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1 Further Experimental Results1

1.1 Analyses of Instant Centroid Estimation2

The Instant Centroid Estimation (ICE), which utilizes the pre-3

dicted confidence of the auxiliary balanced classifier, allows4

for a rough estimation of the class centroids with a single5

threshold. This is based on the observation that samples of6

head, medium, and tail classes typically exhibit similar ranges7

in the confidence distribution, and the confidence of most8

clean samples is generally higher than noisy samples within9

each class, as shown in Figure 1. ICE can be considered as10

a primary sample selection strategy that aims to remove as11

many noisy samples as possible in order to minimize the im-12

pact of label noise on the estimation of the class centroids.13

To further verify the effectiveness of ICE, we illustrate the14

curve of the precision of sample selection as a function of15

training iterations in Figure 2. It can be seen that ICE consis-16

tently achieves high precision on both CIFAR-10 and CIFAR-17

100 datasets, which ultimately leads to a decent estimation of18

class centroid.19
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Figure 1: Confidence distributions in head, medium and tail classes
output by balanced classifier in CIFAR-10 dataset after warm-up.

1.2 Additional Ablation Studies on CIFAR20

We conduct additional ablation studies on key components of21

the proposed SFA framework on the CIFAR dataset. Table 122

reports the test accuracy on CIFAR-100 dataset with varying23

levels of noise and imbalance factors. It is obvious that the24

performance of the final model is the result of the collective25

contributions from each key component, with the auxiliary26

balanced classifier having the most significant impact. This27
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Figure 2: Precision of sample selection based on confidences output
by the balanced classifier in CIFAR-10 and CIFAR-100 datasets.

Noise Level 0.2 0.5

Imbalance Ratio 10 50 100 10 50 100

SFA Best 66.32 54.29 48.51 57.41 44.37 39.73
Last 65.65 53.10 47.73 57.28 43.41 39.73

w/o ICE Best 66.28 53.23 48.39 56.15 43.43 38.52
Last 65.92 53.23 47.02 56.00 43.34 38.01

w/o SCC Best 65.92 52.95 48.19 55.96 42.30 38.39
Last 65.92 52.85 48.00 55.58 42.26 38.16

w/o ABC Best 64.62 50.25 45.27 54.12 39.79 34.63
Last 64.11 50.17 45.12 53.92 39.56 33.33

Table 1: Ablation studies on key components of our proposed SFA
framework. Test accuracy on CIFAR-100 dataset is reported.

can be attributed to the extremely small number of samples 28

in tail classes under certain data settings ( i.e., Nk = 5 under 29

100 imbalance factor). This makes the model highly depen- 30

dent on the balanced softmax function, while hindering the 31

accurate estimation of class centroids. 32

1.3 Additional Analyses of Sample Selection 33

The effectiveness of sample selection by the SFA framework 34

is further illustrated in Figure 3, showcasing the precision and 35

recall on CIFAR-10 and CIFAR-100 datasets under challeng- 36

ing conditions of 50% noise level and 100 imbalance factor. 37

The results indicate that our method demonstrates superior 38
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Figure 3: Precision and recall of the head, medium and tail classes on CIFAR-10 and CIFAR-100 datasets under γ = 0.5 and ρ = 100.

CIFAR-10 CIFAR-100

Noise Level 0.2 0.5 0.2 0.5

Imbalance Ratio 10 50 100 10 50 100 10 50 100 10 50 100

S = 1
Best 92.37 84.95 79.04 90.42 79.21 74.65 66.67 54.20 48.47 57.59 44.32 39.05
Last 92.09 84.34 78.15 90.02 79.08 73.69 66.17 53.52 47.41 57.22 43.39 39.05

S = 3
Best 92.21 85.01 80.64 90.27 79.47 75.17 66.48 54.46 48.34 57.42 44.51 39.19
Last 91.60 84.18 78.34 90.05 78.65 74.30 66.29 53.74 47.39 56.90 43.63 38.49

S = 5
Best 92.53 85.96 80.26 90.57 79.89 75.17 66.32 54.29 48.51 57.41 44.37 39.73
Last 92.13 84.80 79.22 90.08 78.93 74.06 65.65 53.10 47.73 57.28 43.41 39.73

