 ± 0.004 | 0.130 ± 0.018 | 0.152 ± 0.044 | 0.204 ± 0.041 | 0.136 ± 0.002 | 0.127 ± 0.001 | | | | | Ecc | 0.889 ± 0.004 | 0.176 ± 0.002 | 0.168 ± 0.006 | 0.166 ± 0.003 | 0.148 ± 0.003 | 0.160 ± 0.004 | 0.460 ± 0.006 | 0.132 ± 0.001 | | | | | RAKEL | 0.855 ± 0.005 | 0.457 ± 0.011 | 0.387 ± 0.009 | 0.370 ± 0.005 | 0.354 ± 0.009 | 0.380 ± 0.010 | 0.401 ± 0.008 | 0.503 ± 0.001 | | | | | Comparing | T | | | Rankin | g loss ↓ | | | | | | | | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.152 ± 0.005 | 0.069 ± 0.001 | 0.054 ± 0.002 | 0.055 ± 0.002 | 0.050 ± 0.002 | 0.051 ± 0.001 | 0.063 ± 0.002 | 0.058 ± 0.001 | | | | | BR | 0.416 ± 0.006 | 0.214 ± 0.002 | 0.213 ± 0.004 | 0.207 ± 0.002 | 0.169 ± 0.004 | 0.204 ± 0.004 | 0.280 ± 0.002 | 0.036 ± 0.001 | | | | | CLR | 0.147 ± 0.007 | 0.052 ± 0.001 | 0.055 ± 0.002 | 0.063 ± 0.015 | 0.083 ± 0.037 | 0.125 ± 0.035 | 0.080 ± 0.002 | 0.033 ± 0.001 | | | | | Ecc | 0.600 ± 0.005 | 0.079 ± 0.00 | 0.079 ± 0.003 | 0.078 ± 0.002 | 0.070 ± 0.001 | 0.074 ± 0.002 | 0.307 ± 0.006 | 0.036 ± 0.001 | | | | | RAKEL | 0.547 ± 0.004 | 0.245 ± 0.008 | 0.225 ± 0.007 | 0.216 ± 0.003 | 0.204 ± 0.007 | 0.220 ± 0.005 | 0.250 ± 0.006 | 0.190 ± 0.001 | | | | | Comparing | T | | | Average p | recision ↑ | | | ======= | | | | | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.221 ± 0.007 | 0.532 ± 0.003 | 0.583 ± 0.006 | 0.583 ± 0.005 | 0.607 ± 0.002 | 0.589 ± 0.007 | 0.562 ± 0.003 | 0.676 ± 0.003 | | | | | BR | 0.122 ± 0.003 | 0.334 ± 0.003 | 0.340 ± 0.008 | 0.340 ± 0.002 | 0.372 ± 0.007 | 0.342 ± 0.007 | 0.186 ± 0.005 | 0.738 ± 0.001 | | | | | CLR | 0.222 ± 0.007 | 0.555 ± 0.004 | 0.542 ± 0.004 | 0.527 ± 0.040 | 0.459 ± 0.013 | 0.312 ± 0.014 | 0.469 ± 0.002 | 0.758 ± 0.001 | | | | | Ecc | 0.093 ± 0.004 | 0.528 ± 0.004 | 0.536 ± 0.004 | 0.538 ± 0.005 | 0.565 ± 0.001 | 0.547 ± 0.004 | 0.151 ± 0.004 | 0.750 ± 0.001 | | | | | RAKEL | 0.125 ± 0.002 | 0.371 ± 0.005 | 0.401 ± 0.006 | 0.398 ± 0.004 | 0.425 ± 0.006 | 0.405 ± 0.003 | 0.249 ± 0.007 | 0.573 ± 0.001 | | | | | Comparing | Ť = = = = = = = = : | | ======== | Macro-aver | aging F1 ↑ | ======== | | ======= | | | | | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.089 ± 0.008 | 0.253 ± 0.003 | 0.260 ± 0.009 | 0.266 ± 0.021 | 0.258 ± 0.015 | 0.271 ± 0.006 | 0.300 ± 0.009 | 0.053 ± 0.001 | | | | | BR | 0.073 ± 0.006 | 0.187 ± 0.004 | 0.167 ± 0.006 | 0.171 ± 0.008 | 0.170 ± 0.006 | 0.167 ± 0.004 | 0.127 ± 0.003 | 0.197 ± 0.003 | | | | | CLR | 0.074 ± 0.012 | 0.233 ± 0.008 | 0.221 ± 0.006 | 0.213 ± 