

Binary Relevance for Multi-Label Learning

Min-Ling Zhang

PALM Group, School of Computer Science and Engineering,
MOE Key Laboratory of Computer Network & Information Integration
Southeast University, China

May 27, Jinan

Outline

- Multi-Label Learning (MLL)
- Binary Relevance for MLL
- Our Recent Studies
 - Towards Class-Imbalance Aware MLL
 - Leverage Relative Labeling-Importance for MLL
- Conclusion

Traditional Supervised Learning

object instance label

- Input space: represented by a single instance (feature vector) characterizing its properties
- Output space: associated with a single label characterizing its semantics

Basic assumption real-world object has unique labeling

Multi-Label Objects

Sunset

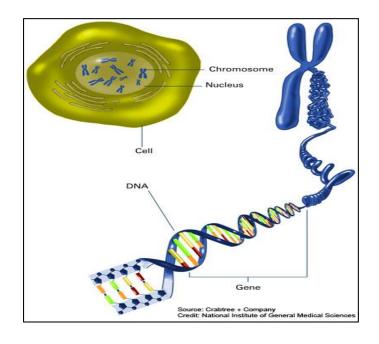
Clouds

Trees

Countryside

••••

Multi-Label Objects



Metabolism

Transcription

Protein synthesis

• • • • •

Multi-Label Objects

Piano

Classical music

Mozart

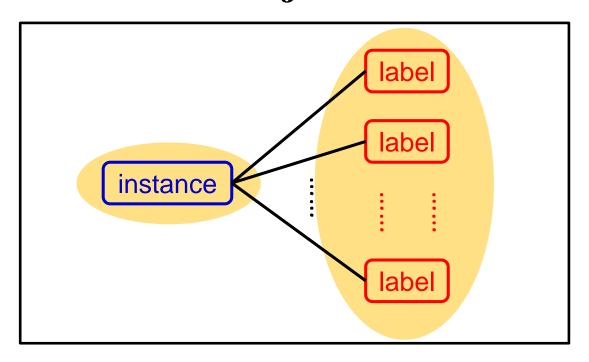
Austria

• • • • •

Multi-label objects are ubiquitous!

Multi-Label Learning (MLL)

object



Multi-Label Learning (MLL)

Formal Definition of MLL

Settings

 $\mathcal{X}: d$ -dimensional feature space \mathbb{R}^d

 \mathcal{Y} : label space with q labels $\{y_1, y_2, \cdots, y_q\}$

Inputs

 \mathcal{D} : training set with m examples $\{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$ $\boldsymbol{x}_i \in \mathcal{X}$ is a d-dimensional feature vector $(\boldsymbol{x}_{i1}, \boldsymbol{x}_{i2}, \cdots, \boldsymbol{x}_{id})^{\mathrm{T}}$ $Y_i \subseteq \mathcal{Y}$ is the label set associated with \boldsymbol{x}_i

Outputs

h: multi-label predictor $\mathcal{X} \to 2^{\mathcal{Y}}$

Outline

- Multi-Label Learning (MLL)
- Binary Relevance for MLL
- Our Recent Studies
 - Towards Class-Imbalance Aware MLL
 - Leverage Relative Labeling-Importance for MLL
- Conclusion

Binary Relevance (BR) [Boutell et al., PRJ04]

The most intuitive solution to MLL

decompose MLL into *q* independent binary problems

for j=1 to q do

Generate the *binary training set* \mathcal{D}_i from \mathcal{D} ;

Train binary classifier: $g_i \leftarrow \mathcal{B}(\mathcal{D}_i)$

end

$$h(\mathbf{x}^*) = \{y_j \mid g_j(\mathbf{x}^*) > 0, 1 \le j \le q\}$$

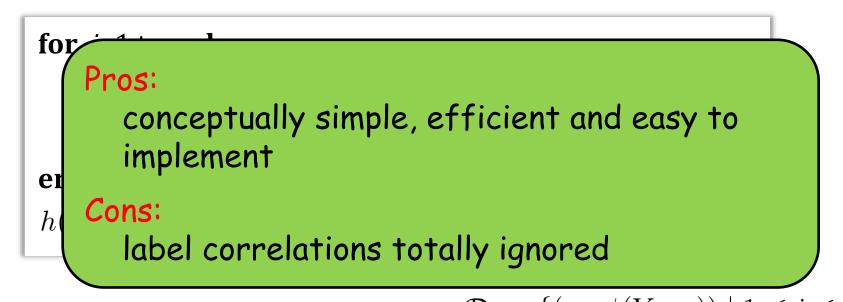
$$\mathcal{D} = \{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$$
(MLL training set)

$$\mathcal{D}_{j} = \{ (\boldsymbol{x}_{i}, \phi(Y_{i}, y_{j})) \mid 1 \leq i \leq m \}$$
where $\phi(Y_{i}, y_{j}) = \begin{cases} 1, & \text{if } y_{j} \in Y_{i} \\ 0, & \text{otherwise} \end{cases}$

Binary Relevance (BR) [Boutell et al., PRJ04]

The most intuitive solution to MLL

decompose MLL into q independent binary problems



$$\mathcal{D} = \{(\boldsymbol{x}_i, Y_i) \mid 1 \leq i \leq m\}$$
(MLL training set)

$$\mathcal{D}_{j} = \{ (\boldsymbol{x}_{i}, \phi(Y_{i}, y_{j})) \mid 1 \leq i \leq m \}$$
where $\phi(Y_{i}, y_{j}) = \begin{cases} 1, & \text{if } y_{j} \in Y_{i} \\ 0, & \text{otherwise} \end{cases}$

Major Challenge – Huge Output Space



$$q=5$$
 \rightarrow 32 label sets

 $q=10 \rightarrow \sim 1$ k label sets

 $q=20 \rightarrow \sim 1M$ label sets

.

Common Strategy

Exploiting Label Correlations

e.g.: An image labeled as lions and grassland would be likely annotated with label Africa

Endow BR with Label Correlations (1)

Chaining-style methods

[Read et al., ECML PKDD'09/MLJ11; Dembczyński et al., ICML'10/ECAI'12; Kumar et al., ECML PKDD'12; Senge et al., Gfkl'13; Li & Zhou, MCS'13; Mena et al., MLJ17]

Step I: Specify a chaining order over all the class labels

$$\tau: \{1, \dots, q\} \to \{1, \dots, q\}$$

Step II: Induce one binary classifier for each label along the chain, by treating preceding labels as extra features

$$f_j: \mathcal{X} \times y_{\tau(1)} \times \cdots y_{\tau(j-1)} \to y_{\tau(j)} \ (1 \le j \le q)$$

Random correlations among labels

Endow BR with Label Correlations (2)

Stacking-style methods

[Godbole & Sarawagi, PAKDD'04; Tsoumakas et al., MLD'09; Zhang & Zhou, KDD'10; Montañes et al., PRJ14; Loza Mencía et al., MLJ16]

Step I: Invoke the standard BR procedure

$$g_j: \mathcal{X} \to y_j \ (1 \le j \le q)$$

Step II: Induce one binary classifier for each label, by treating BR classifiers' outputs as extra features

$$f_j: \mathcal{X} \times g_1(\cdot) \times \cdots g_q(\cdot) \to y_j \ (1 \le j \le q)$$

Full-order correlations among labels

To Enhance BR...

