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Abstract
In multi-dimensional classification (MDC), each
instance is associated with multiple class variables
characterizing the semantics of objects from dif-
ferent dimensions. To consider the dependencies
among class variables and the specific characteris-
tics contained in different semantic dimensions, a
novel deep MDC approach named PIST is proposed
to jointly deal with the two issues via learning
pairwise dimension-specific features. Specifically,
PIST conducts pairwise grouping to model the de-
pendencies between each pair of class variables,
which are more reliable with limited training sam-
ples. For extracting pairwise dimension-specific
features, PIST weights the feature embedding with
a feature importance vector, which is learned via
utilizing a global loss measurement based on intra-
class and inter-class covariance. Final prediction
w.r.t. each dimension is determined by combin-
ing the joint probabilities related to this dimension.
Comparative studies with eleven real-world MDC
data sets clearly validate the effectiveness of the
proposed approach.

1 Introduction
In multi-dimensional classification (MDC), each object is
represented by a single instance while associated with mul-
tiple class variables. Here, each class variable corresponds
to one label space characterizing the rich semantics of ob-
jects from some specific dimension. Take landscape paint-
ings classification as an example, each picture can be clas-
sified from time dimension (with possible labels morning,
afternoon, night, etc.), from whether dimension (with pos-
sible labels sunny, rainy, cloudy, etc.), and from scene di-
mension (with possible labels desert, mountain, grass, etc.).
Specifically, the needs of learning from MDC objects widely
exist in diverse real-world applications, including text min-
ing [Lertnattee and Theeramunkong, 2004; Shatkay et al.,
2008], computer vision [Song et al., 2018; Lian et al., 2020;
Shi et al., 2025], bioinformatics [Borchani et al., 2013;
Fernandez Gonzalez et al., 2015], etc.
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Formally speaking, given a feature space X = Rd and
an output space Y = C1 × C2 × · · · × Cq correspond-
ing to the Cartesian product of q label spaces, each label
space Cj = {cj1, c

j
2, . . . , c

j
Kj

} includes Kj possible labels
(1 ≤ j ≤ q) to characterize the semantics along one dimen-
sion. Let D = {(xi,yi)|1 ≤ i ≤ m} be the training set
and each sample (xi,yi) corresponds to a d-dimensional fea-
ture vector xi = [xi1, xi2, . . . , xid]

T ∈ X associated with
a q-dimensional label vector yi = [yi1, yi2, . . . , yiq]

T ∈ Y .
Given an unseen instance x∗, the task of MDC is to learn a
mapping function f : X 7→ Y from the training set D which
can return a proper label vector f(x∗).

One popular solution to MDC tasks is to independently
deal with each dimension as a traditional multi-class classi-
fication problem. Nonetheless, this strategy completely ig-
nores the dependencies among class variables and then the
performance of the induced predictive model might degener-
ate. To tackle this issue, existing MDC approaches are de-
signed to consider class dependencies in either explicit man-
ner with some structures (e.g., directed acyclic graph [Bielza
et al., 2011; Gil-Begue et al., 2021], chaining order [Zaragoza
et al., 2011] and pairwise interaction [Jia and Zhang, 2020b])
or in implicit manner via manipulating feature space [Jia and
Zhang, 2020a; Jia and Zhang, 2022] or label space [Jia and
Zhang, 2021b; Tang et al., 2024].

Although these existing approaches have successfully con-
sidered class dependencies, they might obtain suboptimal per-
formances since the predictive models for different dimen-
sions are induced based on the same feature space [Jia et al.,
2023]. However, different semantics in each dimension might
prefer different feature characteristics. Take the aforemen-
tioned landscape painting as an example, the level of lumi-
nance would be preferred in discriminating labels in time
dimension; abrupt color changes are more likely to reveal the
labels in scene dimension and the upper part of a picture is
supposed to be more related to whether dimension. More-
over, samples belonging to the same class should be simi-
lar in the feature space generally, but it is very common that
two MDC samples belong to the same class in one dimension
while different classes in another dimension.

