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Abstract
In multi-dimensional classification (MDC), each
training example is associated with multiple class
variables from different class spaces. However, it
is rather costly to collect labeled MDC examples
which have to be annotated from several dimen-
sions (class spaces). To reduce the labeling cost,
we attempt to deal with the MDC problem under
the semi-supervised learning setting. Accordingly,
a novel MDC approach named PLAP is proposed
to solve the resulting semi-supervised MDC prob-
lem. Overall, PLAP works under the label propaga-
tion framework to utilize unlabeled data. To further
consider dependencies among class spaces, PLAP
deals with each class space in a progressive man-
ner, where the previous propagation results will be
used to initialize the current propagation procedure,
and all processed class spaces and the current one
will be regarded as an entirety. Experiments vali-
date the effectiveness of the proposed approach.

1 Introduction
In supervised learning, one traditional task is to learn a model
under the supervision of one single class variable, e.g., multi-
class classification. However, the simplifying assumption
does not fit well in many real-world applications because
some objects with rich semantics should be classified along
different dimensions. For instance, a piece of song can be
classified from emotion dimension (with possible labels
happy, sad, cathartic, etc.), from the scenario dimen-
sion (with possible labels walk, wedding, nightclub, etc.),
and from the language dimension (with possible labels En-
glish, Chinese, Spanish, etc.). To build classification models
for such kind of problems, the multi-dimensional classifica-
tion (MDC) framework [Read et al., 2014a; Cambuı́ et al.,
2021] is a more natural solution which associates multiple
class variables to the object. Here, each class variable cor-
responds to one specific class space which is used to char-
acterize the object’s semantics from one dimension. In fact,
the needs of learning from objects with multi-dimensional se-
mantics widely exist in diverse application scenarios, such as
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text mining [Shatkay et al., 2008], computer vision [Lian et
al., 2020], bioinformatics [Borchani et al., 2013].

The MDC problem can be solved via learning a multi-class
classifier for each dimension. However, this independent de-
composition strategy ignores the dependencies among differ-
ent class spaces, which might lead to performance degener-
ation. Thus, most existing approaches aim at modeling the
class dependencies in either explicit ways [Bielza et al., 2011;
Read et al., 2014b; Arias et al., 2016] or implicit ways [Zhang
et al., 2022]. It is worth noting that a common assumption
for these works is that there are enough labeled MDC sam-
ples available for model induction, while it is rather costly
to annotate the semantics of objects from several dimensions.
To reduce the labeling cost, this paper investigates the feasi-
bility of learning from a few labeled MDC samples with the
help of a large number of unlabeled data, which formalizes
the framework semi-supervised multi-dimensional classifica-
tion (SSMDC). As a mixture of MDC and semi-supervised
learning, both class dependencies and unlabeled data should
be carefully utilized when designing SSMDC approaches.

In this paper, we propose a novel approach named PLAP
(i.e., Progressive LAbel Propagation) to solve the SSMDC
problem. Specifically, to utilize the unlabeled data, PLAP
propagates the labeling information from labeled samples to
unlabeled data via constructing a weighted directed graph. To
utilize the class dependencies, PLAP progressively deals with
each class space where the current propagation procedure will
be initialized by the previous propagation results. To evalu-
ate PLAP’s effectiveness, we construct SSMDC testbed with
ten real-world MDC data sets and compare PLAP with its
degenerated version which deals with each class space inde-
pendently via label propagation as well as six state-of-the-art
MDC approaches which only use labeled MDC samples to
induce supervised models. Experimental results clearly show
that PLAP achieves superior performance against both its de-
generated version and existing MDC approaches. To the best
of our knowledge, this paper makes the first attempt towards
studying the MDC problem in data utilization level and is dif-
ferent from existing works which are in method design level.

The rest of this paper is organized as follows. Firstly, the
related works on MDC are briefly discussed in Section 2.
Then, the technical details of the proposed PLAP approach
are presented in Section 3. After that, the experimental results
of comparative studies are reported in Section 4. Finally, we



conclude this paper in Section 5.

2 Related Work
Multi-class classification (MCC) and multi-label classifica-
tion (MLC) are the two most related frameworks to MDC.
Specifically, MCC can be regarded as a special case of MDC
where the number of dimensions is one (i.e., single dimen-
sional classification), while MLC [Zhang and Zhou, 2014;
Gibaja and Ventura, 2015; Liu et al., 2022] can also be re-
garded as a special case of MDC where the number of class
labels in each dimension is two. Conceptually, both MCC
and MLC assume one homogeneous class space while MDC
assumes multiple heterogeneous class spaces in output space.
Compared with MCC, MLC no longer restricts single relevant
label for each instance to model ambiguous objects in a better
way, while MDC employs multiple class spaces to model the
multi-dimensional semantics of objects more conveniently.

