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Abstract
Partial label learning induces classifier from data
with ambiguous supervision, where each instance
is associated with a set of candidate labels but only
one of which is valid. As a classic data preprocess-
ing strategy, dimensionality reduction contributes
to enhance the generalization capabilities of learn-
ing algorithms. Due to the ambiguity of supervi-
sion, existing works on partial label dimensional-
ity reduction are confined to two separate stages:
dimensionality reduction and partial label disam-
biguation. However, the decoupling of dimensional-
ity reduction from partial label disambiguation can
lead to severe performance degradation. In this pa-
per, we present a novel approach called Wrapped
Partial Label Dimensionality Reduction (WPLDR)
to address this challenge. Specifically, WPLDR in-
tegrates the dimensionality reduction and partial
label disambiguation within a unified framework,
employing alternating optimization to concurrently
perform dimensionality reduction and partial label
disambiguation. WPLDR maximizes the interdepen-
dence between features in the embedded space and
confidence-based label information, while simulta-
neously ensuring the manifold consistency between
the embedded feature space and label space. Ex-
tensive experiments over a broad range of synthetic
and real-world partial label data sets validate that the
performance of well-established partial label learn-
ing algorithms can be significantly improved by the
proposed WPLDR.

1 Introduction
Weakly supervised learning learns from data with limited su-
pervision, where the annotations are usually incomplete (only
a subset of data is labeled), inexact (ambiguous labels exist in
data) or inaccurate (instances may be mislabeled) [Zhou et al.,
2018]. Partial label learning is a typical weakly-supervised
paradigm, where each instance is associated with a candidate
label set, among which only one is true [Tian et al., 2023].
Compared with multi-class learning, partial label learning is
more realistic and challenging [Gong et al., 2021b]. Accord-
ingly, the need to learn from partial labeled data naturally

arises in many real-world applications such as crowdsoucing
tagging [Ren et al., 2024], part-of-speech tagging [Chen et al.,
2017] and face naming [Xu et al., 2021], etc.

One intuitive approach towards partial label learning is
label disambiguation, which aims to identify the only ground-
truth label within candidate label set [He et al., 2022;
Xu et al., 2023]. Generally, label disambiguation is pursued
through two distinct strategies: averaging-based strategy [Ni et
al., 2021] and identification-based strategy [Lyu et al., 2020a].
The former treats all potential positive labels in candidate la-
bel set equivalently, which distinguishes the averaged output
on candidate labels labels from the outputs on non-candidate
labels. On the other hand, identification-based disambigua-
tion endeavors to recover the ground-truth label from can-
didate label set. This strategy treats the ground-truth label
as latent variable and performs label disambiguation by opti-
mizing the corresponding objective functions [Yu and Zhang,
2016], which are defined based on the maximum likelihood cri-
terion log(

∑
y∈Si

p(y|xi,θ)) or maximum margin criterion
maxyj∈Si

f(xi, yj)−maxyk /∈Si
f(xi, yk).

Dimensionality reduction is an effective technique for en-
hancing the generalization capability across various learn-
ing systems through alleviating the issue of curse of dimen-
sionality [Ximendes et al., 2022; Zhao et al., 2023]. Ex-
isting works [Huang et al., 2019] are mainly classified into
two categories: unsupervised and supervised dimensionality
reduction. Unsupervised dimensionality reduction aims to
preserve the underlying structure and patterns in data with-
out the help of supervision information [Niu et al., 2023;
Yao et al., 2023]. As a representative algorithm, Principal
component analysis (PCA) induces projection matrix by maxi-
mizing the variance of projected data [Hasan and Abdulazeez,
2021]. Supervised dimensionality reduction focuses on pre-
serving class discriminative information, which utilizes the
supervision information to guide the process of dimensional-
ity reduction [Vogelstein et al., 2021]. For example, Linear
Discriminant Analysis (LDA) achieves this by maximizing
the intra-class scatter and minimizing the inter-class scatter
simultaneously [Sachin and others, 2015].

Due to the requirement for explicit class membership in
defining objective functions, prior works on supervised di-
mensionality reduction heavily rely on ground-truth labels to
induce projection matrices. Consequently, the intrinsic chal-
lenge of ambiguous supervision within partially labeled data



hinders the application of supervised dimensionality reduction
methods. Remarkably, the adaptation of dimensionality re-
duction techniques to address partial label learning remains a
relatively unexplored problem. To the best of our knowledge,
DELIN [Zhang et al., 2022], CENDA [Bao et al., 2021] and
PLDA [Yu et al., 2024] are the only existing dimensionality
reduction designed for partial label learning, which induce
projection matrix by adapting supervised dimensionality re-
duction methods into partial label learning. DELIN achieves
dimensionality reduction through an alternating procedure that
optimizes the LDA projection matrix based on disambiguation-
guided labeling confidences. CENDA achieves dimensionality
reduction by maximizing the dependence between projected
features and confidence vectors of candidate labels, where the
dependence is quantified by the Hilbert-Schmidt Independence
Criterion (HSIC). PLDA further utilizes the weakly-supervised
characteristics of partially labeled data.