To consider the specific characteristics contained in differ-
ent semantic dimensions as well as the dependencies among
class variables, we propose a novel MDC approach named
PIST (i.e., Pairwise dImension-Specific feaTures) based on



deep learning techniques. Specifically, PIST aims to model
class dependencies between each pair of class variables via
pairwise grouping. Firstly, to construct pairwise dimensional
embeddings, a combinatorial encoding procedure is con-
ducted for pairwise class variables via optimizing the intra-
class and inter-class covariance. Then an element-wise selec-
tion mechanism is used to extract pairwise dimension-specific
features, which are considered better capturing the correlation
between feature space and heterogeneous label semantics in
respective dimension pairs. Finally, joint probabilities pre-
dicted by pairwise neural networks are integrated to accom-
plish the final discrimination collectively. To the best of our
knowledge, PIST serves as the first attempt towards learning
dimension-specific features as well as considering class de-
pendencies. Comprehensive experiments on eleven bench-
mark data sets show that PIST performs better than existing
well-established MDC approaches.

The rest of this paper is organized as follows. Firstly, Sec-
tion 2 briefly reviews related works. Then Section 3 presents
the proposed PIST approach at length. After that, Section 4
reports the results of empirical studies over a wide range of
MDC data sets. Finally, Section 5 concludes this paper.

2 Related Work
On one hand, MDC can be regarded as a set of multi-class
classification problems, one per dimension. Thus, we can
solve the MDC problem by learning an independent multi-
class classifier for each dimension, which is known as binary
relevance (BR) [Zhang et al., 2018] but ignores all possible
class dependencies. To exploit class dependencies among
dimensions, on the other hand, one straightforward strategy
is to regard each distinct label combination as a new class,
which is known as class powerset (CP). However, the com-
binatorial nature of CP induces high complexity and is also
prone to class-imbalance and overfitting problem. According
to the strategy of dependency modeling, existing MDC works
can be roughly categorized into two categories, including ex-
plicit and implicit dependency modeling methods.

The MDC methods of explicit category attempt to model
class dependencies with some explicit structures. Chaining-
based classifiers improve BR by learning a chain of
multi-class classifiers, where subsequent classifiers on the
chain will augment predictions of preceding one as fea-
tures [Zaragoza et al., 2011; Read et al., 2014b]. Multi-
dimensional Bayesian classifiers construct directed acyclic
graph over class variable to explicitly consider the class de-
pendencies [Bielza et al., 2011; Gil-Begue et al., 2021]. Gen-
erally, the dependencies among many class variables are hard
to model due to limited samples in training set. SEEM [Jia
and Zhang, 2020b] and MDKNN [Jia and Zhang, 2021a] sug-
gest that pairwise dependencies can be modeled more reliably
than modeling the dependencies among all class variables.

The MDC methods of implicit category attempt to trans-
form the original MDC problem into a new one without some
explicit dependency modeling mechanism in the transforma-
tion procedure. gMML [Ma and Chen, 2018] transforms
the original categorical output space into a binary one and
then induce the predictive model based on metric learning.

SLEM [Jia and Zhang, 2021b] encodes the original class vec-
tors into real-valued ones and decodes the predicted class
vectors over the outputs of learned multi-output regression
model. To extract more powerful features, KRAM [Jia and
Zhang, 2020a] manipulates the feature space via utilizing
kNN information to enrich the original feature space.

LEFA [Wang et al., 2020] is the first MDC approach that
utilizes deep learning techniques. It learns an augmented fea-
ture vector for each instance via assuming that the represen-
tations of features and labels should be aligned in some latent
space. ADVAE-FLOW [Zhang et al., 2022] encodes both fea-
ture and class variables to probabilistic latent spaces by nor-
malizing flows, in which the one-hot representation for the
label vectors w.r.t. different dimensions are directly stacked.
DSOC [Saleh and Li, 2023] is formed of multiple neural net-
works and a hypercube classifier, where the former are re-
sponsible for feature selection and the latter aims to accom-
modate the model for rare sample classification.

However, all these works only aim to consider class depen-
dencies but cannot consider the specific characteristics con-
tained in different semantic dimensions. In the next section,
we will present the technical details of the proposed PIST ap-
proach, which considers not only class dependencies but also
pairwise dimension-specific characteristics.

3 The PIST Approach
As shown in Figure 1, PIST includes two key modules: pair-
wise dimension encoding and dimension-specific feature ex-
traction. Briefly, a weighted sum-pooling is conducted to ob-
tain pairwise dimension embeddings in the first module and
the outputs will further guide the dimension-specific feature
extraction in the second module. The final classification is
enabled by the returned probabilities of softmax regression.

