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Abstract
Deep neural networks have shown promising re-
sults on a wide variety of tasks using large-scale
and well-annotated training datasets. However,
data collected from real-world applications can suf-
fer from two prevalent biases, i.e., long-tailed class
distribution and label noise. Previous efforts on
long-tailed learning and label-noise learning can
only address a single type of data bias, leading to
a severe deterioration of their performance. In this
paper, we propose a distance-based sample selec-
tion algorithm called Stochastic Feature Averag-
ing (SFA), which fits a Gaussian using the expo-
nential running average of class centroids to cap-
ture uncertainty in representation space due to la-
bel noise and data scarcity. With SFA, we de-
tect noisy samples based on their distances to class
centroids sampled from this Gaussian distribution.
Based on the identified clean samples, we then pro-
pose to train an auxiliary balanced classifier to im-
prove the generalization for the minority class and
facilitate the update of Gaussian parameters. Ex-
tensive experimental results show that SFA can en-
hance the performance of existing methods on both
simulated and real-world datasets. Further, we pro-
pose to combine SFA with the sample-selection ap-
proach, distribution-robust, and noise-robust loss
functions, resulting in significant improvement in
performance over the baselines. Our code is avail-
able at https://github.com/HotanLee/SFA.

1 Introduction
Deep neural networks (DNNs) have achieved remarkable
success on a wide variety of tasks by leveraging large-
scale and well-annotated datasets. Nevertheless, data col-
lected from real-world applications usually follow a long-
tailed class distribution, i.e., most classes are associated
with only a small amount of training data, leading to infe-
rior generalization on the minority class [Zhou et al., 2020;
Xiang et al., 2020; Menon et al., 2020; Wei and Li, 2020;
Cui et al., 2021]. On the other hand, data annotated by human
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Figure 1: (left) Test accuracy of different approaches under a fixed
noise level 50% but various imbalance ratios and (right) a fixed im-
balance ratio 100 but various noise levels. Our proposed approach,
SFA, significantly outperforms existing methods in various settings.

labelers or web crawling are easily corrupted (label noise) in
practice. When training with label noise, over-parameterized
DNNs can achieve perfect training accuracy due to the mem-
orization effect but cannot generalize [Arpit et al., 2017; Han
et al., 2018; Liu et al., 2020; Xia et al., 2021; Wu et al., 2021;
Wei et al., 2022b; Zhou, 2022]. Hence, it is crucial to tackle
those two types of data biases, i.e., the long-tailed class dis-
tribution and label noise, to train robust DNNs.

Many methods for long-tailed learning (LTL) and label-
noise learning (LNL) have been proposed to address those
two common types of data biases. LTL aims to deal with the
imbalanced class distribution, and LTL methods have been
evolving in three main directions: (1) re-balancing the train-
ing data [Shen et al., 2016; Liu et al., 2019; Zhou et al.,
2020]; (2) adjusting the outputs of a model [Kang et al., 2020;
Menon et al., 2020; Tang et al., 2020]; and (3) designing
distribution-robust loss functions [Cao et al., 2019; Jamal et
al., 2020; Ren et al., 2020]. However, existing LTL meth-
ods do not take the presence of label noise into account. On
the other hand, LNL aims to deal with the problem of label
noise by (1) designing noise-robust loss functions [Ghosh et
al., 2017; Liu et al., 2020] or (2) detecting and cleaning the
noisy data [Jiang et al., 2018; Li et al., 2020]. As one of
the most commonly used criteria, a training sample is sug-
gested as noisy data if the loss value between the prediction
and its label is higher than a threshold [Han et al., 2018;
Arazo et al., 2019; Xia et al., 2021]. However, these methods
can detect many false noisy data because even clean data of
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the minority class has large losses.
To mitigate such issues for detecting label noise under

long-tailed class distribution, we propose a novel and practi-
cal framework, stochastic feature averaging (SFA). SFA pro-
vides a high-quality splitting of clean and noisy data for both
the majority and minority classes. Instead of using the loss
values, SFA utilizes the distance distribution between sam-
ples and the estimated class centroids in the latent representa-
tion space. We find that the class centroid may be inaccurate
due to the label noise and data scarcity; thus, we approxi-
mate the Gaussian posterior distribution over the running av-
erage of estimated class centroids. We sample class centroids
from this Gaussian distribution and then compute distances.
Based on the selected clean data, we add an auxiliary bal-
ance classifier to improve the generalization of the minority
class and facilitate the estimate of Gaussian parameters. The
proposed SFA framework significantly outperforms various
existing approaches by a large margin, illustrated in Figure 1.
Further, we propose to combine SFA with different existing
methods: the sample-selection approach, distribution-robust,
and noise-robust loss functions. The key contributions of this
work are summarized as follows:

