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Abstract

In partial label learning, each training example is
associated with a set ofcandidatelabels, among
which only one is valid. An intuitive strategy to
learn from partial label examples is to treat all can-
didate labels equally and make prediction by av-
eraging their modeling outputs. Nonetheless, this
strategy may suffer from the problem that the mod-
eling output from the valid label is overwhelmed
by those from the false positive labels. In this pa-
per, an instance-based approach named IPAL is pro-
posed by directly disambiguating the candidate la-
bel set. Briefly, IPAL tries to identify the valid label
of each partial label example via an iterative label
propagation procedure, and then classifies the un-
seen instance based on minimum error reconstruc-
tion from its nearest neighbors. Extensive experi-
ments show that IPAL compares favorably against
the existing instance-based as well as other state-
of-the-art partial label learning approaches.

1 Introduction
Partial label learning deals with the problem where each train-
ing example is associated a set of candidate labels, among
which only one label is assumed to be valid[Couret al., 2011;
Zhang, 2014]. The problem of learning from partial label
examples naturally arises in a number of real-world scenar-
ios such as web mining[Jie and Orabona, 2010], multimedia
contents analysis[Couret al., 2009; Zenget al., 2013], ecoin-
formatics[Liu and Dietterich, 2012], etc.1

Formally, letX = R
d be thed-dimensional input space

andY = {y1, y2, . . . , yq} be the output space withq pos-
sible class labels. Given the partial label training setD =
{(xi, Si) | 1 ≤ i ≤ m}, wherexi ∈ X is ad-dimensional
feature vector(xi1, xi2, . . . , xid)

⊤ andSi ⊆ Y is the set of
candidate labels associated withxi, the task of partial label
learning is to induce amulti-classclassifierf : X → Y from
D. In partial label learning, the ground-truth labelyi for xi is

1In some cases, partial label learning is also termed asambiguous
label learning[Hüllermeier and Beringer, 2006; Chenet al., 2014],
soft label learning[Cômeet al., 2008] or superset label learning
[Liu and Dietterich, 2014].

assumed to reside in the candidate label set (i.e.yi ∈ Si) but
unknown to the learning algorithm.

As the ground-truth label is not accessible, one intuitive
strategy to learn from partial label examples is to treat each
candidate label in an equal manner for model induction[Cour
et al., 2011]. The final prediction is made by averaging the
modeling outputs from all the candidate labels. However, one
potential drawback of this strategy lies in that the essential
output yielded by the ground-truth label (i.e.yi) would be
overwhelmed by the non-informative outputs yielded by the
false positive labels (i.e.Si \ {yi}). Furthermore, the over-
whelming effect caused by the false positive labels would be
more pronounced as the size of candidate label set increases.

In this paper, rather than employing the above averaging s-
trategy, we aim to solve the partial label learning problem by
disambiguating the candidate label set directly. According-
ly, a novel partial label learning approach named IPAL, i.e.
Instance-based PArtial Label learning, is proposed. Firstly,
an asymmetric weighted graph over the training examples is
constructed by affinity relationship analysis. After that,IPAL
tries to identify the valid label of each partial label example
via an iterative label propagation procedure. During the test-
ing phase, the unseen instance is classified based on minimum
error reconstruction from its nearest neighbors. Experimental
studies on controlled UCI data sets as well as real-world par-
tial label data sets clearly validate the effectiveness of IPAL
against the comparing approaches.

The rest of this paper is organized as follows. Section 2
briefly discusses related work. Section 3 presents the techni-
cal details of the proposed IPAL approach. Section 4 reports
the results of comparative experiments. Finally, Section 5
summarizes the paper and indicates future research issues.

2 Related Work

Partial label learning can be regarded as aweakly-supervised
learning framework, where the supervision information con-
veyed by the partial label training examples are implicit. Con-
ceptually speaking, it lies between two ends of the supervi-
sion spectrum, i.e. the traditional supervised learning with
explicit supervision and the unsupervised learning with blind
supervision. Partial label learning is related to other well-
studied weakly-supervised learning frameworks, including
semi-supervised learning, multi-instance learningandmulti-



label learning. Nonetheless, different types of weak supervi-
sion information are handled by these learning frameworks.