Given the inherent ambiguity of partially labeled data,
DELIN, CENDA and PLDA substitute the ground-truth la-
bels with label confidence. Additionally, these label confi-
dences are dynamically updated based on weighted voting
from neighboring instances in projected feature space. Con-
sequently, these methods are confined to operate within a
two-stage framework encompassing dimensionality reduction
and partial label disambiguation. In this process, the dimen-
sionality reduction phase operates independently from the
partial label disambiguation, which may lead to the result of
dimensionality reduction being less satisfactory. This paper
introduces an wrapped framework that unifies dimensional-
ity reduction and partial label disambiguation, which enables
their simultaneous execution in a cohesive manner within one
stage. To attain this goal, we present a novel approach termed
WPLDR, signifying Wrapped Partial label Dimensionality Re-
duction through dependence maximization. Specifically, by
incorporating the manifold consistency in both the embed-
ded feature space and label space, we propose a unified ob-
jective function to conduct confidence-based dimensionality
reduction and similarity-based label disambiguation simulta-
neously. WPLDR maximizes the interdependence between the
embedded features and the label confidences, while ensures
the manifold consistency between projected instances and the
corresponding label confidence vectors. Comprehensive exper-
iments over a broad range of synthetic and real-world partial
label data sets validate the effectiveness of proposed WPLDR.

2 Related Work
Partial label learning aims to learn from instances with ambigu-
ous supervision, where the ground-truth labels are concealed
in candidate label set [Gong et al., 2022; Jia et al., 2024;
Wang and Zhang, 2022]. Accordingly, one intuitive way
is label disambiguation [Xie et al., 2021], which is usually
achieved by two different strategies: averaging-based disam-
biguation [Cour et al., 2011] and identification-based disam-
biguation [Jin and Ghahramani, 2002]. Averaging-based dis-
ambiguation equally treats each label in candidate label set
and attempts to differentiate between the candidate and non-
candidate labels [Tang and Zhang, 2017] [Cour et al., 2011],
and the prediction is made by aggregating the voting among

the candidate labels of its neighboring examples [Xu et al.,
2019; Zhang et al., 2016]. Although averaging-based disam-
biguation is intuitive and easy to implement, the output of
ground-truth label is prone to be overwhelmed by the false
positive labels in candidate label set, thereby leading to a
degradation in the final predictive performance [Gong et al.,
2021a].

Identification-based disambiguation aims to recover the
ground-truth label, which is treated as a latent variable, achiev-
ing disambiguation through iterative optimization of the ob-
jective function that includes these latent variables. For exam-
ple, maximum likelihood methods identify the model parame-
ter by solving θ∗ = arg maxθ

∑m
i=1 log(

∑
y∈Si

p(y|xi,θ)),
where the posterior probability is characterized by probabilis-
tic graphical model [Liu and Dietterich, 2012; Dempster et
al., 1977]. Maximum margin methods define the objective
function by maximizing the margin between the ground-truth
label and other labels, i.e.,

(
wT
yi · xi + byi

)
−maxỹi 6=yi(w

T
ỹi
·

xi + bỹi) [Yu and Zhang, 2016; Lyu et al., 2020b]. Despite
identification-based disambiguation attempts to recover the
ground-truth label, the recovery process can be affected by
false positive labels, leading to the error accumulation. In ad-
dition, contrary to the above approaches, disambiguation-free
approaches induce classification model from partial labeled
instances via problem transformation. Specifically, this kind
of approaches transform the partial label learning problem
into a series of binary classification problems by exploring the
opposite relationship between candidate label set Si and non-
candidate labels Y \ Si [Zhang et al., 2017; Lin et al., 2022;
Wu and Zhang, 2018].