• We study an under-explored problem of learning from
noisy data under long-tailed class distribution, which is
more challenging yet practical.

• We propose a novel framework SFA for detecting noisy
samples using the distance-based criterion and improv-
ing the minority class generalization. SFA can be an
alternative to loss-based approaches to boost the perfor-
mance balance across classes.

• Experimental results show that SFA significantly outper-
forms existing methods on various datasets and settings.
Further, SFA can be used as a universal add-on for main-
stream LTL and LNL methods.

2 Related Work
Long-tailed learning has drawn significant attention in re-
cent years. Many approaches have been proposed, which
can be roughly categorized into three types by modifying:
(1) the inputs to a model by re-balancing the training data
[Shen et al., 2016; Liu et al., 2019; Zhou et al., 2020];
(2) the outputs of a model, for example by post-hoc adjust-
ment of the classifier [Kang et al., 2020; Menon et al., 2020;
Tang et al., 2020] and (3) the internals of a model by mod-
ifying the loss function [Cui et al., 2019; Cao et al., 2019;
Jamal et al., 2020; Ren et al., 2020]. It is worth noting that
most of these LTL approaches rely on the assumption that
the labels in the training set are correct. However, this is of-
ten not the case in real-world applications and label noise has
been shown to deteriorate their performance severely.
Label-noise learning approaches can be broadly divided into
three areas of focus: (1) noise transition matrix estimation
[Patrini et al., 2017; Hendrycks et al., 2018; Cheng et al.,
2022], (2) noise-robust loss functions design [Ghosh et al.,
2017; Zhang and Sabuncu, 2018; Liu et al., 2020], and (3)
clean sample selection [Han et al., 2018; Jiang et al., 2018;
Arazo et al., 2019; Li et al., 2020]. Among these approaches,

the “small-loss” criterion, which treats samples with small
loss as clean samples, is one of the most frequently used
methods and has achieved excellent performance. However,
it ignores the class imbalance problem in the training data and
thus cannot generalizes to long-tailed datasets.
Learning with long-tailed noisy labels aims to tackle both
the long-tailed class distribution and label noise issues. A few
attempts have been made in this direction by (1) reweight-
ing samples to put greater emphasis on clean long-tailed
data [Ren et al., 2018; Shu et al., 2019; Wei et al., 2022a;
Jiang et al., 2022]; (2) designing robust loss functions for
handling both label noise and class imbalance [Cao et al.,
2020], (3) developing better representation learning methods
[Zhou et al., 2022; Yi et al., 2022], and (4) selecting clean
samples using carefully designed criteria [Wei et al., 2021;
Xia et al., 2021]. Our approach to tackling the problem
follows the idea of sample selection based on the “small-
distance” criterion, which selects clean samples in the latent
representation space and can detect noisy samples for the ma-
jority and minority classes. Further, we propose an auxiliary
balanced classifier to improve the generalization based on se-
lected clean samples.

3 The Proposed Approach
3.1 Problem Formulation
Consider a K class classification task, we denote the train-
ing dataset D = {(xi, yi)}Ni=1 of size N , where the training
sample xi ∈ Rd and its label yi ∈ {1, 2, ...K}. For simplic-
ity, we denote [K] = {1, 2, ...K} and for the class k ∈ [K],
we group training samples of class k as Dk = {(xi, yi) |
yi = k}. The training dataset D follows a long-tailed
class distribution in our problem setting. Specifically, let
ρ = maxk |Dk|/mink |Dk| as the imbalance ratio, we have
ρ ≫ 1, e.g., ρ = 100. With label noise, a fraction of train-
ing samples are incorrectly labeled, i.e., ∃i ∈ [N ], yi ̸= y∗i
where y∗i denotes the ground-truth label for xi. In the rest of
the paper, we denote the fraction of incorrectly labeled train-
ing samples as γ ∈ (0, 1). Given D, our goal is to learn a
classifier f : Rd → [K] that can generalize to unseen data.