3.1 Pairwise Dimension Encoding
To consider pairwise interactions, PIST considers each pair of
dimensions as an entirety. Without loss of generality, we will
carry out the following discussions in the case of C1 and C2.
To extract dimension-specific features for this dimension pair,
PIST learns a corresponding pairwise dimension embedding
with a weighted sum-pooling as follows:

l(12) =

K1∑
a1=1

K2∑
a2=1

fa1a2
m

la1a2 (1)

where fa1a2 is the number of samples labeled by c1a1 and c2a2
in the training set and la1a2 ∈ Rt is a latent label embedding
vector related to c1a1 and c2a2 . Here, t is a hyper-parameter to
be set (cf. Section 4.3 for further discussions).

For each component la1a2 in Eq.(1), a natural cluster as-
sumption is that la11, la12, . . . , la1K2

are close to each other
and far from lã11, lã12, . . . , lã1K2

where a1 ∈ {1, 2, . . . ,K1}
and ã1 ∈ {1, 2, . . . ,K1} \ {a1}. For this purpose, good
embeddings la1a2 should minimize the intra-class covariance
and maximize inter-class covariance, which can be imple-
mented via minimizing the following objective L(12)

le−part1:

L(12)
le−part1 =

∑K1

a1=1

∑K2

a2=1 ||la1a2 − l̄a1 ||22∑K1

a1=1K2||l̄a1 − l̄||22
(2)
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Figure 1: The workflow of the proposed PIST approach by taking the pair of label spaces C1 and C2 as an example.

where l̄a1 = 1
K2

∑K2

a2=1 la1a2 is the intra-class mean and l̄ =
1

K1K2

∑K1

a1=1

∑K2

a2=1 la1a2 is the global mean.
It is worth noting that the above discussions on similar-

ity of latent label embeddings have another ‘dual’ form with
an exchange of subscript a1 and a2. Then another objective
L(12)
le−part2 is as follows:

L(12)
le−part2 =

∑K2

a2=1

∑K1

a1=1 ||la1a2 − l̄′a2 ||
2
2∑K2

a2=1K1||l̄′a2 − l̄||22
(3)

where l̄′a2 = 1
K1

∑K1

a1=1 la1a2 is the ‘dual’ intra-class mean.
By combining the two above objectives together, the final la-
bel embedding loss L(12)

le w.r.t. C1 and C2 can be defined as
follows:

L(12)
le = L(12)

le−part1 + L(12)
le−part2 (4)

3.2 Dimension-Specific Feature Extraction
For each example x, numerous early works [Yeh et al., 2017;
Wang et al., 2016; Zhang et al., 2023] have proved that it is
significant to exploit powerful feature embeddings in latent
spaces. Thus we firstly encode x into a latent space based
on neural networks which is denoted by ϕ(x) ∈ Rd′ . To
extract pairwise dimension-specific feature, decode l(12) into
a feature importance vector with an attention network:

θ(12) = σ(Wll
(12) + bl) (5)

where θ(12), bl ∈ Rd′ and Wl ∈ Rd′×t. σ is the ReLU
activation function. Here, note that Wl and bl are shared
parameters for all pairwise dimensions.

PIST further assumes that ϕ(x) could be transformed via
an element-wise selection mechanism. Then for dimensions
C1 and C2, the latent feature embedding is transformed into
ϕ(x) ⊙ θ(12), where ⊙ is the Hadamard product. With a

fully-connected network used, the final pairwise dimension-
specific feature is obtained:

s(12) = σ[Ws(ϕ(x)⊙ θ(12)) + bs] (6)

where s(12), bs ∈ Rd′ , Ws ∈ Rd′×d′ .
In addition, it is possible that one dimension is irrelevant to

others. PIST also seeks to acquire single dimension-specific
features by a similar procedure. Take the j-th dimension as
an example (1 ≤ j ≤ q):

l(jj) =

Kj∑
a=1

fa
m

la (7)

θ(jj) = σ(Wll
(jj) + bl) (8)

s(jj) = σ[Ws(ϕ(x)⊙ θ(jj)) + bs] (9)

Here, we denote j by jj for notation consistency with the
aforementioned pairwise case.