Exploiting

Label Correlations

Necessary

But Not Sufficient **Two Inherent Properties**

- **□** Class-imbalance
- ☐ Relative Labelingimportance

Outline

- Multi-Label Learning (MLL)
- Binary Relevance for MLL
- Our Recent Studies
 - Towards Class-Imbalance Aware MLL
 - Leverage Relative Labeling-Importance for MLL
- Conclusion

Towards Class-Imbalance Aware Multi-Label Learning

Class-Imbalance for MLL

An inherent property for MLL: class-imbalance

For each class label $y_j \in \mathcal{Y}$:

 \mathcal{D}_i^+ : the set of *positive* training examples w.r.t. y_j

 \mathcal{D}_i^- : the set of *negative* training examples w.r.t. y_j

$$Im R_j = \frac{\max(|\mathcal{D}_j^+|, |\mathcal{D}_j^-|)}{\min(|\mathcal{D}_j^+|, |\mathcal{D}_j^-|)} \quad \textbf{(imbalance ratio)}$$

For the *rcv1* data set (with 42 class labels), we have:

minimum $ImR_j (\min_{1 \le j \le q} ImR_j)$: >3

average
$$ImR_j$$
 ($\frac{1}{q}\sum_{j=1}^q ImR_j$): >15

maximum ImR_j ($\max_{1 \le j \le q} ImR_j$): >50

Existing Approaches Towards Class-Imbalance MLL

Binary Decomposition

Decompose MLL into *q* independent binary learning problems

- ✓ Over-sampling/Under-sampling apply over-sampling/under-sampling techniques [Spyromitros-Xioufis et al., IJCAI'11] [Tahir et al., PRJ12] [Charte et al., KBS15]
- ✓ Parameter tuning
 optimizing the classification threshold
 [Fan & Lin, TechReport07] [Quevedo et al., PRJ12]
 [Pillai et al., PRJ13]
- ✓ Optimizing imbalance-specific metric optimizing the F-measure [Petterson & Caetano, NIPS'10] [Dembczyński et al., ICML'13]

Existing Approaches Towards Class-

Imbalance ML

Ignoring Label Correlations!

r-sampling

s-Xioufis et al., IJCAI′11]

J12] [Charte et al., KBS15]

Binary Decomposition

Decompose MLL into *q* independent binary learning problems

- ✓ Parameter tuning
 optimizing the classification threshold
 [Fan & Lin, TechReport07] [Quevedo et al., PRJ12]
 [Pillai et al., PRJ13]
- ✓ Optimizing imbalance-specific metric optimizing the F-measure [Petterson & Caetano, NIPS'10] [Dembczyński et al., ICML'13]

The COCOA Approach

Basic Strategy

Cross-coupling

+ class-imbalance learner aggregation

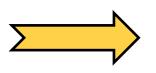
Training Phase

Cross-coupling each labels

Generate multi-class imbalance classifier

Testing Phase

Aggregate classifiers' outputs for each label



Predict by querying aggregation results

Training Phase

For each class label $y_j \in \mathcal{Y}$, induce a real-valued function

 $f_j:\mathcal{X} \to \mathbb{R}$ by cross-coupling with other class labels

suppose y_k $(k \neq j)$ is chosen to couple with y_j , a four-class training set \mathcal{D}_{jk} can be derived from \mathcal{D} as follows:

$$\mathcal{D}_{jk} = \{ (\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq m \}$$
where
$$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$

 $\psi(Y_i, y_j, y_k)$ is determined by the joint assignment of y_j and y_k w.r.t. Y_i

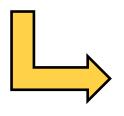
Training Phase – Cont'd

$$\mathcal{D}_{jk} = \{(\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq m\}$$
where
$$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$

$$\text{Merge}$$

WLOG, suppose positive examples correspond to the *minority* class

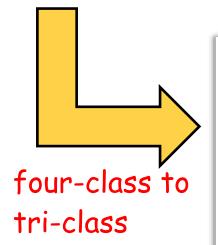
For \mathcal{D}_{jk} , the first class $(\psi(Y_i, y_j, y_k) = 0)$ would be largest and the fourth class $(\psi(Y_i, y_j, y_k) = +3)$ would be smallest



The worst imbalance ratio would roughly turn into ImR_i*ImR_k

Training Phase – Cont'd

$$\mathcal{D}_{jk} = \{(\boldsymbol{x}_i, \psi(Y_i, y_j, y_k)) \mid 1 \leq i \leq N\}$$
 where
$$\psi(Y_i, y_j, y_k) = \begin{cases} 0, & \text{if } y_j \notin Y_i \text{ and } y_k \notin Y_i \\ +1, & \text{if } y_j \notin Y_i \text{ and } y_k \in Y_i \\ +2, & \text{if } y_j \in Y_i \text{ and } y_k \notin Y_i \\ +3, & \text{if } y_j \in Y_i \text{ and } y_k \in Y_i \end{cases}$$
 Merge



$$\mathcal{D}_{jk}^{\mathbf{tri}} = \left\{ \left(\boldsymbol{x}_{i}, \psi^{\mathbf{tri}}(Y_{i}, y_{j}, y_{k}) \right) \mid 1 \leq i \leq N \right\}$$
where $\psi^{\mathbf{tri}}(Y_{i}, y_{j}, y_{k}) = \begin{cases} 0, & \text{if } y_{j} \notin Y_{i} \text{ and } y_{k} \notin Y_{i} \\ +1, & \text{if } y_{j} \notin Y_{i} \text{ and } y_{k} \in Y_{i} \\ +2, & \text{if } y_{j} \in Y_{i} \end{cases}$

Training Phase – Cont'd

```
for j=1 to q do

Draw a random subset \mathcal{I}_K \subset \mathcal{Y} \setminus \{y_j\} containing K class labels; for y_k \in \mathcal{I}_K do

Form the tri-class training set \mathcal{D}_{jk}^{\mathbf{tri}}; g_{jk} \leftarrow \mathcal{M} \mathcal{D}_{jk}^{\mathbf{tri}}); end

Multi-class imbalance learner
```


Testing Phase

for j=1 to q do

Draw a *random* subset $\mathcal{I}_K \subset \mathcal{Y} \setminus \{y_j\}$ containing K class labels;

for $y_k \in \mathcal{I}_K$ do

Form the tri-class training set $\mathcal{D}_{ik}^{\mathbf{tri}}$;

$$g_{jk} \leftarrow \mathcal{M}(\mathcal{D}_{jk}^{\mathbf{tri}});$$

end

end

Multi-class

imbalance learner

for j=1 to q do

$$f_j(\boldsymbol{x}) = \sum_{y_k \in \mathcal{I}_K} g_{jk}(+2 \mid \boldsymbol{x})$$

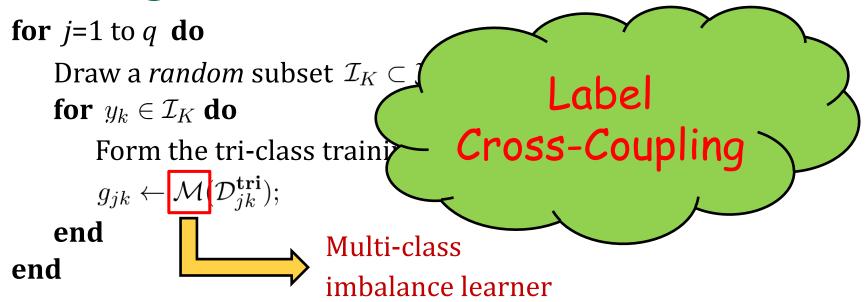
predictive confidence that \boldsymbol{x} has positive assignment w.r.t. y_i

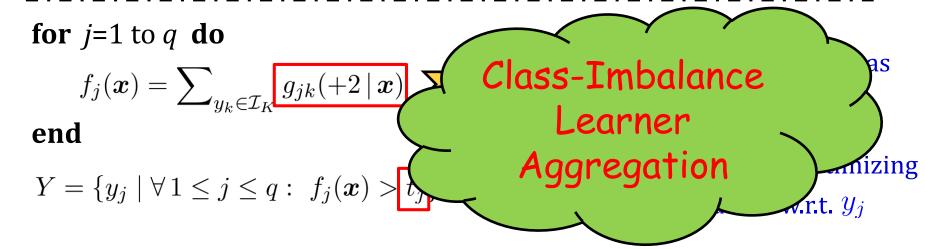
end

$$Y = \{y_j \mid \forall 1 \leq j \leq q : f_j(\boldsymbol{x}) > t_j\}$$

threshold obtained by optimizing empirical F-measure w.r.t. y_j

Testing Phase





Experimental Setup – Data Sets

Table 2: Chara	acteristics of	of the	benchmark	multi-label	data sets.
----------------	----------------	--------	-----------	-------------	------------