Basic idea. To tackle the problem of learning from long-
tailed noisy data, we design a novel framework termed SFA.
On the one hand, SFA follows the sample selection paradigm
and selects clean samples in the latent representation space,
which applies to both the majority and minority classes. On
the other hand, we propose to employ an auxiliary balanced
classifier for training using selected yet long-tailed clean sam-
ples to improve the generalization for the minority class. Fig-
ure 2 provides an overview of our proposed framework.

3.2 A New Sample Selection Framework
The Small-Distance Criterion. To select clean samples from
long-tailed and noisy data, we proposed to adopt the small-
distance criterion. It has been verified that the small-distance
criterion is more effective than the small-loss counterpart in
the recent literature [Wei et al., 2021]. The small-distance
criterion makes an assumption on the data distribution that
the likelihood of a sample xi belonging to class k decays ex-
ponentially with its distance from its class centroid ck, i.e.,
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Figure 2: Illustration of the proposed SFA framework, which selects clean samples in the latent representation space. SFA consists of two
branches with a shared feature extractor, i.e., the standard classifier and the auxiliary balanced classifier.

P(xi | ck) ∝ e−dist(ck,xi), where dist is the distance mea-
sure in the latent representation space and is typically set to
be the Euclidean distance. The assumption allows for an un-
restricted number of samples, making it suitable for both the
majority and minority classes. In other words, the closer the
samples are to their corresponding class centroids, the more
likely they are to be clean samples. The challenge of this
approach is how to accurately estimate the class centroids in
the presence of label noise, even when only a few samples
are accessible for the minority class. In the following, this
paper seeks to solve this problem by estimating the posterior
distribution of the class centroids.

Instant Centroid Estimation. A direct approach to esti-
mate the class centroids is to compute the mean of all feature
vectors of each class after each training epoch referred to as
the instant centroid estimation. However, it may be difficult
to produce accurate estimates when label noise exists in data,
as it uses noisy samples in the computation. To mitigate this
issue, one feasible approach is to use as many clean samples
as possible to compute the class centroids. We find that the
majority and minority classes tend to have similar ranges of
predicted confidence output by the auxiliary balanced clas-
sifier, and most clean samples have higher confidence than
noisy samples. This observation motivates us to select a frac-
tion of clean samples for each class to compute a rough esti-
mate of class centroids using a single confidence threshold τ .
Specifically, we compute the centroid of class k by:

ĉk ← Normalize(
1

N ′
k

∑
x∈Dk

I(fabc(x) > τ)g(x)), (1)

where I(·) is the indicator function, N ′
k is the number of se-

lected samples, g(x) returns the latent representation for x,
and fabc(x) outputs the predicted confidence by the auxiliary
balanced classifier, which is introduced in Section 3.3. In
practice, since more and more samples tend to receive high
predicted confidence as the training proceeds, we set a dy-
namic threshold τt as an increasing function of iteration t,
which is given by τt = ϕtτ̂ , where ϕ is a constant. For ex-
ample, we set ϕ = 1.005 and τ̂ = 1/K in our experiments.
With this instant centroid estimation, we obtain a relatively

reliable centroid for selecting clean samples. However, the
accuracy of the estimate can still be affected by the scarcity
of the minority class samples.

Stochastic Feature Averaging. To further reduce the
estimation error, inspired by [Maddox et al., 2019], a
Bayesian extension of the class centroid is designed to con-
duct Bayesian inference using a Gaussian approximation to
the posterior distribution over class centroids. To start with,
SFA maintains the running average of class centroids:

CSFA = β ·CSFA + (1− β) ·Ct, (2)

where CSFA = [c1; · · · ; cK ] is the running estimate of class
centroids, Ct denotes the instant centroid estimates computed
by Eq. (1) after the t-th training epoch, and β is the smooth-
ing factor. This averaging in the latent representation space
captures the training dynamics of DNNs and provides a ro-
bust estimate of the centroid.