The existing partial label learning literature mainly em-
phasizes the manipulation of label space. As a classic data
preprocessing technique, dimensionality reduction exploits
the manipulation in feature space, which is usually helpful
to improve the generalization ability of learning algorithms.
Depending on whether the label information is used, dimen-
sionlity reduction can be classified into two categories, namely,
unsupervised and supervised. Generally, unsupervised di-
mensionality reduction algorithms directly identify the pro-
jection matrix by preserving the underlying data structure.
This kind of methods usually utilize manifold learning to
achieve dimensionality reduction, including isometric map-
ping (ISOMAP) [Tenenbaum et al., 2000], locally linear em-
bedding (LLE) [Roweis and Saul, 2000], laplacian eigenmaps
(LE) [Belkin and Niyogi, 2006] and locality preserving projec-
tion (LPP) [Jia et al., 2023]. Supervised dimensionality reduc-
tion depends on ground-truth labels to determine within-class
or between-class relationship and define objective function [Jia
et al., 2022]. LDA is a representative algorithm, which in-
duces the projection matrix by maximizing the intra-class
similarity and minimizing the inter-class similarity simultane-
ously. In the past few decades, some advances in supervised
dimensionality reduction have been studied, such as canoni-
cal correlation analysis (CCA), partial least square and latent
semantic indexing [Wang et al., 2023]. However, due to the
constraints of ambiguous supervision, existing supervised di-
mensionality reduction approaches are rarely used in partial
label learning problem. To the best of our knowledge, DELIN,



CENDA and PLDA are the only existing supervised dimen-
sionality reduction approaches towards solving partial label
learning. However, constrained by ambiguity supervision,
these approaches are forced to utilize a two-stage learning
strategy, which means that the dimensionality reduction pro-
cess and partial label disambiguation process are independent
from each other. Therefore, the inconsistency between these
two processes may degrade the final performance.

3 The Proposed Approach
In this section, we first present our WPLDR framework, which
performs dimensionality reduction and partial label disam-
biguation simultaneously. Then, an alternating optimization
algorithm is introduced to solve the optimization problem.

3.1 Wrapped Partial Label Dimensionality
Reduction

Let X = Rd be the d-dimensional instance space and Y =
{y1, y2, . . . , yq} denote the label space with q labels. A par-
tially labeled training set is denoted as D = {(xi, Si) | 1 ≤
i ≤ m}, where xi ∈ X is a d-dimensional feature vector
(xi1, xi2, . . . , xid)

T and Si ⊆ Y is the corresponding candi-
date label set among in which the ground-truth label yi is
concealed. The task of partial label learning is to induce a
multi-class classifier f : X 7→ Y from training set D.

Denote X = [x1,x2, . . . ,xm] ∈ Rd×m as the instance
matrix and Y = [y1,y2, . . . ,ym] ∈ Rm×q as the partial label
matrix, where yij = 1 indicates that the j-th label belongs
to the candidate label set of xi. Dimensionality reduction
aims to seek a projection matrix P = [p1,p2, . . . ,pd′ ] ∈
Rd×d′ (d′ � d) to map the instance matrix X into an embed-
ded feature space characterized by d′-dimensional features,
calculated as X′ = P>X. Constrained by the ambiguous
supervision, previous approaches work in two-stage manner
by firstly optimizing the projection matrix, and then leveraging
the projected data to conduct candidate label disambiguation.
Instead of two-stage dimensionality reduction framework, we
attempt to perform dimensionality reduction and partial label
disambiguation simultaneously in a unified framework.

To this end, we present a wrapped framework to jointly
optimize label confidence, projection matrix and similarity
weights to enhance the generalization performance. In this
paper, we embrace the confidence-based HSIC as the dimen-
sionality reduction term to induce projection matrix, and use
the similarity matrix S ∈ Rm×m to characterize the manifold
consistency between embedded feature space and label space.
Then the objective function of proposed approach WPLDR is
shown as follows:

max
P,S,F

1

2
tr(HX>PP>XHFF>)

− α

2
tr(P>X(Im×m − S)(Im×m − S)>X>P)

− β

2
tr(F>(Im×m − S)(Im×m − S)>F)

s.t. S>1m = 1m,0m×m ≤ S ≤W,

F1q = 1m,0m×q ≤ F ≤ Y,

pi
>(µXX> + (1− µ)I)pj = δij ,

(1)

where F denotes the label confidence matrix. W ∈
{0, 1}m×m is adjacency matrix, in which wij = 1 if there
exists an edge iff x′i is among the k nearest neighbors of x′j ,
otherwise, wij = 0. S is a non-negative similarity matrix. In
addition, α and β are the trade-off parameters to balance the
dimensionality reduction and manifold information in label
and projected feature space.