Data set	$ \mathcal{S} = dim(\mathcal{S}) - L(\mathcal{S}) - F(\mathcal{S}) - LCard(\mathcal{S}) - LDen(\mathcal{S}) - DL(\mathcal{S})$	dim(S)	L(S)	F(S)	LCard(S)	L.Den(S)	DL(S)	PDL(S)	Imbalance Ratio		
Data set		$DL(\mathcal{O})$	IDL(O)	min	max	avg					
CAL500	502	68	124	numeric	25.058	0.202	502	1.000	1.040	24.390	3.846
Emotions	593	72	6	numeric	1.869	0.311	27	0.046	1.247	3.003	2.146
Medical	978	144	14	numeric	1.075	0.077	42	0.043	2.674	43.478	11.236
Enron	1702	50	24	nominal	3.113	0.130	547	0.321	1.000	43.478	5.348
Scene	2407	294	6	numeric	1.074	0.179	15	0.006	3.521	5.618	4.566
Yeast	2417	103	13	numeric	4.233	0.325	189	0.078	1.328	12.500	2.778
Slashdot	3782	53	14	nominal	1.134	0.081	118	0.031	5.464	35.714	10.989
Corel5k	5000	499	44	nominal	2.214	0.050	1037	0.207	3.460	50.000	17.857
Rcv1 (subset 1)	6000	472	42	numeric	2.458	0.059	574	0.096	3.344	50.000	15.152
Rcv1 (subset 2)	6000	472	39	numeric	2.170	0.056	489	0.082	3.215	47.619	15.873
Eurlex-sm	19348	250	27	numeric	1.492	0.055	497	0.026	3.509	47.619	16.393
Tmc2007	28596	500	15	nominal	2.100	0.140	637	0.022	1.447	34.483	5.848
Mediamill	43907	120	29	numeric	4.010	0.138	3540	0.079	1.748	45.455	7.092

Thirteen benchmark multi-label data sets

- ✓ average imbalance ratio ranges from 2.146 to 17.857
- ✓ ten times of random train/test splits (50%/50%) + pairwise *t*-test
- ✓ imbalance-specific metrics: (macro-averaging) *F-measure* and *AUC*

Experimental Setup — Comparing Algorithms

COCOA: $K = \min(q - 1, 10)$

First Series Binary decomposition + imbalance learning techniques

Usam: under-sampling USAM-EN, SMOTE-EN:

SMOTE: over-sampling ensemble version

RML: optimizing F-measure [Petterson & Caetano, NIPS'10]

Second Series Well-established MLL learning algorithms

ML-KNN: First-order approach [Zhang & Zhou, PRJ07]

CLR: Second-order approach [Fürnkranz et al., MLJ08]

Ecc: High-order approach [Read et al., MLJ11]

RAKEL: High-order approach [Tsoumakas et al., TKDE11]

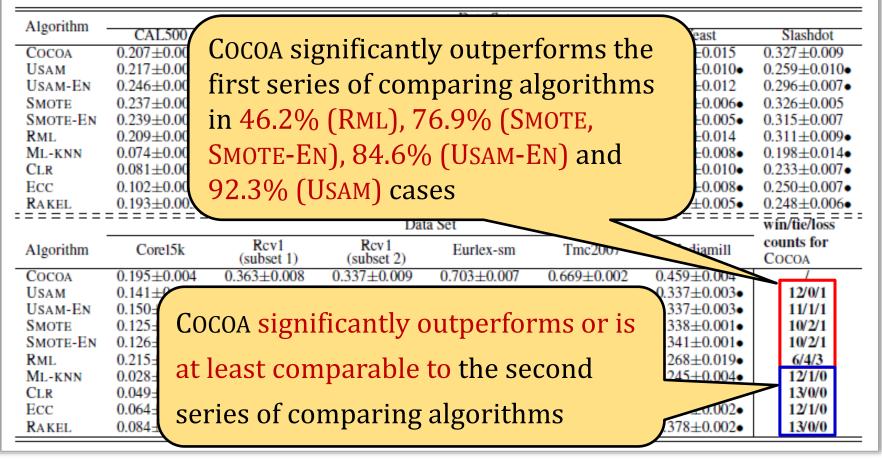
Experimental Results – F-measure

Table 3: Performance of each comparing algorithm (mean±std. deviation) in terms of *macro-averaging F-measure* (MACRO-F). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise *t*-test at 1% significance level).

Algorithm				Data Set			
Aigoridiiii	CAL500	Emotions	Medical	Enron	Scene	Yeast	Slashdot
COCOA	0.207 ± 0.009	0.662 ± 0.013	0.690 ± 0.015	0.324 ± 0.009	0.732 ± 0.013	0.457 ± 0.015	0.327 ± 0.009
USAM	0.217±0.0060	0.591±0.016 ■	0.670±0.012•	0.266 ± 0.011	0.624 ± 0.008	0.432 ± 0.010	0.259 ± 0.010
USAM-EN	0.246±0.0040	0.590±0.018 ■	0.665 ± 0.025	0.274 ± 0.010	0.620±0.011•	0.437 ± 0.012	0.296±0.007•
SMOTE	0.237±0.0060	0.584 ± 0.020	0.672 ± 0.022	0.266±0.006•	0.619±0.007•	0.430 ± 0.006	0.326 ± 0.005
SMOTE-EN	0.239±0.0040	0.582±0.017•	0.672 ± 0.022	0.275±0.004•	0.624±0.007 •	0.431 ± 0.005	0.315 ± 0.007
RML	0.209 ± 0.008	0.645 ± 0.016	0.666 ± 0.018	0.309 ± 0.010	0.684±0.013•	0.471 ± 0.014	0.311 ± 0.009
ML-KNN	0.074 ± 0.002	0.592±0.026•	0.474 ± 0.031	0.174 ± 0.011	0.715 ± 0.011	0.380 ± 0.008	0.198 ± 0.014
CLR	0.081 ± 0.007	0.595±0.017•	0.650 ± 0.012	0.229 ± 0.006	0.631±0.013•	0.413 ± 0.010	0.233±0.007•
Ecc	0.102±0.004	0.642±0.014•	0.647±0.021•	0.241±0.006•	0.716 ± 0.009	0.394 ± 0.008	0.250 ± 0.007
RAKEL	0.193±0.003•	0.613±0.018•	0.576 ± 0.014	0.256 ± 0.006	0.686±0.008	0.420 ± 0.005	0.248 ± 0.006
======	======	=====:	= = = = = D ata	a Set	======:	======	win/tie/loss
Algorithm	Core15k	Rcv1 (subset 1)	Rcv1 (subset 2)	Eurlex-sm	Tmc2007	Mediamill	counts for COCOA
COCOA	0.195 ± 0.004	0.363 ± 0.008	0.337 ± 0.009	0.703 ± 0.007	0.669 ± 0.002	0.459 ± 0.004	
USAM	0.141 ± 0.004	0.318 ± 0.005	0.306 ± 0.005	0.562±0.007 •	0.607±0.002•	0.337±0.003•	12/0/1
USAM-EN	0.150±0.002•	0.317±0.005 ■	0.303 ± 0.005	0.563 ± 0.004	0.608 ± 0.002	0.337±0.003•	11/1/1
SMOTE	0.125±0.003•	0.314±0.006•	0.305 ± 0.004	0.552±0.003•	0.566±0.003•	0.338 ± 0.001	10/2/1
SMOTE-EN	0.126±0.002•	0.313±0.004•	0.304 ± 0.004	0.553 ± 0.003	0.567±0.003•	0.341 ± 0.001	10/2/1
RML	0.215±0.009o	0.387±0.020o	0.363±0.0290	0.059 ± 0.003	$0.568 \pm 0.039 \bullet$	0.268±0.019•	6/4/3
ML-KNN	0.028 ± 0.004	0.122±0.008•	0.103 ± 0.008	0.525±0.012•	0.479±0.008•	0.245±0.004•	12/1/0
CLR	0.049 ± 0.004	0.227±0.007•	0.226 ± 0.006	$0.599\pm0.006 \bullet$	0.623±0.003•	0.268 ± 0.004	13/0/0
Ecc	0.064 ± 0.004	0.216±0.007•	0.199 ± 0.004	0.619 ± 0.009	0.642±0.003•	0.277±0.002•	12/1/0
RAKEL	0.084±0.005•	0.272±0.007◆	0.263±0.005◆	0.632±0.008•	0.643±0.004•	0.378±0.002•	13/0/0

Experimental Results – F-measure

Table 3: Performance of each comparing algorithm (mean±std. deviation) in terms of *macro-averaging F-measure* (MACRO-F). In addition, •/o indicates whether COCOA is statistically superior/inferior to the comparing algorithm on each data set (pairwise *t*-test at 1% significance level).



