Supplementary Material for "Progressive Label Propagation for Semi-Supervised Multi-Dimensional Classification"

Teng Huang, Bin-Bin Jia, Min-Ling Zhang

To facilitate understanding, Table 1 summarizes the notations used in Section 3 and Algorithm 1 further presents the pseudo code of the proposed PLAP approach.

Notation	Descriptions
d	number of features in input space
q	number of class spaces (dimensions) in output space
K_j	number of class labels in the <i>j</i> -th class space $(1 \le j \le q)$
L	number of labeled MDC samples
U	number of unlabeled MDC samples
N	number of MDC samples, i.e., $N = L + U$
X	the <i>d</i> -dimensional input (feature) space, i.e., $\mathcal{X} = \mathbb{R}^d$
C_j	the <i>j</i> -th class space where $C_j = \{c_1^j, c_2^j, \dots, c_{K_j}^j\}$ $(1 \le j \le q)$
c_a^j	the <i>a</i> -th class label in C_j $(1 \le a \le K_j)$
$\frac{\begin{array}{c} c_a^j \\ \mathcal{Y} \\ \hline \mathcal{D}_l \end{array}$	the output space where $\mathcal{Y} = C_1 \times C_2 \times \ldots \times C_q$
\mathcal{D}_l	the set of labeled MDC samples where $\mathcal{D}_l = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) \mid 1 \leq i \leq L\}$
\mathcal{D}_u	the set of unlabeled MDC samples where $\mathcal{D}_u = \{ \boldsymbol{x}_i \mid L+1 \leq j \leq L+U \}$
\mathcal{D}	the set of MDC samples where $\mathcal{D} = \mathcal{D}_l \cup \mathcal{D}_u$
$oldsymbol{x}_i$	the <i>i</i> -th feature vector where $\boldsymbol{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^\top \in \mathcal{X}$
$oldsymbol{y}_i$	the <i>i</i> -th class vector where $\boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top \in \mathcal{Y}$
f	the SSMDC predictive model: $\mathcal{X} \mapsto \mathcal{Y}$ from $\mathcal{D} = \mathcal{D}_l \cup \mathcal{D}_u$
\mathbf{W}_{σ}	the affinity matrix defined based on the Gaussian function, i.e., $W_{ij} = e^{-\frac{\left\ \mathbf{x}_i - \mathbf{x}_j\right\ ^2}{2\sigma^2}}$ if $i \neq j$ and $W_{ii} = 0$ the bandwidth parameter of Gaussian function
S	the propagation matrix where $\mathbf{S} = \mathbf{D}^{-\frac{1}{2}} \mathbf{W} \mathbf{D}^{-\frac{1}{2}}$
D	
	the diagonal matrix where $\mathbf{D} = diag(d_1, d_2, \dots, d_N)$ with $d_i = \sum_{j=1}^N W_{ij}$
$\frac{\alpha}{\mathbf{Y}}$	the hyper-parameter to be specified for balancing the importance of $\mathbf{SF}(t)$ and \mathbf{Y} In Eq.(2)
-	the initial label matrix where Y_{ia} denotes the (i, a) -th item of Y
$\mathbf{F}(t)$	the propagated label matrix in the <i>t</i> -th round $(t \in \{1, 2,, \})$ and $\mathbf{F}(0) = \mathbf{Y}$
$\phi_j(\cdot,\cdot,\ldots,\cdot)$	the injective function from the Cartesian product $\{1, 2, \ldots, K_1\} \times \{1, 2, \ldots, K_2\} \times \ldots \times \{1, 2, \ldots, K_j\}$ to natural numbers $\{1, 2, \ldots, K_1 \times K_2 \times \ldots \times K_j\}$
$\phi_{\cdot}^{-1}(\cdot)$	the inverse function of $\phi_i(\cdot, \cdot, \dots, \cdot)$
$\mathcal{N}(\boldsymbol{x}_i)$	the k nearest neighbors of \boldsymbol{x}_i identified in labeled samples \mathcal{D}_l
n_{ia}^{j}	the number of samples with class label c_a^j w.r.t. C_j in $\mathcal{N}(\boldsymbol{x}_i)$
$\operatorname{CL}_{i}^{j}$	the condition for labeled sample x_i to initialize Y where $\operatorname{CL}_i^j \triangleq (y_{i1} = c_{a_1}^1) \land \ldots \land (y_{ij} = c_{a_j}^j)$
	the condition for unlabeled sample \boldsymbol{x}_i to initialize \mathbf{Y} where $\operatorname{CU}_i^j \triangleq (a_1 = \hat{a}_1) \land \ldots \land (a_{j-1} = \hat{a}_{j-1})$

Table 1: Summary of the notations used in our paper.

Algorithm 1 The PLAP approach

Input: The labeled MDC samples \mathcal{D}_l , unlabeled samples \mathcal{D}_u , the number of nearest neighbors k

Output: Predicted class vector \hat{y}_i for unlabeled sample $x_i \in \mathcal{D}_u$

- 1: Construct the affinity matrix \mathbf{W} according to Eq.(1) and then calculate the propagation matrix \mathbf{S} based on \mathbf{W} ;
- 2: Set the value of label matrix \mathbf{Y} according to Eq.(3);
- 3: Iterate Eq.(2) with calculated **S** and **Y** until convergence;
- 4: Obtain the predicted class label \hat{y}_{i1} w.r.t. C_1 for unlabeled sample $\boldsymbol{x}_i \in \mathcal{D}_u$ according to Eq.(4);
- 5: Identify the k nearest neighbors of unlabeled sample $\boldsymbol{x}_i \in \mathcal{D}_u$ from labeled samples \mathcal{D}_l and store them in $\mathcal{N}(\boldsymbol{x}_i)$;
- 6: while $2 \le j \le q$ do 7: Update **Y** according to Eq.(8) and Eq.(9);
- Iterate Eq.(2) with **S** and updated **Y** until convergence; 8:
- 9. Obtain the predicted class labels $\hat{y}_{i1}, \ldots, \hat{y}_{ij}$ w.r.t. C_1, \ldots, C_j for unlabeled sample $\boldsymbol{x}_i \in \mathcal{D}_u$ according to the generalized version for the *j*-th class sapce of Eq.(7);

10: $j \leftarrow j + 1;$

- 11: end while
- 12: return Predicted results $\{\hat{y}_i \mid L+1 \leq i \leq L+U\}$