Table 2: Test accuracy (%) on simulated CIFAR datasets with different sampling rate.

precision on CIFAR-100 and improved recall on both CIFAR-39

10 and CIFAR-100 datasets. While the precision of the head40

and medium classes on CIFAR-10 is relatively lower, SFA41

significantly increases the recall of these classes, resulting42

in an overall improvement in performance. Therefore, sam-43

ple selection using stochastic feature averaging is effective in44

identifying clean samples for model training.45

1.4 Analyses of Parameter Sensitivity46

Smoothing Factor We conducted an extensive evaluation of47

the impact of the smoothing factor β in exponential mov-48

ing average by considering various values ranging from 0 to49

0.99. It is worth noting that higher β values are less respon-50

sive to recent data, while lower values place greater empha-51

sis on recent data. Given the uncertainties arising from la-52

bel noise and data scarcity, a higher β is recommended in53

practice, which is consistent with previous literature such as54

Mean-Teacher [NeurIPS’17]. Our results, shown in Figure 4,55

demonstrate that our method consistently achieves good per-56

formance when β is set to a high value (β > 0.9), indicating57

its robustness across a wide range of β values.58

Dynamic Confidence Threshold The impact of the two pa-59

rameters for the dynamic threshold can be analyzed from60

two perspectives: how they determine the dynamic threshold61

(Figure 5), and how the dynamic threshold affects the final62

performance (Table 3). Based on our results, we have made63

the following observations: (1) using a low fixed threshold64

(ϕ = 1, τ̂ = 1/K) can lead to a decrease in performance65

because it results in more noisy samples being selected in the66

class centroid estimation; (2) when the dynamic threshold in-67

creases too rapidly (ϕ = 1.007, τ̂ = 2/K or ϕ = 1.01), the68
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Figure 4: Test accuracy on CIFAR-10 and CIFAR-100 with varying
smoothing factor (β) under different noise and imbalance ratios.

performance is also compromised because the number of se- 69

lected samples is too limited to obtain an accurate centroid. 70

However, if the changes in the dynamic threshold are appro- 71

priate (ϕ = 1.003 and 1.005), the model can consistently 72

achieve high performance. 73
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Figure 5: Fixed and dynamic thresholds with different τ̂ and ϕ on
CIFAR-10. K is the number of classes.



ϕ 1 1.003 1.005 1.007 1.01

τ̂ = 1/K 38.12 39.10 39.20 38.77 37.99
τ̂ = 2/K 38.75 39.18 39.05 38.00 37.51

Table 3: Test accuracy on CIFAR-100 under 50% noise level and
100 imbalacne ratio.

Sampling Rate An analysis of the effect of varying sampling74

rates of the stochastic class centroids is also present in Table75

2. The results show that increasing the sampling rate can im-76

prove the classification accuracy especially in case of severe77

class imbalance, but the impact is not significant. To achieve78

a trade-off between performance and efficiency in real-world79

applications, it is advisable to choose a small value of S for80

large-scale datasets.81

1.5 Results on Class-balanced Datasets82

To evaluate the performance of our proposed framework on83

class-balanced datasets, we conducted experiments on the84

CIFAR datasets and compared our method with the vanilla85

Cross-entropy (CE), DivideMix, and ELR+. The results are86

summarized in Table 4. Although our method is primarily87

designed to address the challenge of long-tailed noisy labels,88

we were pleased to observe that it also achieves comparable89

performance to state-of-the-art methods in the field of label-90

noise learning.91

CIFAR-10 CIFAR-100

Noise Level 0.2 0.5 0.8 0.2 0.5 0.8

CE 86.8 79.4 62.9 62.0 46.7 19.9
DivideMix 96.1 94.6 93.2 77.3 74.6 60.2

ELR+ 95.8 94.8 93.3 77.6 73.6 60.8
Ours 95.8 94.9 93.2 78.4 73.8 60.0

Table 4: Test accuracy (%) on balanced CIFAR datasets. Results
except for ours are taken from ELR+.
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