SFA conducts Bayesian inference using Gaussian approxi-
mation to the posterior distribution over class centroids. This
paper considers a simple diagonal format for the covariance
matrix. To fit a diagonal covariance approximation, we main-
tain a running average of the second moment for class cen-
troids:

C ′
SFA = β ·C ′

SFA + (1− β) ·C2
t (3)

C2 denotes the element-wise square. Thus, a diagonal covari-
ance matrix can be approximated by ΣSFA = diag(C ′

SFA −
C2

SFA) and the posterior over class centroid can be con-
structed as a Gaussian distribution N (CSFA,ΣSFA). Note
that previous work [Maddox et al., 2019] also proposes a
higher-rank approximation for the covariance, but we only
focus on the diagonal approximation for simplicity. Then we
sample several stochastic class centroids from this Gaussian
distribution and perform distance averaging for sample selec-
tion. Specifically, given the sampling rates S, we first sample
C̃ ∼ N (CSFA,ΣSFA) and then compute the Euclidean dis-
tances between ĉk and samples of class k by:

dist(c̃k,xi) = ||c̃k − g(xi)||22 (4)

This procedure is repeated for S times and an averaged dis-
tance is obtained; thus, training samples are well clustered



Algorithm 1: The SFA Framework

1 Input: training dataset D = {(xi, yi)
N
i=1}, model

parameters θ, sampling rate S, warm-up epochs T0,
and total training epochs T .
// warm-up for T0 epochs

2 for t = 1, ..., T0 do
3 L = ℓCE(D, f) + ℓBS(D, fabc)
4 θt = SGD(L, θt−1)
5 end
6 for t = T0 + 1, ..., T do

// sample selection
7 Dclean = ∅, Dnoisy = ∅
8 Compute confidence threshold τt = γtτ̂
9 for k = 1, ...,K do

10 Compute instant centroid by Eq. (1)
11 Update the first moment CSFA by Eq. (2) and

the second moment C ′
SFA by Eq. (3)

12 for s = 1, ..., S do
13 Sample c̃k ∼ N (CSFA,ΣSFA)
14 disti,s = ||c̃k − g(xi)||2, where xi ∈ Dk

15 end
16 disti =

1
S

∑S
s=1 disti,s

17 Dclean
k ,Dnoisy

k = GMM(dist)

18 Dclean = Dclean∪Dclean
k ,Dnoisy = Dnoisy∪Dnoisy

k

19 end
// semi-supervised learning

20 LSSL = MixMatch(Dclean,Dnoisy, f)

21 LABC = MixMatch(Dclean,Dnoisy, fabc)
22 L = LSSL + LABC

23 θt = SGD(L, θt−1)
24 end

with the distance to the class centroid by fitting them into a
two-component Gaussian mixture model (GMM) [Permuter
et al., 2006], i.e., dist ∼

∑2
j=1 ϕjN (µj , σ

2
j ) where µj , σ

2
j

are the mean and variance of the j-th Gaussian component.
Assume µ1 < µ2 without loss of generality, as clean samples
distribute around class centroids while noisy samples spread
out, we denote the clean probability of one sample as:

P(clean | xi) =
ϕ1N (µ1, σ

2
1)∑2

j=1 ϕiN (µj , σ2
j )

(5)

We select samples with P(clean | xi) > 0.5 as clean samples
and others as noisy samples. Next, the training dataset D
is divided into the clean sample set Dclean and noisy sample
set Dnoisy. As data in Dclean may still follow a long-tailed
distribution, we propose an auxiliary balanced classifier to
obtain unbiased predictions.

3.3 Auxiliary Balanced Classifier
In the literature on long-tailed learning, class re-balancing
strategies are the prominent and effective methods proposed
to alleviate imbalance problems, which can significantly pro-
mote classifier learning and affect the representation learning

w.r.t. the original data distribution. Several existing works
[Kang et al., 2020; Zhou et al., 2020; Lee et al., 2021] suggest
decoupling representation and classifier learning and demon-
strate their superiority over conventional learning methods.
To further boost the performance, we adopt a two-branch
network to combat class imbalance during model training:
we add an auxiliary classifier to the backbone of the neu-
ral network for balanced classifier learning and meanwhile
maintain the original classifier for the sake of representa-
tion learning. We denote the two classifiers as fabc and
f , where f is trained using the standard cross-entropy loss
ℓCE(x, y) = − log ezy∑K

k=1 ezk
, where z = f(x). Next, we

describe obtaining a balanced classifier fabc.
Balanced Softmax. To produce unbiased predictions, we

propose an auxiliary balanced classifier fabc, which is jointly
learned with the standard classifier f by sharing the feature
extractor. Specifically, fabc seeks to minimize the Balanced
Softmax (BS) function [Ren et al., 2020]:

ℓBS(x, y) = − log
nye

zy∑K
k=1 nkezk

, (6)

where nk = |Dclean
k | is the number of samples of class k

counted from Dclean, and zk stands for the k-th logit pro-
duced by fabc(x). The loss can penalize more heavily on
samples in the majority class while placing a lower penalty on
samples in the minority class. This helps to learn a balanced
classifier and prevent the model from being significantly bi-
ased towards the majority class.

Incorporating with Semi-supervised Learning. To im-
prove the utilization of noisy data, we treat samples in noisy
set Dnoisy as unlabeled data and incorporate our methods into
a popular semi-supervised learning framework MixMatch
[Berthelot et al., 2019]. MixMatch is a state-of-the-art semi-
supervised learning algorithm that combines data augmenta-
tion, consistency regularization, and mixup to achieve excel-
lent performance. For unlabeled samples in Dnoisy, we per-
form label guessing using predictions from the standard clas-
sifier f . The total loss is L = LSSL + LABC , where LSSL

and LABC stands for a MixMatch loss computed from the
standard classifier f and the balanced classifier fabc. The
pseudo-code of our SFA framework is summarized in Algo-
rithm 1. At test time, both classifiers are utilized to return the
classification results. Furthermore, we also employ two sepa-
rate neural networks to combat confirmation biases following
DivideMix [Li et al., 2020] and RoLT+ [Wei et al., 2021].

3.4 Time Complexity Analysis
The computation of distances between features and class cen-
troids, and the fitting of GMM, are the main additional com-
putational cost in sample selection. The time complexity of
computing distances is O(SNd), where N is the number of
samples, d is the latent feature dimension, and S is the sam-
pling rate. We set S = 1 for large-scale datasets. The time
complexity of fitting the two-component GMM using the EM
algorithm requires O(Nd′ct), where d′ is the dimension of
distances, c is the number of components, and t is the number
of iterations. In our approach, we have d′ = 1, c = 2, and
t = 100. The total time complexity isO((200+d)N), which
is efficient enough compared with existing approaches.



CIFAR-10 CIFAR-100

Noise Level 0.2 0.5 0.2 0.5

Imbalance Ratio 10 50 100 10 50 100 10 50 100 10 50 100

CE Best 77.86 64.38 61.79 60.72 46.50 38.43 45.97 33.41 29.85 28.70 18.49 16.24
Last 74.00 61.38 55.69 44.29 32.69 27.78 45.75 33.12 29.58 23.70 16.56 14.19

BBN Best 78.44 69.05 64.24 64.51 48.88 37.75 48.60 29.08 27.44 31.05 20.33 15.51
Last 77.67 68.01 64.15 53.67 45.06 34.93 47.72 28.87 27.04 30.11 19.97 14.95

cRT Best 77.67 68.50 60.85 62.37 42.60 35.75 43.56 31.07 24.65 26.31 19.65 15.41
Last 75.36 67.94 58.67 60.35 41.58 33.86 42.75 30.43 23.97 25.12 19.32 14.82

ELR+ Best 88.96 80.21 69.60 85.02 56.96 48.72 54.01 49.64 38.40 49.53 30.12 21.58
Last 88.09 79.69 66.67 84.08 48.14 43.11 53.32 48.37 38.12 49.06 29.68 20.47

DivideMix Best 88.79 75.34 66.90 87.54 67.92 61.81 63.79 49.64 43.91 49.35 36.52 31.82
Last 88.10 73.48 63.76 86.88 65.22 59.65 63.17 48.37 42.59 48.87 35.72 31.05