Semi-supervised learning[Chapelleet al., 2006; Zhu and
Goldberg, 2009] learns from abundant unlabeled examples
together with few labeled examples. For unlabeled data the
ground-truth label assumes the whole label space, while for
partial label data the ground-truth label is confined within
the candidate label set. Multi-instance learning[Dietterich
et al., 1997; Amores, 2013] learns from labeled training ex-
amples each represented by a bag of instances. For multi-
instance data the labels are assigned at the level of bags,
while for partial label data the labels are assigned at the level
of instances. Multi-label learning[Tsoumakaset al., 2010;
Zhang and Zhou, 2014] learns from training examples each
associated with multiple labels. For multi-label data all the
associated labels are valid ones, while for partial label data
the associated labels are only candidate ones.

To learn from partial label examples, one intuitive strategy
is to treat all the candidate labels in an equal manner and then
average the outputs from all candidate labels for prediction.
Following this strategy, a straightforward instance-based so-
lution [Hüllermeier and Beringer, 2006] is to make predic-
tion for unseen instancex∗ in the following way: f(x∗) =
argmaxy∈Y

∑

i∈N (x∗) I(y ∈ Si). Here,I(·) is the indica-
tor function and the predicted label forx∗ is determined by
aggregating the votes from the candidate labels of its neigh-
boring examples indexed inN (x∗). Besides the instance-
based instantiation, another solution following the averaging
strategy is to assume a parametric modelF (x, y; θ) for dis-
criminative learning[Couret al., 2011]. Here, the averaged
output from all candidate labels, i.e.1|Si|

∑

y∈Si
F (xi, y; θ),

is distinguished from the outputs from non-candidate labels,
i.e.F (xi, y; θ) (y /∈ Si).

Though the averaging strategy is intuitive and easy to
be implemented, its effectiveness is largely affected by the
false positive labels whose outputs would overwhelm the
essential output yielded by the ground-truth label. There-
fore, another strategy to learn from partial label examples
is to disambiguate the candidate label set by identifying the
ground-truth label. Existing approaches following this s-
trategy view the ground-truth label as latent variable and
make use of the Expectation-Maximization (EM) procedure
[Dempsteret al., 1977] to refine the estimation of laten-
t variable iteratively. The objective function optimized by
the EM procedure can be instantiated based on the max-

imum likelihood criterion:
∑m

i=1 log
(

∑

y∈Si
F (xi, y; θ)

)

[Jin and Ghahramani, 2003; Grandvalet and Bengio, 2004;
Liu and Dietterich, 2012], or the maximum margin crite-

rion:
∑m

i=1

(

max
y∈Si

F (xi, y; θ)−max
y/∈Si

F (xi, y; θ)

)

[Nguyen

and Caruana, 2008].
In the next section, a novel partial label learning approach

following the disambiguation strategy will be introduced.D-
ifferent from EM-based disambiguation, the proposed ap-
proach does not assume any parametric model while tries
to disambiguate the candidate label set by utilizing instance-
based techniques.

3 The IPAL Approach
During the disambiguation phase, IPAL learns from partial
label examples in two basic phases, i.e.weighted graph con-
structionanditerative label propagation.

Let D = {(xi, Si) | 1 ≤ i ≤ m} be the partial la-
bel training set, wherexi ∈ X is a d-dimensional instance
(xi1, xi2, . . . , xid)

⊤ andSi ⊆ Y is the candidate label set as-
sociated withxi. In this paper, a weighted graphG = (V,E)
is constructed over the set of training examples withV =
{xi | 1 ≤ i ≤ m}. For each instancexi, let N (xi) de-
note the indexes of itsk-nearest neighbors identified in the
training set, where the distance between two instances is cal-
culated with the popular Euclidean metric. Accordingly, the
edges of graphG are set asE = {(xi,xj) | i ∈ N (xj), 1 ≤
i 6= j ≤ m}. In other words, there would be an (directed)
edge from nodexi to nodexj iff xi is among thek-nearest
neighbors ofxj .