In the initial stage, the label confidence matrix F, owing to
the deficiency of discriminative ground-truth label, is initial-
ized as F0 according to candidate label set as follows:

∀ 1 ≤ i ≤ m, 1 ≤ j ≤ q : fij =

{
1
|Si| , if lj ∈ Si
0, otherwise

(2)

The processed data set with lower-dimensional features is
denoted as D′ = {(x′i,fi)|1 ≤ i ≤ m}, where x′i = P>xi.
A weighted graph G = {V,E,S} is built on the low dimen-
sional feature space. Here, V = {x′i|0 ≤ i ≤ m} denotes
the set of vertices, and E =

{
(x′i,x

′
j)|x′i ∈ kNN(x′j)

}
repre-

sents the set of edges between x′i and x′j . For the construc-
tion of E , there exists an edge iff x′i is among the k nearest
neighbors of x′j . S characterizes the similarity weight be-
tween (x′i,x

′
j), where sij > 0 if (x′i,x

′
j) ∈ E , sij = 0 when

(x′i,x
′
j) /∈ E . Then, based on the graph structure and low-

dimensional features, the similarity graph weight matrix S can
be calculated by solving the following linear least square prob-
lem, which is defined as the reconstruction loss in embedded
feature space:

min
S

tr(P>X(Im×m − S)(Im×m − S)>X>P)

s.t. S>1m = 1m,

sij ≥ 0, (x′i,x
′
j) ∈ E, sij = 0, (x′i,x

′
j) /∈ E,

(3)

where 1m is a m-dimensional all-ones column vector, the
value of sij implies the relative contribution of instance x′i on
x′j .

Following the smoothness assumption, which states that
the manifold structure in projected feature space should be
preserved in label space [Wang et al., 2021; Song et al., 2022],
label confidence matrix F = [f1,f2, . . . ,fm]> can be opti-
mized by solving the following problem:

min
F

tr(F>(Im×m − S)(Im×m − S)>F)

s.t. S>1m = 1m,F1q = 1m,

sij ≥ 0, (x′i,x
′
j) ∈ E, sij = 0, (x′i,x

′
j) /∈ E

fil ≥ 0, (0 ≤ l ≤ q), fil = 0, (∀yil = 0).

(4)

In partial label learning, feature vector and label confidence
vector elucidates each instance from two perspectives. In our
framework, we achieve partial label dimensionality reduction
by maximizing the dependence between projected feature and
label information. WPLDR employs the HSIC to measure the
dependence between them, and the corresponding empirical
estimate of HSIC is denoted as:

HSIC(F ,Q) = (m− 1)−2tr(HKHL) (5)

where tr is the trace operator of matrix. H = I− 1
mee

>, and
e is a column vector with the same value 1. F and Q denote



Table 1: The pseudo-code of WPLDR.

Inputs:
D: partial label training data set {(xi, Si) | 1 ≤ i ≤ m} (X ∈ Rd,Y = {l1, l2, . . . , lq},xi ∈ X , Si ⊆ Y)

d′: the number of retained dimension after dimensionality reduction
k: the number of nearest neighbors used to update the label confidence matrix
α: the feature space trade-off parameter
β: the label space trade-off parameter
µ: the constraints trade-off parameter
Outputs:
P: the d× d′ projection matrix via the WPLDR

D′: the transformed lower-dimensional partial label training set {(x′i, Si) | 1 ≤ i ≤ m}
Process:
1: Initialize the m× q label confidence matrix F0 as shown in Eq. (2);
2: Cascade the training data into the instance matrix X = [x1,x2, . . . ,xm];
3: Initialize the d× d′ projection matrix P0 via dependence maximization between embedded feature and label information as

shown in Eq.(7);
4: repeat
5: Calculate the similarity matrix S according to the embedded feature vectors and label confidence matrix via Eq.(8);
6: Calculate H = I− 1

mee
T ;

7: Update the label confidence matrix F as shown in Eq. (12), which is a transformed problem of WPLDR in Eq. (1);
8: Update projection matrix P, and solve the transformed problem in Eq.(13). Given the generalized eigenvalue problem in

Eq.(16), then the projection matrix is obtained by concatenating the d′ eigenvectors w.r.t. the top d′ eigenvalues;
9: until convergence

10: Derive the lower-dimensional partial label training data sets D′ with d′ features via the projection matrix P, X′ = P>X;

the reproducing kernel Hilbert space mapped from X and Y
respectively. Substituting K = X>PP>X and L = FF>

into Eq.(5) and dropping the normalization term, the objective
function is rewritten as follows:

p∗ = arg max
P

tr(HX>pp>XHFF>) (6)

Then, to avoid the impact of scaling, constraint on l2 norm
is imposed on p, i.e. p>p = 1. Furthermore, considering
that the features in projected feature space still remains some
redundant information, we introduce a constraint to ensure
projected features maintain uncorrelated as pi>XX>pj =
δij , where δij is Kronecker delta function. By combining
the above two constraints, we can rewrite the optimization
problem in Eq.(5) as:

max
P

tr(HX>PP>XHFF>)

s.t. pi
>(µXX> + (1− µ)I)pj = δij ,

(7)

where µ ∈ (0, 1) is the trade-off parameter to balance the
weight of two constraints in inducing projection matrix.