3.3 Classification
For classification, we simply obtain probabilities of allK1K2

class combinations w.r.t the first two dimensions with a soft-
max regression as follows:

o(12) = W
(12)
o s(12) + b

(12)
o (10)

where o(12), b
(12)
o ∈ RK1K2 and W

(12)
o ∈ RK1K2×d′ .

Define an injective function ψ(·, ·) : {1, 2, . . . ,K1} ×
{1, 2, . . . ,K2} → {1, 2, . . . ,K1K2} and further assume that
ψ(a1, a2) = w. The predicted probability of any instance x
is as follows:

p̂(12) = softmax(o(12)) (11)



where the w-th element p̂(12)w in p̂(12) corresponds to:

p̂(12)w =
exp(o

(12)
w )∑K1K2

a=1 exp(o
(12)
a )

(12)

Here, o(12)a denotes the a-th element in vector o(12)
a . It is easy

to know that p̂(12)w indicates the probability that x is labeled
by c1a1 and c2a2 w.r.t. C1 and C2, respectively.

Similar derivation can apply to the case of a single dimen-
sion. Take the j-th dimension as an example (1 ≤ j ≤ q):

o(jj) = W
(jj)
o s(jj) + b

(jj)
o (13)

where o(jj), b
(jj)
o ∈ RKj and W

(jj)
o ∈ RKj×d′ . The cor-

responding predicted probability of any instance x is as fol-
lows:

p̂(jj) = softmax(o(jj)) (14)

where the aj-th element p̂(jj)a in p̂(jj) corresponds to:

p̂(jj)aj =
exp(o

(jj)
aj )∑Kj

a=1 exp(o
(jj)
a )

(15)

After traversing all dimension pairs, we can obtain
(
q
2

)
+ q

predicted probabilities {p̂(rs)|1 ≤ r ≤ s ≤ q}, the final
confidence score ρ(r)ar for the ar-th label in the r-th dimension
is determined as follows (ar ∈ {1, 2, . . . ,Kr}, 1 ≤ r ≤ q):

ρ(r)ar = p̂(rr)ar +

Ks∑
as=1

(
r−1∑
s=1

p̂
(sr)
ψ(as,ar)

+

q∑
s=r+1

p̂
(rs)
ψ(ar,as)

)
(16)

It is not hard to verify that
∑Kr

ar=1 ρ
(r)
ar = q holds. To render

ρ
(r)
ar probabilistic and facilitate cross-entropy loss, we further

normalize it with softmax operation:

Qrar =
exp(ρ

(r)
ar )∑Kr

a=1 exp(ρ
(r)
a )

(17)

Based on Qrar , assuming ground-truth label of x in the r-th
dimension is crγ , the cross-entropy loss w.r.t. the r-th dimen-
sion is defined as follows (1 ≤ r ≤ q):

L(r)
ce = −

Kr∑
ar=1

Jar = γK · log(Qrar ) (18)

where JπK returns 1 if π holds and 0 otherwise. The final loss
corresponds to the sum of the average of the dimension-wise
cross-entropy loss L(r)

ce in Eq.(18) as well as the average of
pairwise label embedding loss L(rs)

le in Eq.(4):

L =
1

q

∑
1≤r≤q

L(r)
ce +

2

q(q − 1)

∑
1≤r<s≤q

L(rs)
le (19)

Given an unseen instance x∗, its predicted label ŷ∗j w.r.t.
the j-th dimension is determined as follows (1 ≤ j ≤ q):

ŷ∗j = cjω,where ω = argmax
1≤a≤Kj

Qja, (20)

The final predicted vector can be obtained after traversing all
dimensions, i.e., ŷ = [ŷ∗1, ŷ∗2, . . . , ŷ∗q]

T.

Data set #Exam. #Dim. #Labels/Dim. #Feat.
WQplants 1060 7 4 16n
WQanimals 1060 7 4 16n
WaterQuality 1060 14 4 16n
BeLaE 1930 5 5 1n, 44x
Voice 3136 2 4,2 19n
Scm20d 8966 16 4 61n
CoIL2000 9822 5 6,10,10,4,2 81x
TIC2000 9822 3 6,4,2 83x
Flickr 12198 5 3,4,3,4,4 1536n
Adult 18419 4 7,7,5,2 5n, 5x
Default 28779 4 2,7,4,2 14n, 6x

Table 1: Basic information for data sets. Here, n and x in last col-
umn represent numeric and nominal type features.