The MDC problem can be solved by decomposing it into
multiple independent MCC problems, one per dimension,
which is usually termed as binary relevance (BR). How-
ever, BR doesn’t consider potential class dependencies which
should be utilized for model induction. According to the dif-
ferent ways of modeling class dependencies, existing works
can be roughly categorized into explicitly and implicitly mod-
eling methods. The first category aims at explicitly modeling
class dependencies with some structures. Representative ap-
proaches include the family of multi-dimensional Bayesian
classifiers which assume directed acyclic graph over class
spaces [Gil-Begue et al., 2021], the family of classifier chains
which learn a chain of classifiers where the labeling infor-
mation for preceding classifiers on the chain will be used
as features for subsequent classifiers [Zaragoza et al., 2011;
Jia and Zhang, 2022a], the family of two-level methods
which consider low-order and high-order dependencies in
the frst and second level respectively [Arias et al., 2016;
Jia and Zhang, 2020b; Jia and Zhang, 2021a].

The second category aims at implicitly modeling class de-
pendencies via manipulating either feature or output space.
For manipulating feature space, KRAM generates kNN-
augmented features to enrich the original feature space which
can facilitate subsequent model induction [Jia and Zhang,
2020a], and the following works LEFA [Wang et al., 2020]
and SFAM [Jia and Zhang, 2022b] respectively improve the
generation and utilization of augmented features. For ma-
nipulating output space, MLKT [Ma and Chen, 2018] and
SLEM [Jia and Zhang, 2021b] transform the original categor-
ical output space into a binary and real-valued one and then
induce the predictive model in their transformed label space.

All the above approaches work by assuming enough la-
beled MDC samples available for model induction. However,
it is rather costly to collect labeled MDC samples which have
to be annotated from different dimensions. Semi-supervised
learning [van Engelen and Hoos, 2020] aims at learning su-
pervised models with a few labeled samples as well as a
large number of unlabeled data and then reducing the need
of labeled samples. To utilize unlabeled data, label propaga-
tion [Zhou et al., 2003] is one of commonly-used techniques
which aims at making similar instances have similar labeling

information. In the next section, we will present the technical
details of the proposed PLAP approach which learns from a
few labeled MDC samples as well as a large number of unla-
beled data via progressive label propagation.

3 The PLAP Approach
Let X = Rd be the d-dimensional input (feature) space and
Y = C1 × C2 × · · · × Cq be the output space which cor-
responds to the Cartesian product of q class spaces. Here,
each class space Cj consists of Kj class labels, i.e., Cj =

{cj1, c
j
2, . . . , c

j
Kj

} (1 ≤ j ≤ q). Given a set of labeled MDC
samples Dl = {(xi,yi) | 1 ≤ i ≤ L}, for each labeled MDC
sample (xi,yi), yi = [yi1, yi2, . . . , yiq]

⊤ ∈ Y is the ground-
truth class vector of xi ∈ X where yij ∈ Cj corresponds to
xi’s class label in the j-th dimension. Furthermore, given a
set of unlabeled samples Du = {xj | L+1 ≤ j ≤ L+U}, the
task of SSMDC is to induce a predictive model f : X 7→ Y
from D = Dl ∪Du. Generally, it is assumed that L ≪ U and
we further denote N = L+ U for convenience.

To propagate the labeling information from labeled sam-
ples Dl to unlabeled data Du, PLAP constructs a weighted di-
rected graph G = (V,E). Here, the vertex set V corresponds
to the instances in Dl∪Du, i.e., V = {x1, . . . ,xL, . . . ,xN},
while the edge set E corresponds to the affinity matrix W ∈
RN×N defined based on the Gaussian function:

Wij =

{
e−

∥xi−xj∥2

2σ2 , if i ̸= j
0, otherwise

(1)

where Wij is the (i, j)-th item of W and σ is the band-
width parameter of Gaussian function. Based on W, PLAP

further constructs the propagation matrix S = D− 1
2WD− 1

2

where D = diag(d1, d2, . . . , dN ) is a diagonal matrix with
di =

∑N
j=1 Wij . With the propagation matrix S, PLAP con-

ducts label propagation procedure via the following iterative
equation [Zhou et al., 2003]:

F(t) = αSF(t− 1) + (1− α)Y (2)

Here, Y is the initial label matrix, F(t) is the propagated label
matrix in the t-th round (t ∈ {1, 2, . . .}), and α ∈ (0, 1) is a
hyper-parameter to be specified for balancing the importance
of SF(t) and Y. Besides, F(0) is usually initialized as Y for
the first iteration. In this paper, PLAP progressively deals with
each class space, the definitions of Y and the corresponding
F are different for different class spaces.