From the set of edgesE, one can simply specify anm×m
weight matrixW = [wi,j ]m×m as follows: wi,j = 1 if
(xi,xj) ∈ E; otherwise,wi,j = 0. In order to encode
fine-grained influences of neighboring instances, IPAL choos-
es to determine the weights by conducting some affinity rela-
tionship analysis. Letwj = [wi1,j , wi2,j , . . . , wik,j ]

⊤ (ia ∈
N (xj), 1 ≤ a ≤ k) denote the weight vector w.r.t.xj and
its k-nearest neighbors, the influence of each neighboring in-
stancexia on xj (i.e. wia,j) is modeled by solving the fol-
lowing optimization problem (OP):

min
wj

∣

∣

∣

∣

∣

∣

∣

∣

xj −
∑k

a=1
wia,j · xia

∣

∣

∣

∣

∣

∣

∣

∣

2

(1)

s.t. wia,j ≥ 0 (ia ∈ N (xj), 1 ≤ a ≤ k)

As shown in OP (1), the weight vectorwj is optimized by fit-
ting a linear least square problem subject to the non-negativity
constraints. Here, we do not impose extra regularization ter-
m (e.g. L1- or L2-norm ofwj) in the objective function to
accommodate more space for optimization.

For OP (1), its optimal solution̂wj can be obtained by ap-
plying any off-the-shelf quadratic programming (QP) solver.
To some extent, magnitude of the optimized weightŵia,j en-
codes the strength of affinity betweenxj and its neighbor-
ing instancexia . Accordingly, IPAL specifies the weight ma-
trix W as follows:wi,j = ŵi,j if (xi,xj) ∈ E; otherwise
wi,j = 0. It is worth noting thatW is anasymmetricweight
matrix, which reflects the fact that the neighboring relation-
ship is not necessarily symmetric. Furthermore, even when
two instancesxi andxj happen to be neighboring instance
of each other, the influence fromxi toxj (i.e.wi,j ) is gener-
ally different to that fromxj toxi (i.e.wj,i).2

To facilitate subsequent iterative label propagation proce-
dure, the weight matrixW is then normalized by column:
H = WD

−1. Here,D = diag[d1, d2, . . . , dm] is a diagonal
matrix withdj =

∑m
i=1 wi,j . LetF = [fi,c]m×q be anm× q

matrix with non-negative entries, wherefi,c ≥ 0 corresponds

2Therefore, symmetric setup of the weight matrix such aswi,j =

exp

(

−

||xi−xj ||
2

2σ2

)

[Zhou et al., 2004; Zhu and Goldberg, 2009]

won’t suffice under this circumstance.



to the labeling confidence ofyc being the ground-truth label
of xi. Based on the partial label training set, an initial (pri-
or) labeling confidence matrixF(0) = P = [pi,c]m×q can be
instantiated as follows:

∀ 1 ≤ i ≤ m : pi,c =







1
|Si|

, if yc ∈ Si

0 , otherwise
(2)

In other words, at the initialization step, the labeling confi-
dence ofxi is equally distributed over its candidate labels in
Si. At thet-th iteration,F is updated by propagating labeling
information along with the normalized weight matrixH:

F̃
(t) = α ·H⊤

F
(t−1) + (1− α) ·P (3)

Here, parameterα ∈ (0, 1) controls the relative amount of
information inherited from label propagation and initial la-
beling. After that,F̃(t) is re-scaled intoF(t) by consulting
the candidate label set of each training example:

∀ 1 ≤ i ≤ m : f
(t)
i,c =











f̃
(t)
i,c

∑
yl∈Si

f̃
(t)
i,l

, if yc ∈ Si

0 , otherwise

(4)