4 Experiments
4.1 Experimental Setting
Data Sets
In this paper, we use eleven real-world MDC data sets for ex-
perimental studies. Table 1 summarizes basic characteristics,
including the number of examples (#Exam.), the number of
dimensions (#Dim.), the number of labels in each dimension
(#Labels/Dim.) and the number of features (#Feat.).

Evaluation Metrics
In this paper, three commonly used metrics for performance
evaluation are adopted, i.e. hamming score (HS), exact match
(EM) and sub-exact match (SEM) [Read et al., 2014a; Zhu et
al., 2016]. Given the test set S = {(xi,yi) | 1 ≤ i ≤ p} and
the MDC model f to be evaluated, the definitions of these
three evaluation metrics are given as follows:

1. Hamming Score:

HSS(f) =
1

p

p∑
i=1

1

q
· r(i)

2. Exact Match:

EMS(f) =
1

p

p∑
i=1

Jr(i) = qK

3. Sub-Exact Match:

SEMS(f) =
1

p

p∑
i=1

Jr(i) ≥ q − 1K

Here, r(i) =
∑q
j=1Jyij = ŷijK denotes the number of dimen-

sions which are predicted correctly, yij and ŷij denote the
ground-truth and predicted label w.r.t. the j-th dimension for
the i-th test sample. Ten-fold cross validation are conducted
for all data sets where the mean metric value as well as the
standard derivation are recorded for comparison.

Comparing Approaches
We compare PIST against eight state-of-the-art MDC ap-
proaches with parameter configurations suggested in respec-
tive literatures:



(a) Hamming Score
Data Set PIST BR CP ECC gMML KRAM LEFA MDKNN SEEM
WQplants .661±.013 .649±.016• .576±.018• .648±.015• .655±.014 .663±.016 .653±.014• .660±.013 .666±.015
WQanimals .632±.014 .628±.012 .558±.014• .628±.012 .630±.014 .638±.012 .625±.015 .631±.013 .630±.017
WaterQuality .647±.012 .639±.012• .567±.012• .638±.012• .643±.012 .651±.011◦ .643±.012 .646±.009 .648±.012
BeLaE .452±.015 .423±.021• .357±.019• .408±.021• .417±.019• .415±.017• .410±.012• .395±.011• .398±.022•
Voice .954±.008 .940±.009• .938±.006• .930±.008• .842±.008• .944±.008• .932±.015• .943±.008• .936±.011•
Scm20d .845±.012 .632±.006• .862±.003◦ .608±.007• .600±.007• .872±.002◦ .855±.005◦ .866±.004◦ .770±.005•
CoIL2000 .957±.004 .874±.005• .897±.005• .858±.005• .894±.004• .929±.004• .949±.009• .877±.005• .921±.004•
TIC2000 .945±.004 .892±.007• .875±.006• .884±.007• .895±.006• .942±.003• .936±.006• .864±.005• .916±.006•
Flickr .795±.003 .715±.005• .675±.006• .693±.005• .779±.004• .749±.006• .748±.007• .735±.006• .734±.006•
Adult .725±.003 .701±.004• .638±.005• .702±.005• .705±.004• .705±.005• .657±.007• .699±.005• .706±.004•
Default .676±.003 .665±.003• .587±.004• .666±.003• .666±.004• .665±.004• .625±.015• .654±.003• .668±.003•

(b) Exact Match
Data Set PIST BR CP ECC gMML KRAM LEFA MDKNN SEEM
WQplants .094±.021 .092±.028 .048±.020• .094±.028 .092±.033 .096±.033 .094±.030 .096±.029 .100±.030
WQanimals .057±.015 .056±.023 .025±.015• .056±.023 .062±.022 .059±.013 .048±.024 .057±.013 .039±.013•
WaterQuality .009±.006 .006±.008 .005±.006 .006±.008 .006±.008 .008±.006 .008±.007 .006±.008 .008±.007
BeLaE .035±.019 .028±.009 .013±.009• .035±.012 .022±.009• .030±.012 .017±.008• .023±.008 .023±.011•
Voice .910±.016 .884±.016• .878±.010• .866±.014• .699±.016• .892±.017• .872±.021• .889±.014• .877±.020•
Scm20d .199±.019 .054±.005• .219±.012◦ .073±.008• .052±.007• .245±.009◦ .210±.012 .231±.011◦ .104±.007•
CoIL2000 .822±.014 .515±.011• .616±.013• .466±.013• .576±.014• .743±.010• .786±.036• .552±.014• .701±.013•
TIC2000 .843±.013 .698±.018• .665±.010• .675±.016• .706±.017• .835±.008• .819±.016• .632±.017• .764±.015•
Flickr .330±.013 .187±.010• .158±.008• .168±.010• .287±.008• .244±.009• .246±.010• .228±.013• .211±.011•
Adult .288±.006 .228±.006• .206±.007• .251±.009• .230±.009• .275±.009• .202±.014• .260±.010• .256±.009•
Default .195±.006 .177±.007• .124±.006• .179±.006• .177±.007• .186±.006• .134±.018• .177±.004• .185±.006•