To consider the first class space C1, the current Y ∈
{0, 1}N×K1 is set as follows:

Yia =

{
1, if (1 ≤ i ≤ L) ∧ (yi1 = c1a)
0, otherwise

(3)

where Yia is the (i, a)-th item of Y. In other words, Yia is set
to 1 only for labeled sample xi (i.e., 1 ≤ i ≤ L) if its class
label w.r.t. C1 is c1a (i.e., yi1 = c1a) and 0 otherwise. With Y,
we can obtain the final F ∈ RN×K1 via iterating Eq.(2) until
convergence. Let Fia denote the (i, a)-th item of F, the class
label ŷi1 of unlabeled sample xi (L + 1 ≤ i ≤ N ) w.r.t. C1

can be obtained via the following rule:

ŷi1 = c1â, where â = argmax1≤a≤K1
Fia (4)



Then, to consider the second class space C2 and model
the dependencies among C1 and C2, we deal with the first
two class spaces as an entirety. Moreover, the previous
predictions w.r.t. C1 for unlabeled samples will also be
used to determine the current Y in Eq.(2). Specifically,
let ϕ2(a1, a2) be some injective function from the Cartesian
product {1, 2, . . . ,K1} × {1, 2, . . . ,K2} to natural numbers
{1, 2, . . . ,K1 × K2} and we denote K12 = K1 × K2 for
convenience. To determine the current Y ∈ {0, 1}N×K12 ,
consider the two cases as follows:

1. For labeled sample xi (1 ≤ i ≤ L):

Yiϕ2(a1,a2) =

{
1, if CL2

i = true
0, otherwise

(5)

where CL2
i ≜ (yi1 = c1a1

)∧(yi2 = c2a2
). In other words,

the corresponding item Yiϕ2(a1,a2) for labeled sample xi

is directly determined by its class labels yi1 and yi2 w.r.t.
C1 and C2.

2. For unlabeled sample xi (L + 1 ≤ i ≤ N ), the class
label w.r.t. C1 has already been predicted in the previous
label propagation step while the class label w.r.t. C2 is
to be determined. Let N (xi) be xi’s k nearest neighbors
identified in labeled samples Dl, and n2

ia2
be the number

of samples with class label c2a2
w.r.t. C2 in N (xi), it

is easy to know that
∑K2

a2=1 n
2
ia2

= k. Suppose xi is
predicted as c1â1

w.r.t. C1, we set Y as:

Yiϕ2(a1,a2) =

{
n2
ia2

k , if CU2
i = true

0, otherwise
(6)

where CU2
i ≜ (a1 = â1) and 1 ≤ a2 ≤ K2.

To facilitate understanding, here is an example:
Example 1. Suppose that the output space of D is Y =
C1 × C2 where C1 = {c11, c12}, C2 = {c21, c22, c23}. Given the
MDC data set D = {(x1,y1), (x2,y2), (x3,y3)}∪{x4,x5},
where y1 = [c11, c

2
2]

⊤, y2 = [c12, c
2
3]

⊤ and y3 = [c11, c
2
1]

⊤. Let
k = 2 and suppose N (x4) = {x2,x3}, N (x5) = {x1,x3},
then n2

41 = 1, n2
42 = 0, n2

43 = 1 because there is respectively
one sample with c21 (i.e., x3) and c23 (i.e., x2) w.r.t. C2 in
N (x4), and n2

51 = 1, n2
52 = 1, n2

53 = 0 because there is re-
spectively one sample with c21 (i.e., x3) and c22 (i.e., x1) w.r.t.
C2 in N (x5). Moreover, suppose the predicted class labels
w.r.t. C1 in the previous label propagation step for unlabeled
samples x4, x5 are ŷ41 = c11, ŷ51 = c12, given the injective
function ϕ2(a1, a2) = 3× (a1 − 1) + a2, Y is set as:

Y =


0 1 0 0 0 0
0 0 0 0 0 1
1 0 0 0 0 0
1
2 0 1

2 0 0 0
0 0 0 1

2
1
2 0


Here, in the 1st row, Y12 = 1 because y1 = [c11, c

2
2]

⊤ and
ϕ2(1, 2) = 3 × (1 − 1) + 2 = 2. In the 2nd row, Y26 = 1
because y2 = [c12, c

2
3]

⊤ and ϕ2(2, 3) = 3×(2−1)+3 = 6. In
the 3rd row, Y31 = 1 because y3 = [c11, c

2
1]

⊤ and ϕ2(1, 1) =
1× (1−1)+1 = 1; In the 4th row, given ŷ41 = c11 (i.e., a1 =

1), Y41 =
n2
41

k = 1
2 because ϕ2(1, 1) = 1, Y42 =

n2
42

k = 0

because ϕ2(1, 2) = 2, Y43 =
n2
43

k = 1
2 because ϕ2(1, 3) = 3;

In the 5th row, given ŷ51 = c12 (i.e., a1 = 2), Y51 =
n2
51

k = 1
2

because ϕ2(2, 1) = 4, Y52 =
n2
52

k = 1
2 because ϕ2(2, 2) = 5,

Y53 =
n2
53

k = 0 because ϕ2(2, 3) = 6.