0.032 | 0.157 ± 0.073 | 0.088 ± 0.079 | 0.247 ± 0.003 | 0.171 ± 0.002 | | | | | Ecc | 0.062 ± 0.009 | 0.198 ± 0.009 | 0.174 ± 0.004 | 0.174 ± 0.015 | 0.185 ± 0.013 | 0.184 ± 0.009 | 0.101 ± 0.002 | 0.163 ± 0.002 | | | | | RAKEL | 0.079 ± 0.007 | 0.194 ± 0.007 | 0.174 ± 0.005 | 0.174 ± 0.005 | 0.180 ± 0.009 | 0.188 ± 0.003 | 0.177 ± 0.007 | 0.206 ± 0.002 | | | | | Comparing | T = = = = = = = = = = = = = = = = = = = | | ======== | Micro-aver | aging F1 ↑ | ======= | | ======= | | | | | algorithm | core15k | rcv1-s1 | rcv1-s2 | rcv1-s3 | rcv1-s4 | rcv1-s5 | bibtex | mediamill | | | | | RELIAB | 0.178 ± 0.008 | 0.428 ± 0.012 | 0.459 ± 0.007 | 0.449 ± 0.010 | 0.472 ± 0.005 | 0.462 ± 0.007 | 0.378 ± 0.015 | 0.502±0.005 | | | | | BR | 0.120 ± 0.002 | 0.291 ± 0.002 | 0.282 ± 0.005 | 0.279 ± 0.002 | 0.298 ± 0.002 | 0.289 ± 0.005 | 0.128 ± 0.003 | 0.576 ± 0.001 | | | | | CLR | 0.113 ± 0.023 | 0.392 ± 0.005 | 0.365 ± 0.004 | 0.358 ± 0.027 | 0.305 ± 0.010 | 0.182 ± 0.121 | 0.260 ± 0.003 | 0.585 ± 0.001 | | | | | Ecc | 0.102 ± 0.005 | 0.359 ± 0.005 | 0.338 ± 0.006 | 0.337 ± 0.006 | 0.368 ± 0.002 | 0.364 ± 0.009 | 0.102 ± 0.003 | 0.568 ± 0.001 | | | | | | | | | | 0.326 ± 0.004 | 0.320 ± 0.005 | 0.174 ± 0.007 | 0.576 ± 0.001 | | | | Across all evaluation metrics RELIAB ranks 1st in 68.7% cases ranks 2nd in 16.7% cases # Experimental Results – Friedman Test Figure 2. Comparison of RELIAB (control algorithm) against other comparing algorithms with the *Bonferroni-Dunn test*. Algorithms not connected with RELIAB in the CD diagram are considered to have significantly different performance from the control algorithm (CD=1.3547 at 0.05 significance level). #### RELIAB - ✓ achieves **optimal (lowest) rank** in terms of each metric - ✓ significantly outperforms BR on all metrics - ✓ significantly outperforms CLR, ECC and RAKEL on 4, 2 and 5 metrics respectively ## Outline - Multi-Label Learning (MLL) - Binary Relevance for MLL - Our Recent Studies - Towards Class-Imbalance Aware MLL - Leverage Relative Labeling-Importance for MLL - Conclusion ## Conclusion # BR is arguably the most popular approach towards MLL seminal papers on: BR: *1370+ citations* chaining-style BR: 1200+ citations stacking-style BR: 540+ citations & PAKDD 10-Year BPA To make BR work effectively, one should... Exploiting Label Correlations Exploring Inherent Properties # Joint Work With... **Prof. Xin Geng**Southeast University **Dr. Xu-Ying Liu**Southeast University Mr. Yu-Kun Li Southeast University Baidu Inc. # Thanks!