(c) Sub-Exact Match
Data Set PIST BR CP ECC gMML KRAM LEFA MDKNN SEEM
WQplants .285±.050 .284±.049 .171±.030• .282±.047 .286±.050 .291±.041 .286±.033 .288±.029 .287±.031
WQanimals .223±.042 .226±.029 .132±.023• .226±.029 .227±.031 .253±.023 .209±.039 .225±.028 .223±.041
WaterQuality .053±.011 .044±.023 .016±.013• .045±.022 .049±.023 .057±.022 .048±.018 .046±.017 .045±.022
BeLaE .160±.024 .132±.023• .070±.021• .134±.015• .130±.019• .121±.019• .117±.017• .111±.019• .116±.019•
Voice .997±.003 .996±.004 .998±.003 .995±.005 .985±.010• .997±.003 .992±.011 .997±.004 .995±.004
Scm20d .403±.025 .105±.007• .442±.015◦ .128±.010• .100±.009• .483±.012◦ .425±.016◦ .472±.020◦ .225±.007•
CoIL2000 .966±.006 .873±.015• .905±.010• .851±.013• .903±.009• .922±.010• .963±.007 .872±.010• .923±.005•
TIC2000 .993±.002 .979±.004• .961±.007• .977±.005• .978±.003• .992±.003 .989±.004• .962±.003• .985±.004•
Flickr .723±.009 .543±.015• .483±.010• .494±.013• .689±.015• .629±.019• .627±.021• .597±.015• .595±.018•
Adult .693±.007 .657±.009• .532±.010• .651±.010• .669±.007• .652±.008• .575±.011• .638±.009• .660±.007•
Default .610±.007 .590±.008• .446±.008• .593±.008• .593±.008• .588±.008• .518±.032• .568±.007• .596±.007•

Table 2: Experimental results (mean±std.) of each MDC approach. In addition, •/◦ indicates whether PIST is significantly superior/inferior
to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

• BR: Learn an independent multi-class classifier for each
dimension one by one.

• CP: Learn a multi-class classifier via treating each dis-
tinct label combination as a new label.

• ECC [Zaragoza et al., 2011]: Ensemble of several multi-
class classifier chains with random dimension orders.
Predicted results generated by preceding classifiers are
taken as augmented inputs of the subsequent classifier.

• gMML [Ma and Chen, 2018]: Mapping the output space
in MDC into a binary one via one-vs-rest strategy. The
resulted problem is solved by learning regression models

based on metric learning.

• KRAM [Jia and Zhang, 2020a]: Count the number of in-
stances in the k nearest neighbors of each sample which
is associated with exactly each label respectively w.r.t.
each dimension. These counted numbers are concate-
nated to form augmented features.

• LEFA [Wang et al., 2020]: Introduce a cross correla-
tion aware network to learn low-dimensional latent label
embeddings which are considered close to latent feature
embeddings. Aligned label embeddings are used to aug-
ment the original feature space. Multi-class algorithms



Evaluation PIST against
Metric BR CP ECC gMML KRAM LEFA MDKNN SEEM In Total
HS 10/1/0 10/0/1 10/1/0 8/3/0 7/2/2 8/2/1 7/3/1 8/3/0 68/15/5
EM 7/4/0 9/1/1 7/4/0 8/3/0 6/4/1 7/4/0 6/4/1 9/2/0 59/26/3
SEM 7/4/0 9/1/1 7/4/0 8/3/0 5/5/1 5/5/1 6/4/1 7/4/0 54/30/4
In Total 24/9/0 28/2/3 24/9/0 24/9/0 18/11/4 20/11/2 19/11/3 24/9/0 181/71/12

Table 3: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between PIST and each comparing approach.

are also used for subsequent classification.