MW-Net Best 82.19 71.63 67.26 72.12 56.09 46.36 50.20 36.68 31.77 37.50 23.99 21.24
Last 77.67 64.12 58.23 59.68 45.39 37.05 47.82 34.45 29.57 33.14 20.33 18.82

HAR Best 81.63 66.45 56.95 63.07 54.54 38.41 45.28 29.74 26.79 29.30 17.33 14.47
Last 78.04 60.17 54.78 61.13 48.61 35.40 44.52 26.13 23.90 26.46 14.68 12.36

RoLT+ Best 87.95 77.26 72.31 88.17 75.11 64.42 64.22 51.01 45.35 53.31 39.78 35.29
Last 87.54 75.90 69.12 87.45 73.92 61.15 63.31 49.40 43.16 52.44 39.27 34.43

PCL Best 90.92 84.12 79.54 84.04 71.44 66.33 65.23 51.73 47.38 57.65 42.51 38.42
Last 90.81 83.71 78.34 83.51 71.44 64.69 65.14 51.46 47.12 57.65 42.51 38.36

SFA (ours) Best 92.53 85.96 80.26 90.57 79.89 75.17 66.32 54.29 48.51 57.41 44.37 39.73
Last 92.13 84.80 79.22 90.08 78.93 74.06 65.65 53.10 47.73 57.28 43.41 39.73

Table 1: Test accuracy (%) on simulated CIFAR datasets with varying levels of noise and imbalanced ratios. The best results are in bold.

4 Experiments
4.1 Datasets and Implementation Details
Benchmark Datasets. We first test our approach on CIFAR-
10 and CIFAR-100 datasets by simulating training data with
long-tailed class distribution and label noise following prior
work [Wei et al., 2021]. Formally, denote the imbalance ratio
as ρ and noise level as γ. We set the number of samples for
the k-th class to Nk = N/ρ

k−1
K−1 and generate a long-tailed

dataset. Next, we inject the label noise into this dataset via a
noise transition matrix T defined as:

Tij = P(Y = j | Y ∗ = i) =

{
1− γ if i = j
Nj

N−Ni
γ otherwise. (7)

We use an 18-layer PreAct ResNet [He et al., 2016] and train
it using SGD with a momentum of 0.9, a weight decay of 5×
10−4, a batch size of 128 and an initial learning rate of 0.02.
The model is trained for 200 epochs with 1 NVIDIA GeForce
RTX 3090. We perform sample selection after a warm-up
period of 30 epochs and anneal the learning rate by a factor of
10 after 150 epochs. For all CIFAR experiments, we choose
ρ from {10, 50, 100} and γ from {0.2, 0.5}, and use the same
hyperparameters β = 0.99 and S = 5.
Real-World Dataset. WebVision is a large-scale dataset with
real-world noisy labels and long-tailed distributions. It con-
tains 2.4 million images crawled from Flickr and Google us-
ing the 1,000 concepts in ImageNet ILSVRC12. As previ-
ously done in [Li et al., 2020], we use the Inception-ResNet
v2 architecture [Szegedy et al., 2017] to evaluate the per-
formance of baseline methods on the first 50 classes of the

Google image subset. We set the hyperparameters to β = 0.9,
S = 1 and train the network using SGD with a momentum
of 0.9, a weight decay of 1 × 10−3, and a batch size of 32.
The initial learning rate is set to 0.01 and reduced by a factor
of 10 after 50 epochs. The warm-up period is one epoch, and
the model is trained for 100 epochs in total with 2 NVIDIA
GeForce RTX 3090.

4.2 Comparison Methods
We compare the performance of our approach SFA with nine
baselines with the same network architecture. In addition to
the direct approach using cross-entropy loss (CE), we com-
pare SFA with the following three groups of methods:

• Long-tailed learning. Methods commonly used to ad-
dress the long-tailed classification include BBN [Zhou
et al., 2020] and cRT [Kang et al., 2020].

• Label-noise learning. Recent state-of-the-art methods
for learning with noisy labels, including ELR+ [Liu et
al., 2020] and DivideMix [Li et al., 2020]

• Learning with long-tailed noisy data. Methods de-
signed to tackle noisy labels and long-tailed distributions
simultaneously, including MW-Net [Shu et al., 2019],
HAR[Cao et al., 2020], RoLT+ [Wei et al., 2021], and
PCL [Wei et al., 2022a].