Experimental Results – AUC

Table 4: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging AUC (MACRO-AUC). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 1% significance level).

Algorithm				Data Set				
Aigorium	CAL500	Emotions	Medical	Enron	Scene	Yeast	Slashdot	
COCOA	0.557 ± 0.005	0.843 ± 0.010	0.958 ± 0.006	0.731 ± 0.006	0.943 ± 0.003	0.710 ± 0.006	0.736 ± 0.005	
USAM	0.514 ± 0.005	0.708 ± 0.019	0.855±0.012•	0.606 ± 0.010	0.790±0.009•	$0.578\pm0.006 \bullet$	0.617 ± 0.004	
USAM-EN	0.513 ± 0.004	0.708 ± 0.015	$0.860 \pm 0.024 \bullet$	$0.600 \pm 0.004 \bullet$	0.788 ± 0.009	$0.583 \pm 0.006 \bullet$	0.618 ± 0.004	
SMOTE	0.513 ± 0.005	0.703±0.019•	0.874±0.019•	$0.617 \pm 0.007 \bullet$	0.776 ± 0.008	$0.579\pm0.006 \bullet$	$0.688 \pm 0.008 \bullet$	
SMOTE-EN	0.513±0.004•	0.704 ± 0.013	0.874±0.019•	$0.617 \pm 0.007 \bullet$	0.777±0.011•	$0.581 \pm 0.007 \bullet$	$0.686 \pm 0.008 \bullet$	
RML	_	_	_	_	_	_	_	
ML-KNN	0.516±0.007•	0.806 ± 0.015	$0.909 \pm 0.008 \bullet$	0.663 ± 0.006	0.926 ± 0.005	0.679 ± 0.004	0.676 ± 0.006	
CLR	0.561±0.004°	0.796±0.010•	0.948±0.008•	0.709 ± 0.007	$0.894 \pm 0.005 \bullet$	0.650 ± 0.004	$0.698 \pm 0.009 \bullet$	
Ecc	0.549±0.007•	0.841 ± 0.009	0.925±0.009•	0.723±0.006•	$0.938 \pm 0.003 \bullet$	$0.689 \pm 0.006 \bullet$	0.706±0.009•	
RAKEL	$0.528 \pm 0.005 \bullet$	0.797±0.015•	$0.828 \pm 0.006 \bullet$	$0.640 \pm 0.003 \bullet$	$0.892 \pm 0.004 \bullet$	$0.640 \pm 0.004 \bullet$	$0.612 \pm 0.002 \bullet$	
=====:	======================================							
	0 151	Rcv1	Rcv1		TD 2007	3.5 11 111	win/tie/loss counts for	
Algorithm	Corel5k	(subset 1)	(subset 2)	Eurlex-sm	Tmc2007	Mediamill	COCOA	
COCOA	0.719 ± 0.004	0.889 ± 0.003	0.882 ± 0.002	0.957 ± 0.002	0.930 ± 0.001	0.843 ± 0.001		
USAM	0.572±0.003•	0.674 ± 0.010	0.672±0.009•	0.788 ± 0.009	$0.801 \pm 0.003 \bullet$	0.655±0.004•	13/0/0/	
USAM-EN	0.574±0.002•	0.676 ± 0.010	0.671±0.010•	$0.789 \pm 0.006 \bullet$	$0.800 \pm 0.003 \bullet$	0.654 ± 0.006	13/0/0/	
SMOTE	0.597±0.004•	0.625 ± 0.009	$0.620 \pm 0.008 \bullet$	0.795±0.005•	0.793±0.003•	0.669 ± 0.002	13/0/0/	
SMOTE-EN	0.596 ± 0.004	0.626 ± 0.006	0.620 ± 0.009	0.795±0.004•	0.793±0.003•	0.670 ± 0.002	13/0/0/	
RML	_	_	_	_	_	_		
ML-KNN	0.590 ± 0.005	0.718 ± 0.009	0.710 ± 0.009	$0.887 \pm 0.004 \bullet$	$0.849 \pm 0.003 \bullet$	0.767±0.001•	13/0/0/	
CLR	$0.740 \pm 0.002 \circ$	0.891 ± 0.003	0.882 ± 0.002	0.944 ± 0.001	0.906 ± 0.001	$0.805 \pm 0.001 \bullet$	8/3/2	
Ecc	0.697±0.006●	0.864±0.002●	0.855±0.003•	0.945±0.002•	0.921±0.001•	0.826 ± 0.001	12/1/0	
RAKEL	0.552±0.002•	0.728±0.003•	0.721±0.003•	0.872±0.005•	$0.859 \pm 0.002 \bullet$	0.737±0.001•	13/0/0/	

MACRO-AUC not applicable to RML, which does not yield real-valued outputs on each class label [Petterson and Caetano, 2010].

Experimental Results – AUC

Table 4: Performance of each comparing algorithm (mean±std. deviation) in terms of macro-averaging AUC (MACRO-AUC). In addition, •/o indicates whether Cocoa is statistically superior/inferior to the comparing algorithm on each data set (pairwise t-test at 1% significance level).

Algorithm				Data Set			
	CAL500	Emotions	Medical	Enron	Scene	Yeast	Slashdot
COCOA	0.557 ± 0.005	0.843 ± 0.010	0.958 ± 0.006	0.731 ± 0.006	0.943 ± 0.003	0.710 ± 0.006	0.736 ± 0.005
USAM	0.514 ± 0.005	0.708 ± 0.019	0.855±0.012•	0.606 ± 0.010	0.790 ± 0.009	$0.578\pm0.006 \bullet$	0.617 ± 0.004
USAM-EN	$0.513 \pm 0.004 \bullet$	0.708 ± 0.015	$0.860 \pm 0.024 \bullet$	$0.600 \pm 0.004 \bullet$	$0.788 \pm 0.009 \bullet$	$0.583 \pm 0.006 \bullet$	0.618 ± 0.004
SMOTE	0.513 ± 0.005					006•	$0.688 \pm 0.008 \bullet$
SMOTE-EN	0.513 ± 0.00					07∙	0.686 ± 0.008
RML	_	Cocoa si	onificant	dy outpe	rforms t	he l	_
ML-KNN	0.516 ± 0.00		51111104111	cry outpo		04•	0.676 ± 0.006
CLR	0.561 ± 0.00	CI .	C		1	04∙	$0.698 \pm 0.009 \bullet$
Ecc	0.549 ± 0.00	first seri	es of cor	nparing .	algorithi	ms be-	0.706 ± 0.009
RAKEL	0.528 ± 0.00			P 8		4.	0.612±0.002•
======	======	. 11				/ =:	win/tie/loss
		in all cas	es				counts for
Algorithm	Corel5k						COCOA
COCOA	0.719 ± 0.004	0.889 ± 0.003	0.882 ± 0.002	0.957 ± 0.002	0.930 ± 0.001	0.843±0.001	L L
USAM	0.5					0.655±0.004	13/0/0/
USAM-EN	of Coco	A is outp	erforme	d by CLR	? in only	.654±0.006●	13/0/0/
SMOTE		ii ib oacp		a by dhi	t III OIII	.669±0.002•	13/0/0/
SMOTE-EN	0 trazo	cacac an	dachiou	oc cunor	ior or	.670±0.002•	13/0/0/
RML		cases, an	u acmev	es super	101 01	_	10, 0, 0
ML-KNN	0 . 1		1.1	C		767+0.001•	13/0/0/
CLR	at lea	ast comp	arable b	erformai	nce in		8/3/2
ECC	0.	r	1			0.001	12/1/0
RAKEL	of the re	est cases				0.737±0.001•	13/0/0/
KAKEL	w the r	cst cases				1.131±0.001€	15/0/0/