With the Y determined by Eq.(5) and Eq.(6), we can also
obtain the corresponding F ∈ RN×K12 via iterating Eq.(2)
until convergence. For unlabeled sample xi (L+1 ≤ i ≤ N ),
its class labels w.r.t. C1 and C2 can be determined via the
following rule:

ŷi1 = c1â1
, ŷi2 = c2â2

, where [â1, â2] = ϕ−1
2 (â),

â = argmax1≤a≤K12 Fia

(7)

where ϕ−1
2 (·) is the corresponding inverse function of ϕ2(·, ·).

Furthermore, we can generalize above propagation proce-
dure to the j-th class space (j ≥ 2). Specifically, we deal
with the first three class spaces as an entirety and define injec-
tive function ϕj(a1, . . . , aj) which maps the Cartesian prod-
uct {1, 2, . . . ,K1}× . . .×{1, 2, . . . ,Kj} to natural numbers
{1, 2, . . . ,K1 × . . . ×Kj}. To determine the corresponding
Y, Eq.(5) will be generalized as follows:

Yiϕj(a1,...,aj) =

{
1, if CLj

i = true
0, otherwise

(8)

where CLj
i ≜ (yi1 = c1a1

)∧ . . .∧ (yij = cjaj
). Eq.(6) will be

generalized as follows:

Yiϕj(a1,...,aj) =

{
nj
iaj

k , if CUj
i = true

0, otherwise
(9)

where CUj
i ≜ (a1 = â1) ∧ . . . ∧ (aj−1 = âj−1). nj

iaj

denotes the number of samples with class label cjaj
w.r.t. Cj

in N (xi) and xi is respectively predicted as c1â1
, . . . , cj−1

âj−1

w.r.t. C1, . . . , Cj−1 in the previous label propagation step.
For unlabeled sample xi (L + 1 ≤ i ≤ N ), its class labels
w.r.t. C1, . . . , Cj can be determined with the help of the
inverse function of ϕj(a1, . . . , aj) like Eq.(7).

Table 1: Basic information for data sets. Here, n, x and b in last
column represent numeric, nominal and binary type features.

Data set #Exam. #Dim. #Feat.
Edm 154 2 16n
Song 785 3 98n
WQpla. 1060 7 16n
WQani. 1060 7 16n
WQ 1060 14 16n
BeLaE 1930 5 1n, 44x
Thyroid 9172 7 7n, 20b, 2x
Pain 9734 10 136n
Disfa 13095 12 136n
Adult 18419 4 5n, 5x



Table 2: Experimental results (mean±std.) of each MDC approach with L = 40 labeled samples. In addition, •/◦ indicates whether PLAP is
significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

(a) Hamming Score
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .724±.033 .709±.031 .684±.022• .657±.033• .718±.039 .661±.014• .654±.022• .647±.017•
Song .740±.010 .692±.012• .676±.041• .671±.037• .658±.065• .711±.018• .707±.018• .716±.028•
WQpla. .623±.029 .627±.015 .483±.054• .475±.038• .589±.029• .517±.019• .518±.024• .546±.022•
WQani. .615±.009 .611±.012 .448±.050• .433±.043• .546±.015• .476±.025• .473±.025• .506±.020•
WQ .620±.013 .618±.013 .473±.028• .459±.017• .567±.018• .474±.016• .475±.018• .512±.013•
BeLaE .333±.011 .332±.011 .342±.012 .343±.011 .288±.015• .313±.010• .313±.008• .290±.007•
Thyroid .960±.001 .956±.004• .305±.013• .677±.008• .933±.042 .940±.015• .944±.013• .951±.009•
Pain .947±.001 .894±.009• .914±.012• .908±.016• .931±.010• .887±.017• .885±.016• .926±.015•
Disfa .872±.000 .859±.001• .862±.007• .813±.015• .857±.021 .779±.020• .784±.024• .840±.009•
Adult .593±.014 .549±.018• .548±.020• .551±.019• .564±.014• .552±.018• .552±.018• .520±.016•

