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Abstract

In partial label learning, each training example is
associated with a set afandidatelabels, among
which only one is valid. An intuitive strategy to
learn from partial label examples is to treat all can-
didate labels equally and make prediction by av-
eraging their modeling outputs. Nonetheless, this
strategy may suffer from the problem that the mod-
eling output from the valid label is overwhelmed
by those from the false positive labels. In this pa-
per, an instance-based approach nanred Is pro-
posed by directly disambiguating the candidate la-
bel set. Briefly, PAL tries to identify the valid label

of each partial label example via an iterative label
propagation procedure, and then classifies the un-
seen instance based on minimum error reconstruc-
tion from its nearest neighbors. Extensive experi-
ments show thatAAL compares favorably against
the existing instance-based as well as other state-
of-the-art partial label learning approaches.

I ntroduction

assumed to reside in the candidate label set4j.e S;) but
unknown to the learning algorithm.

As the ground-truth label is not accessible, one intuitive
strategy to learn from partial label examples is to treaheac
candidate label in an equal manner for model indudt@our
et al, 2011. The final prediction is made by averaging the
modeling outputs from all the candidate labels. Howeveg, on
potential drawback of this strategy lies in that the esaénti
output yielded by the ground-truth label (i.g;) would be
overwhelmed by the non-informative outputs yielded by the
false positive labels (i.eS; \ {v;}). Furthermore, the over-
whelming effect caused by the false positive labels would be
more pronounced as the size of candidate label set increases

In this paper, rather than employing the above averaging s-
trategy, we aim to solve the partial label learning problgm b
disambiguating the candidate label set directly. Accagdin
ly, a novel partial label learning approach namedd, i.e.
Instance-based PArtial Label learning proposed. Firstly,
an asymmetric weighted graph over the training examples is
constructed by affinity relationship analysis. After tHataL
tries to identify the valid label of each partial label exdenp
via an iterative label propagation procedure. During tls¢-te
ing phase, the unseen instance is classified based on minimum
error reconstruction from its nearest neighbors. Expemtale

Partial label learning deals with the problem where eaghra sy dies on controlled UCI data sets as well as real-world par

ing example is associated a set of candidate labels, among |ape| data sets clearly validate the effectivenesspat |
which only one label is assumed to be vdlburet al,, 2011;

Zhang, 2014 The problem of learning from partial label
examples naturally arises in a number of real-world scenarg,

ios such as web mininglie and Orabona, 20],0nultimedia
contents analysi€ouret al., 2009; Zenget al., 2019, ecoin-
formatics[Liu and Dietterich, 201P etc?!

Formally, letxX = R? be thed-dimensional input space
andy - {ylay27 cee

,Yq+ be the output space with pos-

sible class labels. Given the partial label training Bet=
{(xi,S;) | 1 <i < m}, wherex; € X is ad-dimensional

feature vectofz;;, x;0, . .

L xiq)" andS; C Y is the set of

candidate labels associated with, the task of partial label
learning is to induce enulti-classclassifierf : X — ) from
D. In partial label learning, the ground-truth laheffor x; is

In some cases, partial label learning is also termedhasiguous
label learning[Hullermeier and Beringer, 2006; Chenal., 2014,
soft label learninglComeet al, 2008 or superset label learning
[Liu and Dietterich, 2014

against the comparing approaches.

The rest of this paper is organized as follows. Section 2
iefly discusses related work. Section 3 presents the ikechn
cal details of the propose®AL approach. Section 4 reports
the results of comparative experiments. Finally, Section 5
summarizes the paper and indicates future research issues.

2 Redated Work

Partial label learning can be regarded asemkly-supervised
learning framework, where the supervision information-con
veyed by the partial label training examples are implicitn€
ceptually speaking, it lies between two ends of the supervi-
sion spectrum, i.e. the traditional supervised learnintp wi
explicit supervision and the unsupervised learning withcl
supervision. Partial label learning is related to otherlwel
studied weakly-supervised learning frameworks, inclgdin
semi-supervised learningulti-instance learningndmulti-



label learning Nonetheless, different types of weak supervi-3 ThelPAL Approach

sion information are handled by these learning frameworks. During the disambiguation phasezal leams from partial
Semi-supervised learniri@hapelleet al, 2006; Zhu and  |apel examples in two basic phases, inighted graph con-