As the iterative procedure terminates, one can disambiguate
each partial label training example(xi, Si) based on the
final labeling confidence matrix̂F as follows: ŷi =

argmaxyc∈Y f̂i,c. In this paper, IPAL further adopts theclass
mass normalization(CMN) mechanism[Zhu and Goldberg,
2009] to adjust the disambiguation output towards class prior
distribution:

ŷi = argmax
yc∈Y

nc

n̂c
· f̂i,c (5)

Here,nc =
∑m

i=1 pi,c is the class mass ofyc w.r.t. prior
labeling confidence matrixP, andn̂c =

∑m
i=1 f̂i,c is the class

mass ofyc w.r.t. final labeling confidence matrix̂F.
During the testing phase, the class label of an unseen in-

stancex∗ is predicted based on the disambiguated training
examples(xi, ŷi). Thek-nearest neighbors ofx∗ in the train-
ing set, i.e. N (x∗), are firstly identified. After that, the
weight vectorw∗ = [w∗

i1
, w∗

i2
, . . . , w∗

ik
]⊤ (ia ∈ N (x∗), 1 ≤

a ≤ k) w.r.t. x∗ and itsk-nearest neighbors are determined
by solving the same optimization problem as shown in OP (1)
(replacing{xj,wj} with {x∗,w∗}). Thereafter, the unseen
instance is classified based on the following minimum error
reconstruction criterion:

y∗ = argmin
yc∈Y

∣

∣

∣

∣

∣

∣

∣

∣

x
∗ −

∑k

a=1
I(ŷia = yc) · w

∗
ia · xia

∣

∣

∣

∣

∣

∣

∣

∣

(6)

Table 1 summarizes the complete procedure of the pro-
posed IPAL approach. Given the partial label training set,
an asymmetric weighted graph are constructed by conduct-
ing affinity relationship analysis between each instance and
its k-nearest neighbors (Steps 1-8). After that, an iterative la-
bel propagation procedure is performed to disambiguate the
candidate label set of each training example (Steps 9-19). Fi-
nally, the unseen instance is classified based on minimum er-
ror reconstruction from itsk-nearest neighbors (Steps 20-22).

Table 1: The pseudo-code of IPAL.

Inputs:
D : the partial label training set{(xi, Si) | 1 ≤ i ≤ m}

(xi ∈ X , Si ⊆ Y,X = R
d,Y = {y1, y2, . . . , yq})

k : the number of nearest neighbors considered
α : the balancing coefficient in(0, 1)
T : the number of iterations
x
∗ : the unseen instance

Outputs:
y∗ : the predicted class label forx∗

Process:
1: Initialize weight matrixW = [wi,j ]m×m with wi,j = 0;
2: for j = 1 to m do
3: Identify thek-nearest neighborsN (xj) in D for xj ;
4: Determine the weight vector̂wj = [ŵi1,j, . . . , ŵik,j ]

⊤

w.r.t. xj and itsk-nearest neighbors by solving OP (1);
5: for ia ∈ N (xj) do
6: Setwia,j = ŵia,j ;
7: end for
8: end for
9: Normalize weight matrixW by column:H = WD

−1;
10: Set the initial labeling confidence matrixP according to

Eq.(2);
11: SetF(0) = P;
12: for t = 1 to T do
13: SetF̃(t) according to Eq.(3);
14: Re-scalẽF(t) intoF

(t) according to Eq.(4);
15: end for
16: Set the final labeling confidence matrixF̂ = F

(T );
17: for i = 1 to m do
18: Disambiguate partial label example(xi, Si) into

single-label example(xi, ŷi) according to Eq.(5);
19: end for
20: Identify thek-nearest neighborsN (x∗) in D for x∗;
21: Determine the weight vectorw∗ = [w∗

i1
, . . . , w∗

ik
]⊤ w.r.t.

x
∗ and itsk-nearest neighbors by solving OP (1);

22: Return the predicted class labely∗ according to Eq.(6).

4 Experiments
4.1 Experimental Setup
In this paper, two series of comparative experiments are con-
ducted on controlled UCI data sets[Bache and Lichman,
2013] as well as real-world partial label data sets. Table 2
summarizes characteristics of these experimental data sets.