(b) Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .504±.057 .517±.044 .462±.054 .478±.047 .525±.067 .432±.039• .423±.045• .457±.032
Song .390±.019 .322±.032• .279±.058• .271±.055• .329±.056• .349±.029• .342±.031• .351±.044•
WQpla. .057±.035 .063±.029 .014±.009• .007±.003• .061±.015 .021±.010• .023±.012• .030±.014•
WQani. .041±.014 .041±.014 .009±.003• .008±.004• .021±.007• .008±.003• .009±.004• .011±.005•
WQ .003±.002 .006±.002◦ .002±.000 .002±.001 .006±.002◦ .000±.001• .000±.001• .000±.000•
BeLaE .009±.004 .009±.002 .008±.002 .009±.002 .005±.001• .005±.002• .005±.002• .003±.001•
Thyroid .736±.004 .713±.015• .077±.014• .082±.013• .607±.204 .642±.077• .663±.069• .688±.049•
Pain .739±.009 .567±.039• .544±.080• .513±.100• .666±.063• .493±.069• .489±.062• .647±.071•
Disfa .366±.000 .347±.003• .280±.038• .079±.032• .303±.074• .084±.031• .091±.051• .261±.054•
Adult .070±.010 .104±.018◦ .086±.015◦ .089±.014◦ .114±.016◦ .078±.017 .077±.017 .065±.022

(c) Sub-Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .945±.029 .901±.022• .906±.030• .837±.027• .911±.019• .889±.035• .886±.041• .838±.032•
Song .835±.014 .783±.012• .769±.056• .761±.053• .710±.099• .798±.025• .793±.025• .812±.038
WQpla. .216±.069 .239±.033 .074±.037• .051±.023• .191±.038 .104±.026• .111±.032• .133±.029•
WQani. .189±.021 .186±.029 .060±.014• .053±.012• .112±.017• .059±.019• .058±.021• .072±.019•
WQ .018±.013 .023±.013 .004±.002• .003±.001• .015±.006 .002±.002• .002±.001• .003±.002•
BeLaE .059±.008 .059±.007 .059±.010 .063±.009 .033±.007• .042±.008• .043±.008• .031±.004•
Thyroid .982±.000 .976±.010 .148±.018• .297±.049• .931±.084 .942±.030• .948±.027• .969±.014•
Pain .845±.002 .693±.021• .763±.037• .734±.062• .806±.022• .686±.053• .679±.052• .800±.036•
Disfa .564±.000 .534±.004• .529±.029• .311±.064• .512±.067• .268±.065• .284±.081• .467±.034•
Adult .491±.033 .389±.034• .394±.042• .401±.042• .422±.026• .409±.037• .410±.039• .349±.035•

4 Experiments

4.1 Experimental Setting

Data Sets

In this paper, we use ten real-world MDC data sets for exper-
imental studies where Table 1 summarizes their basic char-
acteristics, including the number of examples (#Exam.), the
number of class spaces (#Dim.), and the number of features
(#Feat.). For each data set, we randomly sample 40, 50 and
60 examples to form the labeled data set Dl while the remain-
ing examples are used to form the unlabeled data set Du. The
sampling procedure is repeated ten times, and the mean met-
ric values as well as standard deviations are recorded.

Evaluation Metrics

In this paper, we consider three commonly used metrics
for performance evaluation, namely hamming score (a.k.a.
global accuracy [Bielza et al., 2011]), exact match (a.k.a. ex-
ample accuracy [Read et al., 2014a]) and sub-exact match [Jia
and Zhang, 2020a]. Given the test set S = {(xi,yi) | 1 ≤
i ≤ p} and the MDC model f to be evaluated, the definitions
of these three evaluation metrics are given as follows:

1. Hamming Score:

HSS(f) =
1

p

p∑
i=1

1

q
· r(i)



Table 3: Experimental results (mean±std.) of each MDC approach with L = 50 labeled samples. In addition, •/◦ indicates whether PLAP is
significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

(a) Hamming Score
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .749±.030 .730±.028 .690±.024• .663±.031• .652±.068• .673±.035• .670±.035• .642±.031•
Song .739±.012 .699±.008• .662±.047• .658±.043• .682±.057• .729±.013 .727±.012 .736±.014
WQpla. .637±.010 .637±.013 .458±.061• .445±.047• .596±.019• .522±.026• .518±.025• .556±.035•
WQani. .618±.009 .615±.015 .421±.057• .414±.048• .563±.028• .478±.020• .477±.018• .527±.020•
WQ .624±.013 .625±.014 .444±.031• .436±.022• .574±.018• .487±.013• .492±.013• .534±.013•
BeLaE .341±.010 .335±.010• .343±.012 .345±.010 .293±.015• .317±.007• .317±.008• .296±.007•
Thyroid .960±.001 .954±.004• .283±.026• .661±.019• .946±.013• .933±.018• .933±.018• .940±.014•
Pain .948±.001 .906±.005• .903±.015• .894±.017• .916±.034• .905±.008• .906±.009• .932±.008•
Disfa .874±.001 .863±.003• .850±.013• .799±.021• .868±.006• .804±.016• .808±.016• .849±.007•
Adult .603±.010 .558±.013• .541±.029• .546±.028• .578±.012• .564±.014• .563±.012• .523±.018•