Goldberg, 200Plearns from abundant unlabeled examplesgtryctionanditerative label propagation

together with few labeled examples. For unlabeled data the | et p = {(;,5;) | 1 < i < m} be the partial la-

ground-truth label assumes the whole label space, while fope| training set, where:; € X is ad-dimensional instance
partial label data the ground-truth label is confined within ;.. .. " 2,,)T andS; C Y is the candidate label set as-

the candidate label set. Multi-instance learn[jetterich  gociated withe;. In this paper, a weighted gragh= (V, E)

et al, 1997; Amores, 2013earns from labeled training ex- s constructed over the set of training examples With=
amples each represented by a bag of instances. For multi,, | 1 < i < m}. For each instance;, let \'(z;) de-
instance data the labels are assigned at the level of baggete the indexes of its-nearest neighbors identified in the
while for partial label data the labels are assigned at el le  trajning set, where the distance between two instances-is ca
of instances. Multi-label learinfTsoumakat al, 2010;  cylated with the popular Euclidean metric. Accordinghe th
Zhang and Zhou, 2034earns from training examples each edges of graply are seta = {(x;, ;) | i € N(x;), 1 <
associated with multiple labels. For multi-label data B8t ;"2 ;' < 1,1, In other words, there would be an (directed)
associated labels are valid ones, while for partial labéh da gdge from noder; to nodez; iff x; is among thek-nearest

the associated labels are only candidate ones. neighbors oft;.
To learn from partial label examples, one intuitive strgteg  From the set of edgels, one can simply specify am x m
is to treat all the candidate labels in an equal manner amd theweight matrix W = [w; j]mxm as follows: w; ; = 1 if

average the outputs from all candidate labels for predictio (z;,z;) € E; otherwise,w;; = 0. In order to encode
Following this strategy, a straightforward instance-bse-  fine-grained influences of neighboring instances/,Ichoos-
lution [Hullermeier and Beringer, 2006s to make predic- es to determine the weights by conducting some affinity rela-
tion for unseen instance* in the following way: f(z*) =  tionship analysis. Letv; = [wi, j, Wi, j,-- -, Wi, ;] (ia €
argmax,cy > e p(z+) LY € Si). HereI(-) is the indica- ~ A (x;),1 < a < k) denote the weight vector w.r.tz; and

tor function and the predicted label fa is determined by its k-nearest neighbors, the influence of each neighboring in-
aggregating the votes from the candidate labels of its Reighstancex;, onx; (i.e. w;, ;) is modeled by solving the fol-
boring examples indexed iV (z*). Besides the instance- lowing optimization problem (OP):

based instantiation, another solution following the agara 9
k

strategy is to assume a parametric moBék, y; ) for dis- . o .
criminative learnindCouret al, 2011. Here, the averaged %]n T3 Za:l Wiarj " Fia (1)
output from all candidate labels, I%.1—| > oyes, Fl®i,y;0), st wi, ;>0 (ia € N(zj),1<a<k)

is distinguished from the outputs from non-candidate Isbel
i.e. F(x;,y;0) (y ¢ S;). As shown in OP (1), the weight vectar; is optimized by fit-
Though the averaging strategy is intuitive and easy tdind &linearleastsquare problem subject to the non-negati
be implemented, its effectiveness is largely affected kgy th constraints. Here, we do not impose extra regularization te
false positive labels whose outputs would overwhelm theh (€:9- L1~ or Ly-norm ofw;) in the objective function to
essential output yielded by the ground-truth label. There@Ccommodate more space for optimization.
fore, another strategy to learn from partial label examples FOr OP (1), its optimal solutiom; can be obtained by ap-
is to disambiguate the candidate label set by identifyirgg th PYing any off-the-shelf quadratic programming (QP) salve
ground-truth label. Existing approaches following this s- 10 SOme extent, magnitude of the optimized weight ; en-
trategy view the ground-truth label as latent variable and®des the strength of affinity between and its neighbor-
make use of the Expectation-Maximization (EM) procedurend instancez;, . Accordingly, IPAL specifies the weight ma-
[Dempsteret al, 1977 to refine the estimation of laten- (X W as follows:w; ; = i if (z;,z;) € E; otherwise
t variable iteratively. The objective function optimizegt b i = 0- Itis worth noting thaW'is anasymmetriaveight
the EM procedure can be instantiated based on the mavnatrix, which reflects the fact that the neighboring relatio