Experimental Results – Further Analysis

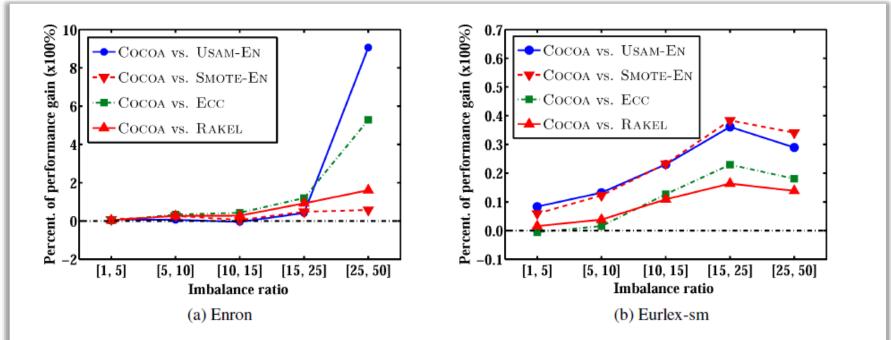
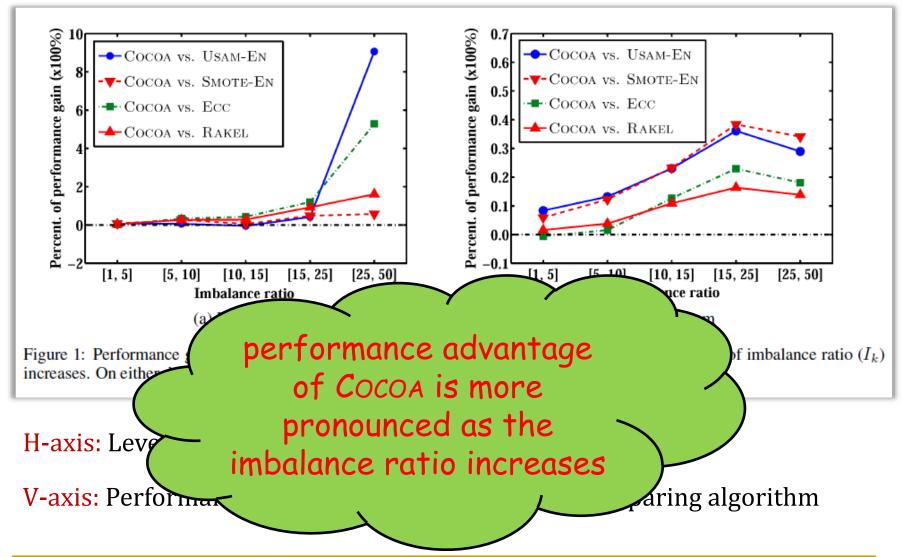


Figure 1: Performance gain between Cocoa and the comparing algorithm (PG_k) changes as the level of imbalance ratio (I_k) increases. On either data set, the performance of each algorithm is evaluated based on F-measure.

H-axis: Level of imbalance ratio

V-axis: Performance gain between COCOA and the comparing algorithm

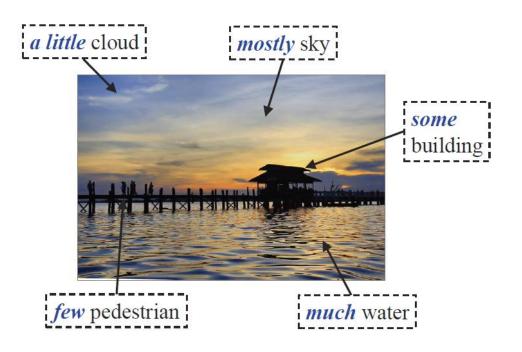
Experimental Results – Further Analysis



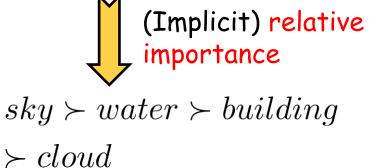
Leverage Relative Labeling-Importance for Multi-Label Learning

Labeling-Importance for MLL

Labeling-importance is relative by nature



An image annotated with multiple labels *sky*, *water*, *building* and *cloud*

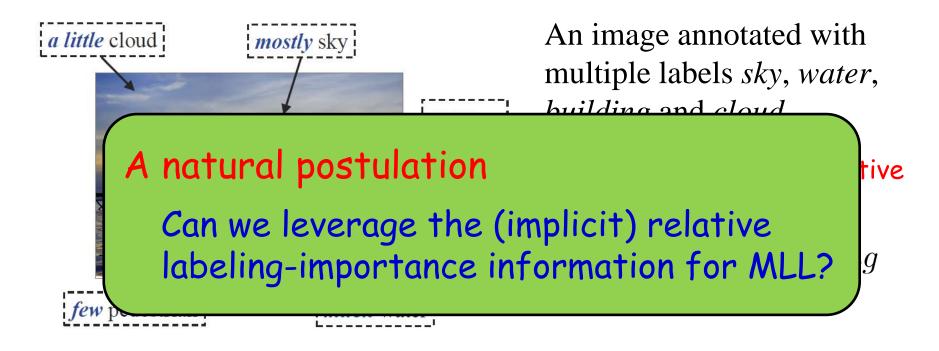


Multi-category document Different topical importance

Multi-functionality gene Different expression level

Labeling-Importance for MLL

Labeling-importance is relative by nature



Multi-category document Different topical importance

Multi-functionality gene Different expression level

Relative Labeling-Importance (RLI)

Definition: Relative Labeling-Importance (RLI) Degree

Given any instance $x \in \mathcal{X}$, the RLI degree of label $y_l \in \mathcal{Y}$ for \boldsymbol{x} is denoted as $\mu_{\boldsymbol{x}}^{y_l}$, which satisfies the following constraints:

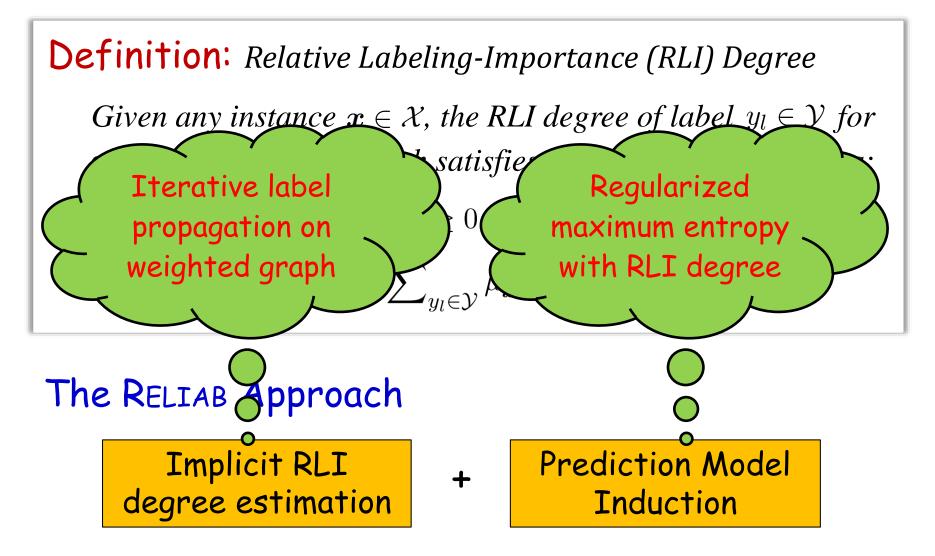
- (i) non-negativity: $\mu_{\mathbf{x}}^{y_l} \geq 0$
- (ii) normalization: $\sum_{u \in \mathcal{V}} \mu_{\boldsymbol{x}}^{y_l} = 1$

The RELIAB Approach

Implicit RLI degree estimation

Prediction Model Induction

Relative Labeling-Importance (RLI)



Implicit RLI Degree Estimation

Weighted Graph Construction

$$G = (V, E, W)$$

- $V = \{ \boldsymbol{x}_i \mid 1 \le i \le m \}$ $E = \{ (\boldsymbol{x}_i, \boldsymbol{x}_j) \mid j \ne i \}$

fully-connected graph over all the training examples

•
$$\mathbf{W} = [w_{ij}]_{m \times m}$$

$$\forall_{i,j=1}^m: \quad w_{ij} = \begin{cases} \exp\left(-\frac{||\boldsymbol{x}_i - \boldsymbol{x}_j||^2}{2\sigma^2}\right), & \text{if } i \neq j \\ 0, & \text{if } i = j \end{cases}$$

$$\mathbf{D} = \operatorname{diag}[d_1, d_2, \dots, d_m] \qquad d_i = \sum_{j=1}^m w_{ij}$$

Implicit RLI Degree Estimation (Cont.)