3.2 Alternative Optimization
As shown in Eq.(1), the objective function of WPLDR contains
three sets of variables with different constraints, which is
hard to be solved directly. Thus, in this paper, we leverage
alternative optimization to tackle this problem. Specifically,
each set of variables will be iteratively optimized by fixing
other sets of variables until convergence or the maximum
number of iterations reaches.

Update S with fixed F and P, the objective function of
WPLDR is rewritten as:

min
S

α

2
tr(P>X(Im×m − S)(Im×m − S)>X>P)

+
β

2
tr(F>(Im×m − S)(Im×m − S)>F)

s.t. S>1m = 1m,0m×m ≤ S ≤W.

(8)

For each instance, the similarity vector is independent,
which indicates that each column in S is independent of other
columns. Thus, we optimize the similarity vector one by one.
Accordingly, for the j-th instance x′j , the optimization prob-
lem of j-th column vector in S is defined as follows:

min
S.j

α || x′j −
∑

(x′
i,x

′
j)∈E

sijx
′
i ||22 +β || fj −

∑
(x′

i,x
′
j)∈E

sijfi ||22

s.t. S>1m = 1m,0m×m ≤ S ≤W, (9)

where x′i ∈ Rd′ denotes the feature vector from em-
bedded feature space. The value of sij in S character-
izes the relative importance of neighboring instance x′i on
x′j . Furthermore, denote matrix Efj = [fj − fNj(1)

,fj −
fNj(2)

, . . . ,fj − fNj(k)
]> ∈ Rk×q and Ex

′
j = [x′j −

x′Nj(1)
,x′j − x′Nj(2)

, . . . ,x′j − x′Nj(k)
]> ∈ Rk×d′ , then the

optimization problem in Eq. (9) can be rewritten as follows:

min
ŝj
ŝ>j (αGfj + βGxj )ŝj

s.t. ŝ>j 1k = 1,0k ≤ ŝj ≤ 1k,
(10)



where Gfj and Gx′
j are Gram matrices on label space and

projected feature space, i.e. Gfj = Efj (Efj )
T and Gx′

j =

Ex
′
j (Ex

′
j )
T

. The optimization problem in Eq. (10) is a stan-
dard Quadratic Programming (QP) problem, which can be
efficiently solved by off-the-shelf QP tools.
Update F with fixed P and S, the objective problem in Eq.(1)
can be stated as follows:

max
F

1

2
tr(F>HX>PP>XHF)

− β

2
tr(F>(Im×m − S)(Im×m − S)>F),

s.t. F1q = 1m,0m×q ≤ F ≤ Y.

(11)

Here, we define a square matrix T = β
2 (Im×m−S)(Im×m−

S)> − 1
2HX>PP>XH. Although T is symmetric, it may

be a indefinite matrix for some datasets. In fact, some opti-
mization tools attempt to solve the indefinte QP problem like
Gurobi, but the efficiency is less satisfactory. Fortunately, un-
der close scrutiny, the first term in Eq.(12) is convex, and the
last term is concave, thus, it is a constrained convex-concave
problem. Accordingly, we can utilize the Convex-Concave
Procedure (CCCP) to solve the problem, which solves the orig-
inal nonconvex problem by optimizing a sequence of convex
problems. Specifically, in each iteration, the second term in
Eq. (12) is replaced by its first order Taylor approximation,
which can be rewritten as the following form:

Fi+1 =argmin
F

β

2
tr(F>(Im×m − S)(Im×m − S)>F)

− tr(F>HX>PP>XHFi)

s.t. F1q = 1m,0m×q ≤ F ≤ Y.

(12)

Update P with fixed S and F, the objective function can be
stated as follows:

max
P

1

2
tr(P>XHFF>HX>P)

− α

2
tr(P>X(Im×m − S)(Im×m − S)>X>P)

s.t. pi
>(µXX> + (1− µ)I)pj = δij ,

(13)

where µ ∈ (0, 1) is a trade-off parameter which balances the
importance of the above two constraints.

By Lagrange method, the Lagrange function is induced as:

L(P) =
1

2
tr(P>XHFF>HX>P)

− α

2
tr(P>X(Im×m − S)(Im×m − S)>X>P)

+ tr(Λ(I−P>(µXX> + (1− µ)I)P)),

(14)

where Λ is a diagonal matrix whose entries are Lagrange
multipliers. By setting the derivative of Eq.(14) as 0, we can
obtain:

∂L
∂P

= −2(µXX> + (1− µ)I)PΛ

+2(XHFF>HX>− αX(Im×m−S)(Im×m−S)>X>).