• MDKNN [Jia and Zhang, 2021a]: Obtain kNN counting
statistics as KRAM and consider class dependencies for
each pair of label spaces. Predictions are determined
by the best learned classifier which achieve the highest
accuracy in the k nearest neighbors.

• SEEM [Jia and Zhang, 2020b]: Learn pairwise classifiers
in the first level and stack corresponding predicted out-
puts according to the accuracy in the k nearest neighbors
to generate second-level data sets for subsequent multi-
class models.

For comparing approaches which necessitate a multi-class
algorithms, LIBSVM [Chang and Lin, 2011] is used to im-
plement the base classifier as suggested in literatures. While
PIST is based on neural networks, to make fair comparison
and eliminate the impact exerted by difference of base clas-
sifiers, we further investigate 5 adjusted approaches includ-
ing BR, KRAM, LEFA, MDKNN and SEEM by replacing the
multi-class classifier with neural networks as PIST. In the
context below, these methods with changed base classifiers
are denoted by the original name plus a subscript δ. Detailed
implementation will be elaborated in the next section.

Implementation Details
For our proposed method, feature embeddings are generated
by a fully-connected layer and ReLU activation. Label em-
beddings {laras |1 ≤ r ≤ s ≤ q, 1 ≤ ar ≤ Kr, 1 ≤
as ≤ Ks} are initialized by standard normal distribution. It is
worth noting that we adopt a dropout-like strategy for all label
embeddings used for weighted sum-pooling, i.e. randomly
drop 80% of them to alleviate overfitting. The latent dimen-
sions of label embeddings t, feature embeddings d′ and all
hidden layers are empirically set as 32, 512 and 512, respec-
tively. All activation functions are fixed as ReLU followed by
a dropout layer [Srivastava et al., 2014] with dropping prob-
ability of 0.5. For network optimization, SGD with a batch
size of 512 and momentum of 0.9 is employed. We set the
learning rate as 0.1 and the weight decay as 10−4.

For comparing approaches, all recommended parameters
in their literatures are employed. Given that in PIST, the sub-
sequent networks adopted on transformed features {ϕ(x) ⊙
θrs|(1 ≤ r ≤ s ≤ q)} are actually equivalent to a multi-layer
perceptron with one hidden layer (Eq.(6) and Eq.(10)), thus
for changed base classifiers, we replace all LIBSVM imple-
mented classifiers with the exact same multi-layer perceptron
for all comparing approaches.

Evalu. PIST against
Metric BRδ KRAMδ LEFAδ MDKNNδ SEEMδ In Total
HS 7/4/0 8/2/1 8/3/0 10/0/1 9/2/0 42/11/2
EM 5/6/0 9/1/1 7/4/0 10/0/1 7/4/0 38/15/2
SEM 7/4/0 8/3/0 7/4/0 9/1/1 6/5/0 37/17/1
In Total 19/14/0 25/6/2 22/11/0 29/1/3 22/11/0 117/43/5

Table 4: Win/tie/loss counts of pairwise t-test (at 0.05 significance
level) between PIST and each comparing approach with replaced
base classifiers.

4.2 Experimental Results

The detailed experimental results are reported in Table 2.
Due to the space limitation, the detailed experimental results
of MDC approaches with replaced base classifiers are de-
ferred into the supplementary materials. Moreover, pairwise
t-test [Demšar, 2006] at 0.05 significance level is conducted
to show whether PIST achieves significantly superior/inferior
performance against other comparing approaches on each
data set. Accordingly, the resulting win/tie/loss counts are
summarized in Table 3 and Table 4.

According to the reported experimental results, observa-
tions can be made as follows:

• Evaluated by three metrics, PIST respectively signif-
icantly outperforms the 13 comparing approaches (8
original approaches plus 5 approaches with neural net-
work based classifiers) in 84.6%, 74.6% and 70.0%
cases across all the 130 configurations (11 data sets ×
13 comparing approaches).

• PIST achieves greater advantage on large-scale data sets
than on small-scale data sets probably because deep
learning technique is more suitable for sufficient data.
Relatively poor performance on Scm20d might be at-
tributed to the large number of dimensions which is a
challenging circumstance for pairwise strategy.