Following the popular controlling protocol[Cour et al.,
2011; Liu and Dietterich, 2012; Zhang, 2014; Chenet al.,
2014], an artificial partial label data set is generated from
a multi-class UCI data set under different configurations of
three controlling parametersp, r and ǫ. Here, p controls
the proportion of examples which are partially labeled (i.e.
|Si| > 1), r controls the number of false positive labels in
the candidate label set (i.e.|Si| = r + 1), andǫ controls
the co-occurring probability between one extra candidate la-
bel and the ground-truth label. A total of 28 (4x7) parameter
configurations considered in this paper are listed in Table 2.

The real-world partial label data sets are collected from



Table 2: Characteristics of the experimental data sets.

Controlled UCI Data Sets
ConfigurationsData set # Examples # Features # Class Labels

glass 214 10 5 (I) p = 1, r = 1, ǫ ∈ {0.1, 0.2, . . . , 0.7} [Figure 1]
segment 2,310 18 7 (II) r = 1, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 2]

usps 9,298 256 10 (III) r = 2, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 3]
letter 20,000 16 26 (IV) r = 3, p ∈ {0.1, 0.2, . . . , 0.7} [Figure 4]

Real-World Data Sets
Data set # Examples # Features # Class Labels Avg. # CLs Domain

Lost 1122 108 16 2.23 automatic face naming[Couret al., 2011]
MSRCv2 1,758 48 23 3.16 object classification[Liu and Dietterich, 2012]
BirdSong 4,998 38 13 2.18 bird song classification[Briggset al., 2012]

Soccer Player 17,472 279 171 2.09 automatic face naming[Zenget al., 2013]
Yahoo! News 22,991 163 219 1.91 automatic face naming[Guillauminet al., 2010]

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.35

0.45

0.55

0.65

0.75

0.85

0.95

ǫ (co-occurring probability of one extra candidate label)

c
la

ss
ifi

c
a
ti
o
n

a
c
c
u
ra

c
y

 

 

Ipal

Pl-knn

Clpl

Pl-svm

Lsb-cmm

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.74

0.80

0.86

0.92

0.98

1.04

1.10

ǫ (co-occurring probability of one extra candidate label)

c
la

ss
ifi

c
a
ti
o
n

a
c
c
u
ra

c
y

 

 

Ipal

Pl-knn

Clpl

Pl-svm

Lsb-cmm

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.86

0.90

0.94

0.98

1.02

1.06

1.10

ǫ (co-occurring probability of one extra candidate label)

c
la

ss
ifi

c
a
ti
o
n

a
c
c
u
ra

c
y

 

 

Ipal

Pl-knn

Clpl

Pl-svm

Lsb-cmm

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.33

0.50

0.67

0.84

1.01

1.18

1.35

ǫ (co-occurring probability of one extra candidate label)

c
la

ss
ifi

c
a
ti
o
n

a
c
c
u
ra

c
y

 

 

Ipal

Pl-knn

Clpl

Pl-svm

Lsb-cmm

(a)glass (b) segment (c) usps (d)letter

Figure 1: Classification accuracy of each comparing algorithm changes asǫ (co-occurring probability of one extra candidate
label) increases (with 100% partially labeled examples[p = 1] and one false positive candidate label[r = 1]).

several application domains includingLost [Cour et al.,
2011], Soccer Player [Zenget al., 2013] andYahoo!
News [Guillaumin et al., 2010] for automatic face naming
from images or videos,MSRCv2 [Liu and Dietterich, 2012]
for object classification, andBirdSong [Briggset al., 2012]
for bird song classification. The average number of candidate
labels (Avg. #CLs) for each real-world data set is also listed
in Table 2.