4.3 Results on Benchmark Dataset
Table 1 summarizes the results on CIFAR-10 and CIFAR-100
datasets under different levels of label noise and imbalance
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Figure 3: Test accuracy on CIFAR-10 and CIFAR-100 with varying levels of noise and imbalance ratios. Note that the blue and orange bars
are results for without and with SFA, respectively.

ratios. We report the “best” test accuracy across all train-
ing iterations and the “last” test accuracy at the end of train-
ing. As shown in the results, initial model training with cross-
entropy loss is susceptible to biases in the training set, leading
to a significant decrease in its classification accuracy as the
data biases become more pronounced. Also, previous long-
tailed learning methods (i.e., BBN and cRT) dreadfully de-
grade their performance as the noise level increases. When
the noise level is high, the last accuracy is significantly lower
than the best accuracy due to the model’s tendency to fit the
label noise, which can negatively affect the model’s ability
to generalize to unseen data. The same conclusions can be
drawn from other methods. However, our approach (SFA)
retains the most robust performance and advances all other
compared methods in almost all dataset settings. In particu-
lar, compared with the previous state-of-the-art method PCL,
SFA can further improve the test accuracy on CIFAR-10 by an
average of 4.04% and on CIFAR-100 by an average of 1.24%,
and it can be observed that the improvement becomes more
significant at high noise levels and imbalance ratios, benefit-
ing from proposed stochastic feature averaging and balanced
classifier training.

4.4 Results on Real-World Dataset
Table 2 reports the results on the WebVision dataset (ρ ≈ 6).
SFA consistently outperforms compared methods by a large
margin, with an average improvement of 1.02% (0.9%) on
WebVision (ImageNet) validation sets. This demonstrates the
effectiveness of our approach in improving the performance
of deep learning models in the presence of real-world label
noise and class imbalance. To further illustrate the benefits of
our approach, we also conduct experiments on the WebVision
dataset by manipulating the imbalance ratios (ρ = 50 and
ρ = 100) and observe a clear improvement, which suggests

IR Method WebVision ImageNet

top1 top5 top1 top5

ρ ≈ 6

ELR+ 77.78 91.68 70.29 89.76
DivideMix 77.32 91.64 75.20 90.84
HAR 75.50 90.70 70.30 90.00
RoLT+ 77.64 92.44 74.64 92.48
PCL 77.32 92.60 75.12 91.92
SFA (ours) 78.96 93.00 76.16 92.68

ρ = 50

DivideMix 64.56 83.56 62.68 85.24
RoLT+ 66.28 88.68 64.76 89.96
PCL 68.00 88.44 65.00 86.32
SFA (ours) 70.64 89.96 69.04 90.36

ρ = 100

DivideMix 55.76 73.48 53.92 74.00
RoLT+ 60.68 87.84 59.68 88.52
PCL 62.12 85.88 59.60 84.20
SFA (ours) 65.68 88.52 65.08 88.92

Table 2: Test accuracy (%) on mini-WebVision and ImageNet with
various imbalance ratios.

that the advantage of our approach is more appealing as the
imbalance factor increases.

4.5 Ablation Studies and Further Analyses
Insights into the Key Components. We conduct ablation
studies to better understand the impact of different compo-
nents of our SFA framework. Table 3 reports the results on
CIFAR datasets with varying levels of noise and imbalance
ratios, where w/o ICE/SCC/ABC means removing the pro-
posed instant centroid estimation, stochastic class centroid,
and auxiliary balanced classifier, respectively. The following



Noise Level 0.2 0.5

Imbalance Ratio 10 50 100 10 50 100

SFA Best 92.53 85.96 80.26 90.57 79.89 75.17
Last 92.13 84.80 79.22 90.08 78.93 74.06

w/o ICE Best 91.76 83.90 78.39 89.99 78.81 73.81
Last 91.73 83.62 78.00 89.84 78.43 73.80

w/o SCC Best 88.22 79.08 74.28 89.47 76.30 73.74
Last 88.20 78.47 74.28 89.18 76.05 72.76

w/o ABC Best 91.84 82.70 76.38 89.55 78.51 71.19
Last 91.59 82.58 74.86 88.97 77.61 70.73