• Substituting neural network based classifiers for SVM
presents overall degeneration of performance, which
might be caused by the inconsistency between the trans-
formed data sets generated by original MDC approaches
and neural networks.

To summarize, PIST achieves highly competitive perfor-
mance against other well-established MDC approaches,
which validates the effectiveness of our proposed pairwise
dimension-specific feature learning approach.
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Figure 2: Performance of PIST changes as the dimension of label embeddings t varies in the range of {25, 26, 27, 28, 29}.

PIST against HS EM SEM
PAIR win[2.44e-02] win[2.44e-02] tie[8.84e-02]
RAND win[1.41e-02] win[4.20e-02] tie[9.69e-02]
STACK win[9.77e-04] win[9.77e-04] win[1.44e-02]
MONO win[9.77e-04] win[5.06e-03] win[2.93e-03]

Table 5: Summary of the Wilcoxon signed-ranks test for PIST
against its variants in terms of each evaluation metric at 0.05 sig-
nificance level. The p-values are shown in the brackets.

4.3 Further Analysis
Ablation Studies
In this section, we conduct ablation studies on all the eleven
MDC benchmark data sets. The four variants are denoted as
PAIR, RAND, STACK, and MONO.

• PAIR. Use original features to induce pairwise classifiers
instead of learning dimension-specific features.

• RAND. Initialize pairwise dimension embeddings l(ij)

by standard normal distribution without combinatorial
strategy in Eq.(1) and thus remove the embedding loss
(i.e. the second term in Eq.(19)).

• STACK. To reduce the number of neural network based
classifiers, stack the dimension-specific features for all
dimension pairs. Specifically, for the j-th (1 ≤ j ≤ q)
dimension, the stacked dimension-specific feature is:

s(j) = [s(1j); . . . ; s((j−1)j); s(jj); s(j(j+1)); . . . ; s(jq)]

Here, s(1j), . . . , s(jq) are obtained in Eq.(6) and Eq.(9).
Then for the obtained q dimension-specific features
{s(j)|1 ≤ j ≤ q}, q fully-connected layers are respec-
tively used to output probabilities w.r.t. corresponding
dimensions.

• MONO. Get rid of all pairwise parts, i.e., only employ
Eq.(7)∼Eq.(9), Eq.(13)∼Eq.(15).

Wilcoxon signed-ranks test [Demšar, 2006] at significance
level α = 0.05 is conducted to analyze whether PIST per-
forms statistically better than variant models. Table 5 summa-
rizes the p-value statistics on each evaluation metric. Com-
pared with these four variant models, we observe that PIST

achieves statistically superior performance against them in
terms of each metric, which validates effectiveness of PIST
in the following aspects:

• It is beneficial to use pairwise dimension-specific fea-
tures than original ones.

• Our proposed combinatorial encoding method with em-
bedding loss generates better label embeddings for cap-
turing the correlation between features and their corre-
sponding dimensions compared to random initialization
of label embeddings.

• Combining probabilistic predictions w.r.t. pairwise di-
mensions can effectively leverage class dependencies,
surpassing the strategy of stacking dimension-specific
features and obtaining prediction in each respective di-
mension directly.

• Single dimension-specific features are insufficient to
model class dependencies and our proposed pairwise de-
pendencies modeling is one of the most essential ap-
proaches for designing MDC algorithms.

Parameter Sensitivity
Figure 2 shows how the performance of PIST fluctuates with
different values of t, i.e. the dimension of latent label embed-
dings as mentioned in Eq.(1). It is shown that PIST achieves
relatively stable performance when the value of t changed in
the range of {25, 26, 27, 28, 29}. In this paper, the value of t
is set to 25 in light of lower complexity which can be used as
the default parameter setting.

5 Conclusion
The main contributions of this paper are two-fold. (1) We
propose to consider the specific characteristics contained in
different semantic dimensions for MDC which is as impor-
tant as modeling class dependencies. (2) We proposed a
novel MDC approach named PIST which learns pairwise
dimension-specific features for MDC to consider both the
specific characteristics in each dimension and the dependen-
cies among different dimensions. Experiments clearly vali-
date the effectiveness of the proposed PIST approach.



References
[Bielza et al., 2011] Concha Bielza, Guangdi Li, and Pedro
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