Iterative Label Propagation

Set the label propagation matrix: $\mathbf{P} = \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$

Assume a matrix $\mathbf{F} = [f_{il}]_{m \times q}$ with non-negative entries

 $f_{il} \geq 0$: proportional to the labeling-importance $\mu_{\boldsymbol{x}_i}^{y_l}$ $(1 \leq i \leq q; \ y_l \in \mathcal{Y})$

initialize
$$\mathbf{F}^{(0)} = \mathbf{\Phi} = [\phi_{il}]_{m \times q} : \phi_{il} = \begin{cases} 1, & \text{if } y_l \in Y_i \\ 0, & \text{otherwise} \end{cases}$$

Update **F** iteratively by propagating labeling-importance information

$$\mathbf{F}^{(t)} = \alpha \mathbf{P} \mathbf{F}^{(t-1)} + (1 - \alpha) \mathbf{\Phi} \quad \mathbf{\Sigma}$$

Converges to:

$$\mathbf{F}^* = (1 - \alpha)(\mathbf{I} - \alpha \mathbf{P})^{-1} \mathbf{\Phi}$$

Prediction Model Induction

Estimated RLI Information

$$\mathcal{U} = \{ \mu_{\boldsymbol{x}_i}^{y_l} \mid 1 \le i \le q; \ y_l \in \mathcal{Y} \}$$

$$\mathbf{F}^* \longrightarrow \mu_{\boldsymbol{x}_i}^{y_l} = \frac{f_{il}^*}{\sum_{k=1}^q f_{ik}^*}$$

Maximum Entropy Classification Model

$$f(y_l \mid \boldsymbol{x}, \boldsymbol{\Theta}) = rac{1}{Z(\boldsymbol{x})} \exp\left(\boldsymbol{\theta}_l^{ op} \boldsymbol{x}\right)$$
 $\boldsymbol{\Theta} = [\boldsymbol{\theta}_1, \boldsymbol{\theta}_2, \dots, \boldsymbol{\theta}_q]$ $Z(\boldsymbol{x}) = \sum_{k=1}^q \exp\left(\boldsymbol{\theta}_l^{ op} \boldsymbol{x}\right)$

Prediction Model Induction (Cont.)

Objective Function

$$V(f, \mathcal{U}, \mathcal{D}) = V_{dis}(f, \mathcal{U}) + \beta \cdot V_{emp}(f, \mathcal{D})$$

How f fits the estimated RLI information

How f classifies training samples

KL divergence

$$V_{dis}(f, \mathcal{U}) = \sum_{i=1}^{m} \sum_{l=1}^{q} \left(\mu_{\boldsymbol{x}_i}^{y_l} \ln \frac{\mu_{\boldsymbol{x}_i}^{y_l}}{f(y_l \mid \boldsymbol{x}_i, \boldsymbol{\Theta})} \right)$$

Empirical ranking loss

Minimized by the quasi-newton L-BFGS algorithm

Experimental Setup — Data Sets

Table III
CHARACTERISTICS OF THE BENCHMARK MULTI-LABEL DATA SETS.

Data set	S	dim(S)	L(S)	F(S)	LCard(S)	LDen(S)	DL(S)	PDL(S)	Domain
cal500	502	68	174	numeric	26.044	0.150	502	1.000	audio
emotions	593	72	6	numeric	1.868	0.311	27	0.046	audio
medical	978	1,449	45	nominal	1.245	0.028	94	0.096	text
llog	1,460	1,004	75	nominal	1.180	0.016	304	0.208	text
msra	1,868	898	19	numeric	6.315	0.332	947	0.507	image
image	2,000	294	5	numeric	1.236	0.247	20	0.010	image
scene	2.407	294	5	numeric	1.074	0.179	15	0.006	image
yeast	2.417	103	14	numeric	4.237	0.303	198	0.082	biology
slashdot	3,782	1,079	22	nominal	1.181	0.054	156	0.041	text
corel5k	5,000	499	374	nominal	3.522	0.009	3,175	0.635	image
rcv1-s1	6,000	500	101	nominal	2.880	0.029	1,028	0.171	text
rcv1-s2	6,000	500	101	nominal	2.634	0.026	954	0.159	text
rcv1-s3	6,000	500	101	nominal	2.614	0.026	939	0.156	text
rcv1-s4	6,000	500	101	nominal	2.484	0.025	816	0.136	text
rcv1-s5	6,000	500	101	nominal	2.642	0.026	946	0.158	text
bibtex	7,395	1836	159	nominal	2.402	0.015	2,856	0.386	text
mediamill	43,907	120	101	numeric	4.376	0.043	6,555	0.149	video

Seventeen benchmark multi-label data sets

regular-scale: 9; # large-scale: 8

Experimental Setup – Algorithms & Evaluation

Comparing Algorithms

BR (first-order)

Reliab versus Clr (second-order)

ECC, RAKEL (high-order)

Evaluation Metrics

Example-based: one-error, coverage, ranking loss, average

Label-based: macro-averaging F1, micro-averaging F1

Evaluation Protocol

N-fold cross-validation + Friedman test

Experimental Results – Regular-Scale

Table IV
PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE NINE REGULAR-SCALE DATA SETS.