Table 3: Ablation studies on key components of our proposed SFA
framework. We report the test accuracy on CIFAR-10 dataset.

analyses of results can be derived: (1) in the presence of noisy
labels, instant centroid estimation based on the confidence of
samples from the balanced classifier can provide a more ac-
curate approximation of the actual class centroids compared
to simply taking the mean value of all sample features. (2)
The dramatic decrease in accuracy among all settings with-
out stochastic class centroid highlights the significance of the
Gaussian posterior distributions over class centroid for bet-
ter sample selection. (3) the auxiliary balanced classifier can
significantly enhance the model’s performance, especially in
cases of heavy class imbalance.
Efficacy of Sample Selection. We compare the F1-scores
with existing sample selection-based methods (i.e., Di-
videMix and RoLT+) on two CIFAR datasets to verify the
effectiveness of sample selection in our approach. Results in
Figure 4 illustrate the superiority of our approach in selecting
clean samples from noisy and long-tailed data. We believe
this is due to the following reasons: (1) we adopt the small-
distance criterion, which is more robust than small-loss when
noisy labels and class imbalance co-exist in datasets; (2) sam-
pling stochastic class centroid from the Gaussian posterior
distribution, which is used in distance averaging, can further
reduce the impact of label noise and data scarcity on the esti-
mation of the actual class centroid; (3) conducting Bayesian
inference of class centroid allows the model to access a di-
verse range of clean samples at different epochs, which helps
to prevent overfitting to a particular clean subset. This can be
further illustrated in Figure 5. We compare the performance
of our method with RoLT+ [Wei et al., 2021] in terms of the
mean loss of actual clean samples on CIFAR-10 under differ-
ent data settings. Both methods use the small-distance crite-
rion, but our method utilizes Bayesian inference to estimate
the class centroids. We believe a method that can achieve
lower losses on the whole clean samples can more effectively
identify and use these samples to improve the performance.
The plot demonstrates that our approach can obtain lower
losses and, therefore, better learning from clean samples than
the method without stochastic class centroids.
Collaboration with Existing Approaches. To further show-
case the versatility of the proposed sample selection ap-
proach, we present its three applications. We combine SFA
with a variety of existing techniques, including the sample-
selection approach (Co-teaching [Han et al., 2018]), the
distribution-robust loss (LDAM [Cao et al., 2019]), and the
noise-robust loss (HAR [Cao et al., 2020]). Specifically, we
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Figure 4: F1-score of the head, medium and tail classes on CIFAR-
10 and CIFAR-100 datasets under γ = 0.5 and ρ = 100.
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Figure 5: Mean losses of all clean samples on CIFAR-10 with dif-
ferent levels of noise and imbalance ratios. Our approach SFA can
achieve lower losses compared to RoLT+.

use SFA in two ways: a replacement for the sample selection
module in Co-teaching and a method for identifying clean
samples to train models with LDAM and HAR. Figure 3 sum-
marizes the performance of different approaches with and
without applying SFA under various settings. Results show
that SFA improves the generalization of all approaches, lead-
ing to a more robust model.

5 Conclusion
This paper proposes a distance-based sample selection ap-
proach called stochastic feature averaging (SFA) and an aux-
iliary balanced classifier for handling datasets with both noisy
labels and long-tailed class distribution. The SFA framework
first estimates an instant centroid for each class and uses the
exponential running average of the centroid to fit a Gaussian
posterior distribution, which is utilized to identify noisy sam-
ples based on their distances to the centroid sampled from the
Gaussian. Next, a standard and an auxiliary balanced classi-
fier are jointly learned via a semi-supervised learning frame-
work to improve the generalization of the minority class and
facilitate the estimation of the Gaussian parameters. The pro-
posed approach is evaluated on various datasets, including
CIFAR-10, CIFAR-100, and WebVision, and is shown to out-
perform previous state-of-the-art consistently. Our proposed
approach, SFA, can be an alternative to existing loss-based
approaches for learning with long-tailed noisy labels and can
be used as a universal add-on for various methods. For future
work, we plan to investigate and provide a theoretical expla-
nation for the effectiveness of stochastic class centroids.
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