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To facilitate understanding, Table 1 summarizes the notations used in Section 3 and Algorithm 1
further presents the pseudo code of the proposed Plap approach.

Table 1: Summary of the notations used in our paper.
Notation Descriptions
d number of features in input space
q number of class spaces (dimensions) in output space
Kj number of class labels in the j-th class space (1 ≤ j ≤ q)
L number of labeled MDC samples
U number of unlabeled MDC samples
N number of MDC samples, i.e., N = L+ U

X the d-dimensional input (feature) space, i.e., X = Rd

Cj the j-th class space where Cj = {cj1, c
j
2, . . . , c

j
Kj
} (1 ≤ j ≤ q)

cja the a-th class label in Cj (1 ≤ a ≤ Kj)
Y the output space where Y = C1 × C2 × . . .× Cq

Dl the set of labeled MDC samples where Dl = {(xi,yi) | 1 ≤ i ≤ L}
Du the set of unlabeled MDC samples where Du = {xi | L+ 1 ≤ j ≤ L+ U}
D the set of MDC samples where D = Dl ∪ Du

xi the i-th feature vector where xi = [xi1, xi2, . . . , xid]> ∈ X
yi the i-th class vector where yi = [yi1, yi2, . . . , yiq ]> ∈ Y
f the SSMDC predictive model: X 7→ Y from D = Dl ∪ Du

W the affinity matrix defined based on the Gaussian function, i.e., Wij = e
−‖xi−xj‖2

2σ2 if i 6= j and Wii = 0
σ the bandwidth parameter of Gaussian function

S the propagation matrix where S = D−
1
2 WD−

1
2

D the diagonal matrix where D = diag(d1, d2, . . . , dN ) with di =
∑N

j=1Wij

α the hyper-parameter to be specified for balancing the importance of SF(t) and Y In Eq.(2)
Y the initial label matrix where Yia denotes the (i, a)-th item of Y
F(t) the propagated label matrix in the t-th round (t ∈ {1, 2, . . . , }) and F(0) = Y
φj(·, ·, . . . , ·) the injective function from the Cartesian product {1, 2, . . . ,K1} × {1, 2, . . . ,K2} × . . .× {1, 2, . . . ,Kj} to

natural numbers {1, 2, . . . ,K1 ×K2 × . . .×Kj}
φ−1
j (·) the inverse function of φj(·, ·, . . . , ·)
N (xi) the k nearest neighbors of xi identified in labeled samples Dl

nj
ia the number of samples with class label cja w.r.t. Cj in N (xi)

CLj
i the condition for labeled sample xi to initialize Y where CLj

i , (yi1 = c1a1
) ∧ . . . ∧ (yij = cjaj )

CUj
i the condition for unlabeled sample xi to initialize Y where CUj

i , (a1 = â1) ∧ . . . ∧ (aj−1 = âj−1)

Algorithm 1 The Plap approach
Input: The labeled MDC samples Dl, unlabeled samples Du, the number of nearest neighbors k
Output: Predicted class vector ŷi for unlabeled sample xi ∈ Du

1: Construct the affinity matrix W according to Eq.(1) and then calculate the propagation matrix S based on W;
2: Set the value of label matrix Y according to Eq.(3);
3: Iterate Eq.(2) with calculated S and Y until convergence;
4: Obtain the predicted class label ŷi1 w.r.t. C1 for unlabeled sample xi ∈ Du according to Eq.(4);
5: Identify the k nearest neighbors of unlabeled sample xi ∈ Du from labeled samples Dl and store them in N (xi);
6: while 2 ≤ j ≤ q do
7: Update Y according to Eq.(8) and Eq.(9);
8: Iterate Eq.(2) with S and updated Y until convergence;
9: Obtain the predicted class labels ŷi1, . . . , ŷij w.r.t. C1, . . . , Cj for unlabeled sample xi ∈ Du according to the

generalized version for the j-th class sapce of Eq.(7);
10: j ← j + 1;
11: end while
12: return Predicted results {ŷi | L+ 1 ≤ i ≤ L+ U}
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