Comparing					One-error ↓				
algorithm	cal500	emotions	medical	llog	msra	image	scene	yeast	slashdot
RELIAB	0.129 ± 0.019	0.273 ± 0.019	0.160 ± 0.012	0.745 ± 0.007	0.066 ± 0.014	0.348 ± 0.016	0.248 ± 0.007	0.223 ± 0.011	0.509 ± 0.014
BR	0.906 ± 0.025	0.375 ± 0.027	0.306 ± 0.031	0.885 ± 0.013	0.362 ± 0.013	0.527 ± 0.011	0.472 ± 0.016	0.284 ± 0.010	0.731 ± 0.014
CLR	0.375 ± 0.118	0.356 ± 0.030	0.706 ± 0.149	0.883 ± 0.023	0.152 ± 0.009	0.502 ± 0.016	0.367 ± 0.017	0.272 ± 0.012	0.978 ± 0.003
Ecc	0.255 ± 0.028	0.353 ± 0.040	0.187 ± 0.016	0.794 ± 0.011	0.211 ± 0.011	0.475 ± 0.011	0.378 ± 0.015	0.261 ± 0.010	0.476 ± 0.015
RAKEL	0.672 ± 0.029	0.394 ± 0.027	0.252 ± 0.025	0.876 ± 0.015	0.288 ± 0.014	0.498 ± 0.013	0.440 ± 0.016	0.297 ± 0.012	0.596 ± 0.011
Comparing		========	========	========	Coverage ↓		========		=========
algorithm	cal500	emotions	medical	llog	msra	image	scene	yeast	slashdot
RELIAB	0.744 ± 0.008	0.304 ± 0.014	0.045 ± 0.007	0.156 ± 0.005	0.545 ± 0.012	0.204 ± 0.005	0.099 ± 0.003	0.453 ± 0.007	0.138 ± 0.002
BR	0.877 ± 0.009	0.364 ± 0.015	0.117 ± 0.018	0.380 ± 0.006	0.716 ± 0.004	0.297 ± 0.009	0.209 ± 0.010	0.479 ± 0.007	0.261 ± 0.009
CLR	0.792 ± 0.014	0.351 ± 0.016	0.134 ± 0.026	0.234 ± 0.019	0.636 ± 0.004	0.285 ± 0.009	0.119 ± 0.004	0.496 ± 0.006	0.271 ± 0.004
Ecc	0.796 ± 0.008	0.356 ± 0.013	0.052 ± 0.007	0.195 ± 0.006	0.665 ± 0.004	0.271 ± 0.008	0.144 ± 0.008	0.479 ± 0.006	0.138 ± 0.006
RAKEL	0.958 ± 0.003	0.386 ± 0.016	0.113 ± 0.012	0.360 ± 0.007	0.698 ± 0.006	0.293 ± 0.008	0.190 ± 0.009	0.573 ± 0.008	0.219 ± 0.005
Comparing	[=======	=========	========	========	Ranking loss ↓		========		
algorithm	cal500	emotions	medical	llog	msra	image	scene	yeast	slashdot
RELIAB	0.179 ± 0.003	0.165 ± 0.011	0.030 ± 0.006	0.121 ± 0.004	0.134 ± 0.008	0.185 ± 0.006	0.081 ± 0.002	0.171 ± 0.006	0.122 ± 0.002
BR	0.266 ± 0.005	0.233 ± 0.016	0.089 ± 0.013	0.329 ± 0.005	0.287 ± 0.004	0.309 ± 0.010	0.230 ± 0.012	0.191 ± 0.005	0.242 ± 0.009
CLR	0.248 ± 0.029	0.222 ± 0.014	0.114 ± 0.024	0.197 ± 0.017	0.207 ± 0.003	0.291 ± 0.010	0.125 ± 0.005	0.200 ± 0.005	0.258 ± 0.005
Ecc	0.218 ± 0.004	0.227 ± 0.017	0.036 ± 0.006	0.156 ± 0.005	0.238 ± 0.004	0.273 ± 0.010	0.154 ± 0.008	0.193 ± 0.005	0.121 ± 0.006
RAKEL	0.342 ± 0.003	0.260 ± 0.016	0.087 ± 0.009	0.309 ± 0.006	0.260 ± 0.004	0.303 ± 0.009	0.209 ± 0.010	0.254 ± 0.006	0.198 ± 0.005
Comparing					verage precision				
algorithm	cal500	emotions	medical	llog	msra	image	scene	yeast	slashdot
RELIAB	0.503 ± 0.007	0.796 ± 0.011	0.876 ± 0.010	0.394 ± 0.009	0.816 ± 0.012	0.774 ± 0.008	0.853 ± 0.004	0.760 ± 0.007	0.613 ± 0.010
BR	0.301 ± 0.006	0.730 ± 0.015	0.756 ± 0.025	0.214 ± 0.014	0.626 ± 0.005	0.656 ± 0.007	0.692 ± 0.012	0.733 ± 0.007	0.427 ± 0.013
CLR	0.383 ± 0.048	0.742 ± 0.016	0.403 ± 0.051	0.209 ± 0.019	0.722 ± 0.003	0.672 ± 0.010	0.781 ± 0.008	0.729 ± 0.008	0.251 ± 0.007
Ecc	0.431 ± 0.005	0.740 ± 0.021	0.856 ± 0.011	0.335 ± 0.009	0.684 ± 0.004	0.690 ± 0.008	0.763 ± 0.010	0.738 ± 0.007	0.631 ± 0.012
RAKEL	0.323 ± 0.006	0.713 ± 0.017	0.782 ± 0.017	0.228 ± 0.012	0.661 ± 0.005	0.670 ± 0.008	0.713 ± 0.011	0.697 ± 0.006	0.529 ± 0.009
Comparing				Mo	cro-averaging F	<i>i</i> ↑			
algorithm	cal500	emotions	medical	llog	msra	image	scene	yeast	slashdot
RELIAB	0.171 ± 0.007	0.642 ± 0.009	0.419 ± 0.049	0.128±0.032	0.565 ± 0.015	0.586±0.014	0.664 ± 0.031	0.409±0.013	0.324 ± 0.047
BR	0.172 ± 0.003	0.564 ± 0.022	0.422 ± 0.032	0.110 ± 0.022	0.454 ± 0.005	0.473 ± 0.006	0.541 ± 0.011	0.392 ± 0.006	0.290 ± 0.011
CLR	0.108 ± 0.037	0.575 ± 0.018	0.175 ± 0.048	0.105 ± 0.032	0.481 ± 0.007	0.472 ± 0.007	0.581 ± 0.008	0.398 ± 0.008	0.104 ± 0.003
Ecc	0.116 ± 0.005	0.557 ± 0.022	0.464 ± 0.039	0.121 ± 0.026	0.455 ± 0.007	0.473 ± 0.012	0.575 ± 0.015	0.393 ± 0.006	0.399 ± 0.012
RAKEL	0.174 ± 0.004	0.569 ± 0.021	0.443 ± 0.040	0.119 ± 0.020	0.435 ± 0.010	0.486 ± 0.011	0.556 ± 0.014	0.420 ± 0.006	0.346 ± 0.009
Comparing	 	=========	========	Mi	cro-averaging F	 / ↑			
algorithm	cal500	emotions	medical	llog	msra	image	scene	veast	slashdot
RELIAB	0.468±0.006	0.642±0.008	0.695±0.013	0.182±0.014	0.683±0.012	0.577±0.016	0.644±0.029	0.637±0.004	0.430±0.010
BR	0.331 ± 0.004	0.574 ± 0.023	0.643 ± 0.028	0.130 ± 0.007	0.546 ± 0.005	0.474 ± 0.006	0.536 ± 0.010	0.613 ± 0.006	0.281 ± 0.012
CLR	0.286 ± 0.084	0.581 ± 0.018	0.270 ± 0.136	0.101 ± 0.043	0.604 ± 0.006	0.472 ± 0.007	0.568 ± 0.007	0.610 ± 0.006	0.011 ± 0.002
Ecc	0.353 ± 0.005	0.566 ± 0.024	0.751 ± 0.017	0.149 ± 0.015	0.575 ± 0.003	0.472 ± 0.012	0.568 ± 0.014	0.617 ± 0.006	0.480 ± 0.015
RAKEL	0.353+0.007	0.576 ± 0.020	0.689 ± 0.022	0.148 ± 0.010	0.576 ± 0.006	0.486 ± 0.012	0.546 ± 0.012	0.613 ± 0.007	0.378 ± 0.012
***************************************							2.10_0.012		

Across all evaluation metrics

RELIAB

ranks 1st in 83.3% cases

ranks 2nd in 11.1% cases

Experimental Results – Large-Scale

Table V
PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE EIGHT LARGE-SCALE DATA SETS.