(b) Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .544±.044 .539±.039 .460±.047• .481±.042• .416±.097• .438±.047• .436±.052• .452±.050•
Song .387±.023 .334±.023• .264±.066• .258±.063• .337±.056• .371±.022 .371±.021 .387±.024
WQpla. .065±.028 .081±.025 .009±.007• .007±.006• .062±.019 .027±.016• .024±.017• .032±.019•
WQani. .045±.013 .046±.015 .010±.003• .010±.004• .027±.009• .010±.005• .010±.005• .015±.008•
WQ .004±.003 .008±.002◦ .001±.000• .002±.000• .007±.002◦ .001±.001• .001±.001• .000±.001•
BeLaE .010±.004 .010±.002 .008±.002 .008±.002 .005±.002• .006±.002• .005±.002• .004±.001•
Thyroid .736±.004 .707±.016• .069±.017• .072±.018• .675±.056• .623±.070• .623±.065• .627±.077•
Pain .745±.003 .614±.023• .501±.073• .449±.089• .613±.168• .556±.040• .564±.042• .673±.040•
Disfa .367±.001 .354±.003• .216±.071• .070±.038• .348±.016• .156±.040• .163±.045• .292±.027•
Adult .080±.008 .110±.013◦ .082±.023 .086±.023 .132±.016◦ .093±.014◦ .091±.014◦ .070±.019

(c) Sub-Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .954±.026 .920±.021• .921±.015• .845±.025• .888±.059• .909±.039• .905±.040• .833±.024•
Song .836±.017 .787±.012• .749±.067• .741±.067• .754±.088• .824±.016 .820±.014 .830±.017
WQpla. .249±.027 .259±.028 .057±.034• .042±.025• .193±.037• .113±.034• .107±.033• .140±.053•
WQani. .196±.021 .194±.031 .058±.014• .055±.013• .133±.036• .059±.020• .061±.020• .090±.023•
WQ .026±.014 .034±.013◦ .003±.001• .002±.001• .022±.007 .004±.004• .005±.004• .004±.003•
BeLaE .064±.009 .062±.006 .060±.009 .064±.009 .035±.008• .043±.005• .046±.006• .036±.005•
Thyroid .982±.000 .975±.010 .139±.017• .231±.077• .958±.023• .920±.057• .921±.061• .951±.022•
Pain .846±.002 .733±.013• .730±.045• .692±.067• .770±.084• .738±.025• .740±.024• .811±.022•
Disfa .569±.003 .545±.006• .487±.047• .252±.087• .556±.013• .359±.049• .360±.052• .495±.021•
Adult .509±.025 .405±.025• .382±.055• .391±.050• .446±.023• .431±.029• .429±.026• .351±.042•

2. Exact Match:

EMS(f) =
1

p

p∑
i=1

Jr(i) = qK

3. Sub-Exact Match:

SEMS(f) =
1

p

p∑
i=1

Jr(i) ≥ q − 1K

Here, r(i) =
∑q

j=1Jyij = ŷijK denotes the number of class
spaces which are predicted correctly, yij and ŷij denote the
ground-truth and predicted label w.r.t. the j-th class space for
the i-th test sample, JπK returns 1 if π holds and 0 otherwise.

Compared Approaches

As the first attempt towards solving the SSMDC problem,
there are not existing SSMDC works to be used as comparing
approaches. Thus, we mainly compare the proposed PLAP
approach with existing MDC approaches. In this paper, a to-
tal of six well-established MDC approaches are used, includ-
ing BR, CC, SLEM, KRAMd, KRAMc, MDKNN. Specifically,
BR solves the MDC problem via learning a multi-class classi-
fier for each dimension. CC [Jia and Zhang, 2022a] solves the
MDC problem via learning a chain of multi-class classifiers,
one per dimension. SLEM [Jia and Zhang, 2021b] transforms
the MDC problem into a multi-output regression problem via
spare label encoding. Both KRAMd and KRAMc [Jia and
Zhang, 2020a] consider class dependencies via kNN feature



Table 4: Experimental results (mean±std.) of each MDC approach with L = 60 labeled samples. In addition, •/◦ indicates whether PLAP is
significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