. - o ship is not necessarily symmetric. Furthermore, even when
imum likelihood criterion: 3~ log (ZyGSi Flxi,y; 0)) two instancese; andz; happen to be neighboring instance

[Jin and Ghahramani, 2003; Grandvalet and Bengio, 2004f each other, the influence from to x; (i.e. w; ;) is gener-
Liu and Dietterich, 201R or the maximum margin crite- ally different to that frome; to x; (i.e.w]—_,i).2
To facilitate subsequent iterative label propagation groc
; dure, the weight matrisW is then normalized by column:
and Caruana, 2008 H=WDL Here;rll) = diag[dy,ds, . .., d,,] is a diagonal
In the next section, a novel partial label learning approacfn@trixwithd; = 3>_,_, w; ;. LetF = [fi ], be anm x q
following the disambiguation strategy will be introduc&. ~ Matrix with non-negative entries, whefg. > 0 corresponds
ifferent from EM-based disambiguation, the proposed AP 2t crefore. ric setup of th ioht matri s —
proach does not assume any parametric model while tries ~ "TE1OTS: SYTIMETIC SETUP 01 e WRIGHE Matihx Stetvas =
to disambiguate the candidate label set by utilizing instan  exp —%) [Zhou et al, 2004; Zhu and Goldberg, 20D9
based techniques. won't suffice under this circumstance.

rion: Y ", (max F(z;,y;0) — max F(z;,y; 0)) [Nguyen
yeS; yéS;



to the labeling confidence @f. being the ground-truth label
of x;. Based on the partial label training set, an initial (pri-

Table 1: The pseudo-code GfAL.

or) labeling confidence matrik®) = P = [p; .]mx, Canbe Inputs:
instantiated as follows: D : the partial label training s€t(x;, S;) | 1 <i < m}
Sl s 1fyc€S7, (wle‘X S gy X = Rdy {ylay27'."ayq})
; . L 1S:l the number of nearest neighbors considered
Vi<i<m: pjc= (2 : SO
’ . the balancing coefficient if0, 1)
0 , otherwise

*

In other words, at the initialization step, the labeling fton

8 HQ =

the number of iterations
: the unseen instance

dence ofz; is equally distributed over its candidate labels in Outputs

S;. Atthet-th iteration,F is updated by propagating labeling y* : the predicted class label far*
information along with the normalized weight matiik Process:
~ _ 1: Initialize weight matrixW = [w; ;| xm With w; ; = 0;
FO — o - HTFC 1)+(1_a).p (3) > fOi‘j—ltOng”LdO [Wi,jJmx J
Here, parametett € (0, 1) controls the relative amount of 3:  Identify thek-nearest neighbot§ (x;) in D for x;
information inherited from label propagation and initiat| ~ 4:  Determine the weight vectab; = [, j, ..., W;, ;]
beling. After that,F(*) is re-scaled intd® by consulting w.r.t. z; and itsk-nearest neighbors by solvmg OP (1);
the candidate label set of each training example: 5. for i, € N(x;) do
(1) 6: Setwimj = wia,j;
e ify. e, 7: endfor
; 0 _ ) Tyes, fi) :
Vi<i<m: f;.= e 4 8: end for
. 9: Normalize weight matridW by column:H = WD };
0, otherwise 10: Set the initial labeling confidence matd according to

As the iterative procedure terminates, one can disamleguat

each partial label training examplez;, S;) based on the 11:
final labeling confidence matri¥ as follows: 4 12:
arg max,,_cy fi. In this paper, PAL further adopts thelass 1%
mass normalizatio@CMN) mechanisnizhu and Goldberg, 14
2009 to adjust the disambiguation output towards class prior

Eq.(2);
SetF(® = P;
fort=1toT do
SetF® according to Eq.(3);
Re-scald"(*) into F(*) according to Eq.(4);

15: end for

distribution: 16: Set the final labeling confidence matiix= F(©);

n. 17: for i = 1tom do
i = argmax — - f; . (5) 18: Disambiguate partial label exampler;,S;) into
Yye€Y ¢ single-label exampléx;, 3;) according to Eq.(5);
Here,n. = 31" pi. is the class mass of, w.r.t. prior ~ 19: end for . .
labeling confidence matriR, andi, = "7, f; . isthe class ~ 20° ldentify thek-nearest neighbor§' (") in D for 2
21: Determine the weight vectas* = [w},, ..., w} ]’ Wort.