Comparing				One-e							
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.795 ± 0.009	0.510 ± 0.005	0.479 ± 0.006	0.487 ± 0.007	0.466 ± 0.008	0.467 ± 0.012	0.418 ± 0.007	0.192 ± 0.007			
BR	0.921 ± 0.004	0.736 ± 0.006	0.758 ± 0.008	0.755 ± 0.003	0.737 ± 0.010	0.763 ± 0.008	0.880 ± 0.004	0.185 ± 0.004			
CLR	0.748 ± 0.011	0.503 ± 0.006	0.549 ± 0.006	0.549 ± 0.025	0.584 ± 0.076	0.678 ± 0.092	0.514 ± 0.003	0.147 ± 0.002			
Ecc	0.911 ± 0.004	0.490 ± 0.005	0.515 ± 0.007	0.512 ± 0.006	0.485 ± 0.004	0.495 ± 0.005	0.907 ± 0.003	0.158 ± 0.002			
RAKEL	0.867 ± 0.004	0.626 ± 0.008	0.622 ± 0.008	0.637 ± 0.008	0.618 ± 0.010	0.614 ± 0.013	0.779 ± 0.015	0.200 ± 0.003			
Comparing	Coverage ↓										
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.342 ± 0.008	0.158 ± 0.002	0.128 ± 0.004	0.130 ± 0.004	0.118 ± 0.005	0.123 ± 0.004	0.113 ± 0.003	0.198 ± 0.002			
BR	0.757 ± 0.007	0.411 ± 0.004	0.377 ± 0.006	0.366 ± 0.003	0.314 ± 0.005	0.366 ± 0.004	0.434 ± 0.007	0.136 ± 0.001			
CLR	0.311 ± 0.011	0.123 ± 0.002	0.122 ± 0.004	0.130 ± 0.018	0.152 ± 0.044	0.204 ± 0.041	0.136 ± 0.002	0.127 ± 0.001			
Ecc	0.889 ± 0.004	0.176 ± 0.002	0.168 ± 0.006	0.166 ± 0.003	0.148 ± 0.003	0.160 ± 0.004	0.460 ± 0.006	0.132 ± 0.001			
RAKEL	0.855 ± 0.005	0.457 ± 0.011	0.387 ± 0.009	0.370 ± 0.005	0.354 ± 0.009	0.380 ± 0.010	0.401 ± 0.008	0.503 ± 0.001			
Comparing	T			Rankin	g loss ↓						
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.152 ± 0.005	0.069 ± 0.001	0.054 ± 0.002	0.055 ± 0.002	0.050 ± 0.002	0.051 ± 0.001	0.063 ± 0.002	0.058 ± 0.001			
BR	0.416 ± 0.006	0.214 ± 0.002	0.213 ± 0.004	0.207 ± 0.002	0.169 ± 0.004	0.204 ± 0.004	0.280 ± 0.002	0.036 ± 0.001			
CLR	0.147 ± 0.007	0.052 ± 0.001	0.055 ± 0.002	0.063 ± 0.015	0.083 ± 0.037	0.125 ± 0.035	0.080 ± 0.002	0.033 ± 0.001			
Ecc	0.600 ± 0.005	0.079 ± 0.00	0.079 ± 0.003	0.078 ± 0.002	0.070 ± 0.001	0.074 ± 0.002	0.307 ± 0.006	0.036 ± 0.001			
RAKEL	0.547 ± 0.004	0.245 ± 0.008	0.225 ± 0.007	0.216 ± 0.003	0.204 ± 0.007	0.220 ± 0.005	0.250 ± 0.006	0.190 ± 0.001			
Comparing	T			Average p	recision ↑			=======			
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.221 ± 0.007	0.532 ± 0.003	0.583 ± 0.006	0.583 ± 0.005	0.607 ± 0.002	0.589 ± 0.007	0.562 ± 0.003	0.676 ± 0.003			
BR	0.122 ± 0.003	0.334 ± 0.003	0.340 ± 0.008	0.340 ± 0.002	0.372 ± 0.007	0.342 ± 0.007	0.186 ± 0.005	0.738 ± 0.001			
CLR	0.222 ± 0.007	0.555 ± 0.004	0.542 ± 0.004	0.527 ± 0.040	0.459 ± 0.013	0.312 ± 0.014	0.469 ± 0.002	0.758 ± 0.001			
Ecc	0.093 ± 0.004	0.528 ± 0.004	0.536 ± 0.004	0.538 ± 0.005	0.565 ± 0.001	0.547 ± 0.004	0.151 ± 0.004	0.750 ± 0.001			
RAKEL	0.125 ± 0.002	0.371 ± 0.005	0.401 ± 0.006	0.398 ± 0.004	0.425 ± 0.006	0.405 ± 0.003	0.249 ± 0.007	0.573 ± 0.001			
Comparing	Ť = = = = = = = = :		========	Macro-aver	aging F1 ↑	========		=======			
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.089 ± 0.008	0.253 ± 0.003	0.260 ± 0.009	0.266 ± 0.021	0.258 ± 0.015	0.271 ± 0.006	0.300 ± 0.009	0.053 ± 0.001			
BR	0.073 ± 0.006	0.187 ± 0.004	0.167 ± 0.006	0.171 ± 0.008	0.170 ± 0.006	0.167 ± 0.004	0.127 ± 0.003	0.197 ± 0.003			
CLR	0.074 ± 0.012	0.233 ± 0.008	0.221 ± 0.006	0.213 ± 0.032	0.157 ± 0.073	0.088 ± 0.079	0.247 ± 0.003	0.171 ± 0.002			
Ecc	0.062 ± 0.009	0.198 ± 0.009	0.174 ± 0.004	0.174 ± 0.015	0.185 ± 0.013	0.184 ± 0.009	0.101 ± 0.002	0.163 ± 0.002			
RAKEL	0.079 ± 0.007	0.194 ± 0.007	0.174 ± 0.005	0.174 ± 0.005	0.180 ± 0.009	0.188 ± 0.003	0.177 ± 0.007	0.206 ± 0.002			
Comparing	T = = = = = = = = = = = = = = = = = = =		========	Micro-aver	aging F1 ↑	=======		=======			
algorithm	core15k	rcv1-s1	rcv1-s2	rcv1-s3	rcv1-s4	rcv1-s5	bibtex	mediamill			
RELIAB	0.178 ± 0.008	0.428 ± 0.012	0.459 ± 0.007	0.449 ± 0.010	0.472 ± 0.005	0.462 ± 0.007	0.378 ± 0.015	0.502±0.005			
BR	0.120 ± 0.002	0.291 ± 0.002	0.282 ± 0.005	0.279 ± 0.002	0.298 ± 0.002	0.289 ± 0.005	0.128 ± 0.003	0.576 ± 0.001			
CLR	0.113 ± 0.023	0.392 ± 0.005	0.365 ± 0.004	0.358 ± 0.027	0.305 ± 0.010	0.182 ± 0.121	0.260 ± 0.003	0.585 ± 0.001			
Ecc	0.102 ± 0.005	0.359 ± 0.005	0.338 ± 0.006	0.337 ± 0.006	0.368 ± 0.002	0.364 ± 0.009	0.102 ± 0.003	0.568 ± 0.001			
					0.326 ± 0.004	0.320 ± 0.005	0.174 ± 0.007	0.576 ± 0.001			

Across all evaluation metrics

RELIAB

ranks 1st in 68.7% cases

ranks 2nd in 16.7% cases

Experimental Results – Friedman Test

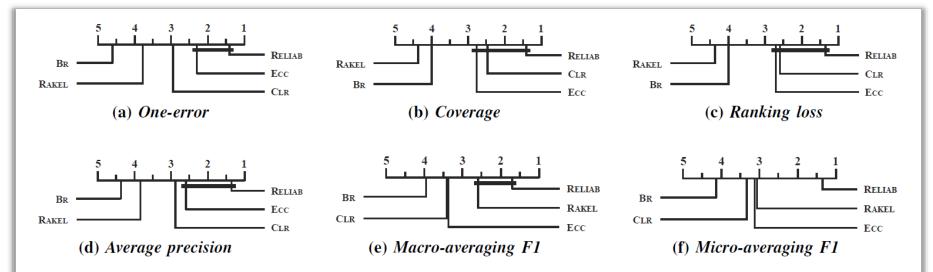


Figure 2. Comparison of RELIAB (control algorithm) against other comparing algorithms with the *Bonferroni-Dunn test*. Algorithms not connected with RELIAB in the CD diagram are considered to have significantly different performance from the control algorithm (CD=1.3547 at 0.05 significance level).

RELIAB

- ✓ achieves **optimal (lowest) rank** in terms of each metric
- ✓ significantly outperforms BR on all metrics
- ✓ significantly outperforms CLR, ECC and RAKEL on 4, 2 and 5 metrics respectively

Outline

- Multi-Label Learning (MLL)
- Binary Relevance for MLL
- Our Recent Studies
 - Towards Class-Imbalance Aware MLL
 - Leverage Relative Labeling-Importance for MLL
- Conclusion

Conclusion

BR is arguably the most popular approach towards MLL

seminal papers on:

BR: *1370+ citations*

chaining-style BR: 1200+ citations

stacking-style BR: 540+ citations & PAKDD 10-Year BPA

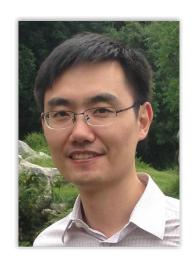
To make BR work effectively, one should...

Exploiting

Label Correlations

Exploring
Inherent Properties

Joint Work With...



Prof. Xin GengSoutheast University

Dr. Xu-Ying LiuSoutheast University

Mr. Yu-Kun Li
Southeast University
Baidu Inc.

Thanks!