(a) Hamming Score
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .766±.028 .736±.028• .685±.024• .660±.041• .714±.058• .679±.035• .675±.037• .657±.025•
Song .738±.011 .696±.013• .633±.041• .632±.037• .680±.067• .733±.016 .733±.015 .735±.011
WQpla. .643±.008 .640±.007 .447±.060• .434±.044• .589±.026• .538±.028• .535±.029• .582±.017•
WQani. .624±.005 .622±.004 .405±.047• .404±.042• .555±.027• .492±.015• .489±.015• .540±.018•
WQ .629±.012 .630±.011 .415±.045• .417±.029• .581±.012• .495±.016• .494±.016• .547±.010•
BeLaE .342±.010 .334±.009• .347±.010 .349±.010 .293±.015• .324±.006• .322±.007• .301±.007•
Thyroid .960±.001 .955±.003• .279±.024• .658±.019• .953±.003• .941±.012• .945±.008• .948±.013•
Pain .948±.000 .912±.003• .891±.022• .879±.029• .932±.021 .915±.007• .913±.007• .937±.006•
Disfa .876±.001 .867±.004• .834±.014• .776±.027• .866±.012• .816±.016• .820±.017• .855±.006•
Adult .606±.013 .564±.011• .530±.026• .536±.026• .577±.011• .565±.010• .565±.013• .545±.014•

(b) Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .586±.036 .544±.038• .460±.048• .477±.059• .521±.077• .447±.058• .448±.056• .469±.043•
Song .380±.021 .334±.026• .232±.064• .226±.060• .343±.069 .381±.029 .378±.028 .381±.023
WQpla. .080±.024 .083±.021 .009±.008• .004±.004• .065±.018 .032±.017• .031±.018• .046±.016•
WQani. .052±.009 .052±.008 .007±.004• .007±.004• .023±.011• .009±.003• .009±.003• .016±.005•
WQ .005±.002 .009±.002◦ .001±.001• .001±.001• .007±.003◦ .001±.001• .000±.001• .001±.001•
BeLaE .009±.004 .010±.002 .008±.003 .009±.003 .004±.001• .006±.002 .006±.001• .004±.002•
Thyroid .735±.008 .708±.013• .069±.017• .072±.018• .698±.013• .644±.064• .665±.049• .673±.069•
Pain .745±.003 .628±.019• .459±.092• .396±.118• .669±.101 .593±.037• .591±.035• .699±.032•
Disfa .368±.003 .358±.004• .154±.048• .045±.035• .344±.030• .188±.046• .198±.046• .313±.019•
Adult .085±.007 .114±.012◦ .072±.018• .075±.020 .130±.012◦ .094±.014◦ .095±.014◦ .085±.011

(c) Sub-Exact Match
Data Set PLAP PLAPd BR CC SLEM KRAMd KRAMc MDKNN
Edm .947±.027 .929±.024 .911±.018• .844±.029• .907±.048• .911±.025• .902±.035• .846±.028•
Song .838±.016 .780±.016• .706±.062• .704±.058• .749±.091• .828±.018 .830±.018 .834±.014
WQpla. .263±.024 .263±.022 .047±.030• .031±.019• .192±.040• .131±.035• .125±.037• .173±.030•
WQani. .208±.013 .209±.010 .050±.012• .047±.009• .121±.031• .068±.014• .069±.012• .104±.015•
WQ .031±.013 .038±.011◦ .003±.001• .002±.001• .024±.007 .005±.004• .004±.003• .008±.004•
BeLaE .066±.010 .061±.005 .063±.010 .065±.010 .034±.008• .050±.005• .048±.004• .038±.004•
Thyroid .982±.001 .976±.010 .131±.018• .213±.080• .972±.009• .948±.021• .953±.015• .964±.021•
Pain .846±.001 .753±.010• .689±.077• .639±.115• .812±.055 .767±.017• .761±.018• .822±.018•
Disfa .572±.004 .554±.011• .426±.062• .190±.088• .546±.042 .390±.048• .402±.049• .516±.025•
Adult .515±.029 .417±.021• .364±.051• .373±.050• .442±.025• .431±.024• .430±.027• .398±.025•

Table 5: Win/tie/loss counts of pairwise t-test (at 0.05 significance level) between PLAP and each comparing approach.