(15)

Finally, we induce the projection matrix by solving the
following generalized eigenvalue problem:

(XHFF>HX> − αX(Im×m − S)(Im×m − S)>X>)p

= λ(µXX> + (1− µ)I)p,
(16)

where P is obtained by selecting the d′ eigen vectors of the
top d′ eigenvalues.

4 Experiment
4.1 Experimental Setup
To evaluate the effectiveness of proposed WPLDR, we couple
five state-of-the-art partial label learning algorithms with four
partial dimensionality reduction approaches, DELIN, CENDA,
PLDA and the proposed WPLDR. For each partial label learn-
ing method L, the coupled version is denoted as L-DELIN,
L-CENDA and L-WPLDR respectively.

In this paper, we instantiate L with five well-established
partial label learning algorithms, and their parameter config-
urations are set based on the recommendations provided in
corresponding literatures.

• PL-KNN [Hüllermeier and Beringer, 2006]: an averaging-
based partial label learning algorithm, which makes pre-
diction by weighted voting on candidate labels from kNN
instances [suggested configuration: k=10].

• PL-SVM [Nguyen and Caruana, 2008]: an identification-
based partial label learning approach which induces clas-
sification model by adapting maximum margin [sug-
gested configuration: regularization parameter pool with
{10−3, . . . , 103}].

• IPAL [Zhang and Yu, 2015]: a disambiguation-based
partial label learning method, which determines the valid
label via label propagation on weighted graph [suggested
configuration: k=10, balancing parameter α = 0.95].

• SURE [Feng and An, 2019]: a self-training partial label
learning algorithm, under proper constraints, which uni-
fies the model training and identification of pseudo label
into one formulation [suggested configuration: regular-
ization parameters λ = 0.3, β = 0.05].

• PL-AGGD [Wang et al., 2021]: an adaptive graph guided
disambiguation algorithm, which jointly performs graph
construction, model training and partial label disambigua-
tion in a framework. [suggested configuration: k = 10,
µ = 1 and γ = 0.05 ].

In the following subsections, for each dataset, we perform
ten-fold cross-validation, while the mean and standard devia-
tion of classification results are reported.

4.2 Results on Real-world Data Sets
Seven real-world partial label data sets have been collected
from different tasks and domains. Due to page limit, Table 3
reports the experimental results on real-world as well as syn-
thetic partial label data sets with different configurations. As
shown in Table 3, the experimental results illustrate the classi-
fication accuracy of partial label algorithms before and after
employing three dimensionality reduction approaches DELIN,



Table 2: Classification accuracy (mean ± std) of each comparing algorithm on controlled synthetic data sets with varying number of false
positive labels r = 2.

Comparing Algorithm
Data Set

Amazon Enron Dermatology Winerate Zoo Segm-2500 Segm-3000
r = 2 (two false positive label)

PL-KNN 0.024±0.010 0.543±0.045 0.896±0.038 0.853±0.093 0.491±0.039 0.179±0.018 0.218±0.032
PL-KNN-DELIN 0.483±0.049 0.503±0.039 0.911±0.042 0.872±0.115 0.513±0.056 0.329±0.021 0.331±0.033
PL-KNN-CENDA 0.493±0.045 0.529±0.060 0.908±0.051 0.931±0.048 0.490±0.033 0.344±0.025 0.332±0.021
PL-KNN-PLDA 0.504±0.027 0.482±0.050 0.923±0.045 0.912±0.053 0.492±0.047 0.348±0.022 0.359±0.021

PL-KNN-WPLDR 0.520±0.028 0.607±0.039 0.944±0.047 0.931±0.067 0.517±0.059 0.348±0.030 0.376±0.037
PL-SVM 0.067±0.019 0.594±0.090 0.873±0.032 0.812±0.129 0.468±0.048 0.190±0.028 0.223±0.035

PL-SVM-DELIN 0.481±0.052 0.378±0.188 0.831±0.053 0.863±0.114 0.490±0.049 0.312±0.023 0.231±0.026
PL-SVM-CENDA 0.491±0.045 0.216±0.035 0.879±0.070 0.931±0.048 0.525±0.069 0.371±0.025 0.353±0.020
PL-SVM-PLDA 0.492±0.028 0.154±0.116 0.829±0.067 0.861±0.097 0.497±0.050 0.332±0.021 0.226±0.012

PL-SVM-WPLDR 0.517±0.031 0.604±0.041 0.899±0.053 0.931±0.067 0.731±0.250 0.348±0.029 0.366±0.042
IPAL 0.099±0.019 0.553±0.036 0.905±0.039 0.752±0.136 0.430±0.037 0.327±0.013 0.311±0.037