The performance of IPAL is compared against four state-
of-the-art partial label learning algorithms, each configured
with parameters suggested in respective literature:
• PL-KNN [Hüllermeier and Beringer, 2006]: an instance-

based approach to partial label learning by adopting the
averaging strategy, where the number of nearest neigh-
bors considered by PL-KNN is set to be 10;

• CLPL [Cour et al., 2011]: a parametric approach to
partial label learning by adopting the averaging strate-
gy, where the parametric model is set to be SVM with
squared hinge loss;

• PL-SVM [Nguyen and Caruana, 2008]: a maximum mar-
gin approach to partial label learning by adopting the
EM-based disambiguation strategy, where the regular-
ization parameter is chosen among{10−3, . . . , 103} via
cross-validation;

• LSB-CMM [Liu and Dietterich, 2012]: a maximum like-
lihood approach to partial label learning by adopting the

EM-based disambiguation strategy, where the number of
mixture components is set to be the number of class la-
bels of each data set.

As shown in Table 1, parameters employed by IPAL are set
ask = 10, α = 0.95 andT = 100.3 In the rest of this sec-
tion, ten-fold cross-validation is performed on each artificial
as well as real-world partial label data set. Accordingly, the
mean predictive accuracies (and also the standard deviations)
are recorded for all comparing algorithms.

4.2 Experimental Results
Controlled UCI Data Sets
Figure 1 illustrates the classification accuracy of each com-
paring algorithm as the co-occurring probabilityǫ varies from
0.1 to 0.7 with step-size 0.1 (p = 1, r = 1). One labely′

is designated as the extra candidate label for each class label
y ∈ Y, wherey′ is chosen to co-occur withy with probability
ǫ wheny is the ground-truth label. Otherwise, any other class
label would be chosen to co-occur withy. Figures 2 to 4 illus-
trate the classification accuracy of each comparing algorithm
as the proportionp varies from 0.1 to 0.7 with step-size 0.1
(r = 1, 2, 3). For any partially labeled example, along with
the ground-truth label,r class labels inY will be randomly
picked up to constitute the candidate label set.

3Sensitivity analysis on IPAL’s parameter configuration is report-
ed in Subsection 4.3.
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Figure 2: Classification accuracy of each comparing algorithm changes asp (proportion of partially labeled examples) increases
(with one false positive candidate label[r = 1]).
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Figure 3: Classification accuracy of each comparing algorithm changes asp (proportion of partially labeled examples) increases
(with two false positive candidate labels[r = 2]).
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Figure 4: Classification accuracy of each comparing algorithm changes asp (proportion of partially labeled examples) increases
(with three false positive candidate labels[r = 3]).

Table 3: Win/tie/loss counts (pairwiset-test at 0.05 signifi-
cance level) on the classification performance of IPAL against
other comparing algorithms.

IPAL against
PL-KNN CLPL PL-SVM LSB-CMM

[Figure 1] 22/4/2 24/4/0 28/0/0 23/5/0
[Figure 2] 24/0/4 28/0/0 28/0/0 23/5/0
[Figure 3] 23/1/4 28/0/0 28/0/0 22/6/0
[Figure 4] 22/1/5 26/2/0 27/0/1 22/6/0

In Total 91/6/15 106/6/0 111/0/1 90/22/0

As illustrated in Figures 1 to 4, the performance of IPAL
is highly competitive to other comparing algorithms in most
cases. Specifically, pairwiset-test at 0.05 significance level
is conducted based on the results of ten-fold cross-validation.
Table 3 summarizes the win/tie/loss counts between IPAL and

the comparing algorithms. Out of the 112 statistical compar-
isons (28 configurations× 4 UCI data sets), it is shown that:
1) IPAL achieves superior performance against PL-KNN in
81.2% cases and has been outperformed by PL-KNN in only
13.4% cases; 2) IPAL achieves superior performance against
CLPL and LSB-CMM in 94.6% and 80.3% cases respectively,
and is comparable to both of them in the rest cases; 3) IPAL
is shown to be inferior to PL-SVM in only 1 out of 112 cases,
and outperforms PL-SVM in the rest cases.