#labeled samples Evaluation PLAP against
(L) Metric PLAPd BR CC SLEM KRAMd KRAMc MDKNN In Total

Hamming Score 5/5/0 9/1/0 9/1/0 7/3/0 10/0/0 10/0/0 10/0/0 60/10/0
L = 40 Exact Match 4/4/2 6/3/1 6/3/1 5/2/3 9/1/0 9/1/0 8/2/0 47/16/7

Sub-Exact Match 5/5/0 9/1/0 9/1/0 7/3/0 10/0/0 10/0/0 9/1/0 59/11/0
Hamming Score 6/4/0 9/1/0 9/1/0 10/0/0 9/1/0 9/1/0 9/1/0 61/9/0

L = 50 Exact Match 4/4/2 8/2/0 8/2/0 7/1/2 8/1/1 8/1/1 8/2/0 51/13/6
Sub-Exact Match 5/4/1 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 59/10/1
Hamming Score 7/3/0 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 9/1/0 61/9/0

L = 60 Exact Match 5/3/2 9/1/0 8/2/0 5/3/2 7/2/1 8/1/1 8/2/0 50/14/6
Sub-Exact Match 4/5/1 9/1/0 9/1/0 7/3/0 9/1/0 9/1/0 9/1/0 56/13/1

In Total 45/37/8 77/12/1 76/13/1 66/17/7 80/8/2 81/7/2 79/11/0 504/105/21
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Figure 1: Performance of PLAP changes as k varies from 5 to 10

augmentation, where the former only generates discrete kNN
statistics while the latter further generates continuous kNN
statistics. MDKNN [Jia and Zhang, 2021a] solves the MDC
problem via instance-based learning techniques where class
dependencies are considered in a two-level strategy. More-
over, we further compare the proposed PLAP approach with
its own degenerated version (denoted as PLAPd) which inde-
pendently deals with each class space the same as PLAP deals
with the first class space.

Note that the six MDC approaches train their models only
over labeled MDC samples Dl while PLAP and PLAPd train
their models over both labeled MDC samples Dl and unla-
beled data Du. For the six MDC approaches, the suggested
parameters in their respective literature are used. For PLAP
and PLAPd, the bandwidth parameter in Eq.(1) is fixed as 50,
the trade-off parameter α in Eq.(2) is fixed as 0.99, and the
number of nearest neighbors k in Eq.(6) is fixed as 7.

4.2 Experimental Results
The detailed experimental results are reported in Tables 2-4.
Moreover, pairwise t-test [Demšar, 2006] at 0.05 significance
level is conducted to show whether PLAP achieves signif-
icantly superior/inferior performance against other compar-
ing approaches on each data set. Accordingly, the resulting
win/tie/loss counts are summarized in Table 5.

According to the reported experimental results, we can
make the following observations:

• With 40, 50 and 60 labeled samples, PLAP respectively
achieves superior or at least comparable performance
against the seven comparing approaches in 203, 203 and
204 cases across all the 210 configurations (10 data sets
× 3 metrics × 7 comparing approaches).

• PLAPd independently deals with each dimension via la-
bel propagation. It is shown that PLAP achieves supe-
rior or at least comparable performance against PLAPd
in 91.1% cases which clearly validates the benefits of
modeling class dependencies in PLAP.

• BR, CC, SLEM, KRAMd, KRAMc and MDKNN train
their models only over labeled MDC samples Dl. It
is worth noting that PLAP achieves superior or at least
comparable performance against these six approaches in

98.9%, 98.9%, 92.2%, 92.2% and 100.0% cases, respec-
tively. These experimental results clearly validate the
benefits of utilizing unlabeled data in PLAP.

• For WQpla., WQani., WQ and BeLaE, it is shown that
PLAP usually achieves comparable performance against
PLAPd. Possible reason is that the class dependencies
in these MDC tasks are very weak. For example, there
are 989 distinct class combinations appearing within the
1060 examples for WQ which also supports our conjec-
ture to some extent.

4.3 Parameter Sensitivity Analysis
In the progressive label propagation procedure, for the current
class space (except for the first one), PLAP utilizes the propa-
gation results for previous class spaces to initialize the value
of Y for unlabeled samples. Specifically, PLAP estimates the
probability of several possible items in Y which are filtered
by the predicted labels in previous label propagation via k
nearest neighbors.

Figure 1 shows how the performance of PLAP fluctuates
with different values of k. It is shown that PLAP achieves
relatively stable performance when the value of k increases
from 5 to 10. In this paper, the value of k is moderately set to
7 which can be used as the default parameter setting.

5 Conclusion
The major contributions of our work are two-fold: 1) Differ-
ent from existing MDC works which aim at designing novel
MDC approaches by assuming that enough labeled samples
are available, we investigated the SSMDC problem which
aims at utilizing unlabeled data to help induce MDC mod-
els with a few labeled samples and then labeling costs can be
reduced. 2) We proposed a SSMDC approach named PLAP
which can utilize both class dependencies and unlabeled data
via progressive label propagation. Experiments clearly vali-
date the effectiveness of the proposed PLAP approach.

PLAP works in the transductive learning schema where the
test samples are exactly the unlabeled samples (i.e., closed-
world assumption). In the future, it is interesting to further
design SSMDC approaches working under open-world as-
sumption [Zhou, 2022; Parmar et al., 2023] where the test
samples are completely unavailable to model training.
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