IPAL-DELIN 0.484±0.050 0.486±0.057 0.905±0.046 0.715±0.160 0.444±0.051 0.331±0.021 0.271±0.024
IPAL-CENDA 0.491±0.047 0.258±0.048 0.897±0.040 0.734±0.161 0.409±0.037 0.321±0.020 0.332±0.021
IPAL-PLDA 0.503±0.028 0.276±0.041 0.911±0.046 0.716±0.200 0.446±0.055 0.339±0.037 0.281±0.036

IPAL-WPLDR 0.519±0.031 0.581±0.039 0.929±0.049 0.753±0.164 0.457±0.047 0.346±0.026 0.366±0.042
SURE 0.109±0.023 0.674±0.042 0.929±0.028 0.921±0.079 0.599±0.051 0.208±0.023 0.289±0.033

SURE-DELIN 0.486±0.049 0.509±0.053 0.929±0.045 0.931±0.082 0.595±0.045 0.330±0.020 0.327±0.029
SURE-CENDA 0.491±0.045 0.256±0.039 0.932±0.046 0.941±0.051 0.603±0.046 0.366±0.024 0.339±0.018
SURE-PLDA 0.503±0.028 0.352±0.035 0.932±0.040 0.941±0.051 0.350±0.020 0.351±0.030 0.352±0.028

SURE-WPLDR 0.521±0.030 0.603±0.041 0.944±0.045 0.951±0.052 0.600±0.034 0.348±0.028 0.366±0.042
PL-AGGD 0.131±0.024 0.651±0.047 0.938±0.029 0.931±0.067 0.592±0.047 0.220±0.026 0.286±0.032

PL-AGGD-DELIN 0.485±0.051 0.510±0.054 0.923±0.045 0.931±0.067 0.597±0.049 0.330±0.020 0.327±0.029
PL-AGGD-CENDA 0.492±0.046 0.343±0.049 0.923±0.049 0.951±0.052 0.599±0.043 0.345±0.020 0.396±0.026
PL-AGGD-PLDA 0.503±0.027 0.380±0.046 0.932±0.050 0.941±0.051 0.584±0.051 0.358±0.023 0.352±0.028

PL-AGGD-WPLDR 0.521±0.030 0.605±0.040 0.944±0.043 0.951±0.052 0.600±0.040 0.350±0.028 0.366±0.042

CENDA, PLDA and WPLDR. According to the reported results
on these real-world data sets, the following observations can
be concluded:

• Compared with partial label learning algorithmsL, across
35 statistical comparisons (7 data sets × 5 algorithms),
the prediction accuracy has been significantly improved
by employing WPLDR in 26 cases in pairwise t-test at
0.05 significance level. Furthermore, FG-NET is a chal-
lenging data set since it holds least number of examples
but the second largest average number in candidate labels.
The classification improvement by WPLDR indicates that
WPLDR can significantly improve the performance in dif-
ficult circumstance with insufficient examples and high
rate of false positive labels.

• Compared with DELIN, L-WPLDR achieves superior or
at least statistically comparable performance against L-
DELIN across 31 cases out of 35 cases.

• Compared with CENDA, L-WPLDR achieves comparable
or better performance in all cases, furthermore, among
35 cases, L-WPLDR achieves significant performance
improvement in 22 cases in pairwise t-test at 0.05 signifi-
cance level.

4.3 Synthetic Data Sets
Following the widely used controlling protocal in partial label
learning, synthetic partial label data sets are generated from
UCI multi-class data sets with controlling parameter r, which

indicates the number of false positive labels added in candidate
label set.

For each synthetic data set, we set r as {1, 2, 3} to evaluate
the performance under different ambiguity levels.The detailed
experimental results with r = 2 are reported in Table 2. In
addition, the pairwise t-test at 0.05 significance level is con-
ducted to show whether the performance difference between
two comparison methods is significant in statistics, and the
results of win/tie/loss counts with r = 1/2/3 are reported in
Table 3. Based on these comparative results, the following
observations can be concluded:

• Compared with partial label learning algorithmsL, across
the 105 statistical comparison cases (7 synthetic data
sets × 3 configurations × 5 algorithms), the proposed
WPLDR achieves superior or comparable classification
performance in 98 cases.

• Compared with the existing partial label dimensionality
reduction method DELIN, WPLDR achieves comparable
or better performance in all cases, while it achieves signif-
icant performance improvement in 97 cases in pairwise
t-test at 0.05 significance level.