Real-World Data Sets
Table 4 reports the performance of each comparing algorithm
on the real-world partial label data sets. Pairwiset-test at
0.05 significance level is conducted based on the results of
ten-fold cross-validation, and the test outcomes between IPAL
and other comparing algorithms are recorded.

As shown in Table 4, it is impressive that no algorithm
has outperformed IPAL on the real-world data sets. Further-
more, we can also observe that: 1) IPAL achieves superior
performance against PL-KNN on all data sets, which is also an
instance-based approach to learning from partial label exam-



Table 4: Classification accuracy (mean± std. deviation) of each comparing algorithm on the real-world partial label data sets.
In addition,•/◦ indicates whether IPAL is statistically superior/inferior to the comparing algorithm on each data set (pairwise
t-test at 0.05 significance level).

IPAL PL-KNN CLPL PL-SVM LSB-CMM

Lost 0.726±0.041 0.388±0.036• 0.742±0.038 0.729±0.040 0.707±0.055

MSRCv2 0.523±0.025 0.445±0.030• 0.413±0.039• 0.482±0.043• 0.456±0.031•

BirdSong 0.708±0.014 0.649±0.021• 0.632±0.017• 0.663±0.032• 0.717±0.024

Soccer Player 0.547±0.014 0.492±0.015• 0.368±0.010• 0.443±0.014• 0.525±0.015•

Yahoo! News 0.667±0.006 0.456±0.010• 0.462±0.009• 0.636±0.010• 0.648±0.007
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Figure 5: Parameter sensitivity analysis for IPAL on theLost andMSRCv2 data sets. (a) Classification accuracy of IPAL
changes as the number of nearest neighborsk increases from 5 to 20 with step-size 1; (b) Classification accuracy of IPAL
changes as the balancing coefficientα increases from 0.30 to 0.99 with step-size 0.03; (c) Difference between two adjacent
labeling confidence matrix (measured byL2 norm||F(t) − F

(t−1)||) converges with increasing number of iterations.

ples following the averaging strategy; 2) IPAL is comparable
to CLPL and PL-SVM on theLost data set, and achieves su-
perior performance than both of them on the rest data sets; 3)
IPAL is comparable to LSB-CMM on theLost, BirdSong
andYahoo! News data sets, and achieves superior perfor-
mance than LSB-CMM on the other two data sets.

4.3 Sensitivity Analysis
According to Table 1, IPAL learns from partial label exam-
ples by employing three parameters, i.e.k (number of near-
est neighbors),α (balancing coefficient) andT (number of
iterations). To study the sensitivity of IPAL w.r.t. them, Fig-
ure 5 illustrates how IPAL performs under different parameter
configurations. For clarity of illustration,Lost andMSRCv2
are employed here for analysis purpose while similar obser-
vations can be made on other data sets. As shown in Figure
5, it is obvious that:
• The performance of IPAL improves slightly ask increas-

es from 5 and becomes stable shortly afterk reaches 8
(Figure 5(a));

• The performance of IPAL improves steadily asα increas-
es from 0.3 (Figure 5(b)). These observations indicate
that the amount of labeling information propagated from
neighboring instances (i.e. the first term of Eq.(3)) plays
a key role for the effectiveness of IPAL;

• The model of IPAL (labeling confidence matrixF)
changes significantly in initial label propagation itera-

tions and becomes convergent whenT reaches 20 (Fig-
ure 5(c)).

Therefore, the parameter configuration specified for IPAL in
Subsection 4.1 (k = 10, α = 0.95, T = 100) naturally fol-
lows from the above analysis.

5 Conclusion
In this paper, the problem of partial label learning is studied
where an instance-based approach named IPAL is proposed.
Instead of employing the averaging strategy, IPAL aims to
learn from partial label examples by directly disambiguating
the candidate label via iterative label propagation. Extensive
comparative studies clearly validate the effectiveness ofIPAL.

In terms of label propagation, an important future work is
to explore other ways to construct the weighted graph. For
instance-based approach, it is also interesting to investigate
better distance metric other than Euclidean distance fork-
nearest neighbors identification.
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