• Compared with the existing PLDA, WPLDR achieves
comparable or better performance in 95 cases, while the
improvement is more impressive in most cases.

• Compared with the existing CENDA, among all the 105
cases, L-WPLDR achieves comparable or better classifi-
cation performance in 95 cases.



Table 3: Win/tie/loss counts (pairwise t-test at 0.05 significance level) of L-WPLDR against L-DELIN, L-CENDA and and L-PLDA under
different configurations on the number of false positive labels (r = 1, 2, 3).

Data Set L-WPLDR against L-DELIN L-WPLDR against L-CENDA
L=PL-KNN L= PL-SVM L=IPAL L=SURE L=PL-AGGD L= PL-KNN L= PL-SVM L=IPAL L=SURE L=PL-AGGD

r = 1 6/1/0 6/1/0 7/0/0 6/1/0 7/0/0 6/0/1 2/3/2 4/3/0 3/3/1 3/3/1
r = 2 6/1/0 6/1/0 7/0/0 6/1/0 6/1/0 5/2/0 4/1/2 7/0/0 5/1/1 3/3/1
r = 3 7/0/0 7/0/0 7/0/0 6/1/0 7/0/0 7/0/0 5/2/0 6/1/0 6/1/0 5/1/1

Real-world 3/2/2 7/0/0 7/0/0 5/1/1 4/2/1 5/2/0 5/2/0 4/3/0 4/3/0 4/2/1
In Total 22/4/2 26/2/0 28/0/0 23/4/1 24/3/1 23/4/1 16/8/4 21/7/0 18/8/2 15/9/4

Data Set L-WPLDR against L L-WPLDR against L-PLDA
L=PL-KNN L= PL-SVM L=IPAL L=SURE L=PL-AGGD L= PL-KNN L= PL-SVM L=IPAL L=SURE L=PL-AGGD

r = 1 7/0/0 6/1/0 5/2/0 5/2/0 5/2/0 5/1/1 5/1/1 5/1/1 3/3/1 2/4/1
r = 2 7/0/0 7/0/0 6/1/0 5/1/1 4/2/1 6/1/0 6/0/1 6/1/0 6/1/0 6/1/0
r = 3 7/0/0 6/0/1 5/1/1 5/1/1 5/0/2 5/1/1 7/0/0 6/1/0 5/1/1 4/1/2

Real-world 5/2/0 6/1/0 5/1/1 5/2/0 4/2/1 2/4/2 6/0/1 6/0/1 6/0/1 3/2/2
In Total 26/2/0 25/2/1 21/5/2 20/6/2 18/6/4 18/7/4 24/1/3 23/3/2 20/5/3 15/8/5
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Figure 1: Parameter sensitivity analysis for L-WPLDR, classification accuracy changes as k on real-world and synthetic partial label datasets.

(a) PL-KNN (b) PL-SVM (c) IPAL (d) SURE (e) PL-AGGD

Figure 2: Parameter sensitivity analysis of varying α and β for L-WPLDR on Lost.

• For high dimensional dataset amazon, where the dimen-
sion of feature vector exceeds 1,300, compared with L,
the classification performance has been improved with
WPLDR by more than 0.3 in 14 cases among 15 cases (3
configurations × 5 algorithms). These results indicate
the superior performance of WPLDR in difficult settings.

4.4 Sensitivity Analysis
For WPLDR, k (the number of nearest neighbors) is an impor-
tant paramter. Fig. 1 illustrates how the classification accuracy
of each partial label learning algorithm changes as k increases
from 3 to 10 with interval 1. As is shown, on these four
datasets, the classification accuracy of all partial label learning
algorithms coupled with WPLDR is very stable cross different
settings of k. Furthermore, the trade-off factors α and β serve
as important parameters. In Fig. 2, the values of α and β
increase from 0.0001 to 100. As is shown, when coupling with
WPLDR, classification accuracy of each partial label learning
algorithm is relatively stable across different values of α and
β. According to the empirical studies, we suggest the value of

α and β can be simply set as 0.01 and 0.01 in practice.

5 Conclusion

In this paper, we propose a wrapped partial label dimension-
ality reduction approach, which is the fist attempt towards
integrating dimensionality reduction and partial label disam-
biguation in one stage. To achieve this, WPLDR maximizes
the interdependence between the embedded feature space and
confidence-based label information, while ensures the man-
ifold consistency between the embedded feature space and
label space. Extensive experiments over a broad range of
synthetic and real-world partial label data sets validate that
WPLDR can significantly enhance the generalization perfor-
mance of well-established partial label learning algorithms. In
future work, we will further investigate how to extend WPLDR
to other weakly-supervised learning frameworks such as active
learning and semi-supervised learning.
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