T erng the tosing phase e cies label of an unseen iny, . &N fsk-nearest neighbors by soving OF (1)
stancex™ is predicted based on the disambiguated training 2: Return the predicted class lahel according to Eq.(6).
examplegx;, §;). Thek-nearest neighbors af* in the train-
ing set, i.e. N'(z*), are firstly identified. After that, the 4

weight vectorw* = [w;] , w} Jwi]T (i, € N(x*), 1

Experiments
W

a < k) w.rt. z* and itsk-nearest neighbors are determlned4 1 Experimental Setup
by solving the same optimization problem as shown in OP (1)n this paper, two series of comparative experiments are con
(replacing{z;,w;} with {z*,w*}). Thereafter, the unseen ducted on controlled UCI data sefBache and Lichman,
instance is classified based on the following minimum erro2013 as well as real-world partial label data sets. Table 2
reconstruction criterion: summarizes characteristics of these experimental data set
k Following the popular controlling protocdCour et al,
y* =argmin ||z* - _ Gia = ye) - wi, -, 2011; Liu and Dietterich, 2012; Zhang, 2014; Chenal,
Ye€Y “ 2014, an artificial partial label data set is generated from
Table 1 summarizes the complete procedure of the proa multi-class UCI data set under different configurations of
posed PAL approach. Given the partial label training set, three controlling parameteys » ande. Here, p controls
an asymmetric weighted graph are constructed by conducthe proportion of examples which are partially labeled. (i.e
ing affinity relationship analysis between each instanat an|S;| > 1), » controls the number of false positive labels in
its k-nearest neighbors (Steps 1-8). After that, an iterative lathe candidate label set (i.6.5;| = r + 1), ande controls
bel propagation procedure is performed to disambiguate th#éhe co-occurring probability between one extra candidate |
candidate label set of each training example (Steps 9-19). Fbel and the ground-truth label. A total of 28 (4x7) parameter
nally, the unseen instance is classified based on minimum econfigurations considered in this paper are listed in Table 2
ror reconstruction from itg-nearest neighbors (Steps 20-22). The real-world partial label data sets are collected from

(6)




Table 2: Characteristics of the experimental data sets.

Controlled UCI Data Sets

Data set | # Exampleg # Features # Class Labels Configurations

glass 214 10 5 I p=1,r=1,e€{0.1,0.2,...,0.7} [Figure1]
segment 2,310 18 7 (y r=1,pe{0.1,0.2,...,0.7} [Figure2]

usps 9,298 256 10 my r=2,p€{0.1,0.2,...,0.7} [Figure 3]

letter 20,000 16 26 (V) r=3,pe€ {0.1,0.2,...,0.7} [Figure4]

Real-World Data Sets

Data set | # Exampleg # Featureg # Class Labels Avg. # CLs Domain
Lost 1122 108 16 2.23 automatic face naminfgCouret al,, 2011
MSRCv2 1,758 48 23 3.16 object classificatiofiLiu and Dietterich, 201P
BirdSong 4,998 38 13 2.18 bird song classificatiofBriggset al,, 2013
Soccer Player 17,472 279 171 2.09 automatic face naminfZenget al,, 2013
Yahoo! News| 22,991 163 219 1.91 automatic face namingGuillauminet al,, 201Q

o1 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 07 01 02 03 04 05 06 07
o-occurring probability of one extra candidate label) ¢ (co-occurring probability of one extra candidate label) ¢ (co-occurring probability of one extra candidate label) ¢ (co-occurring probability of one extra candidate label)

| (@gl ass (b) segnent (c)usps ()l etter

Figure 1: Classification accuracy of each comparing algoerithanges as (co-occurring probability of one extra candidate
label) increases (with 100% partially labeled examfiles 1] and one false positive candidate labek 1]).

several application domains includirgpst [Cour et al,, EM-based disambiguation strategy, where the number of
2011, Soccer Pl ayer [Zenget al, 2013 andYahoo! mixture components is set to be the number of class la-
News [Guillauminet al, 2014 for automatic face naming bels of each data set.

from images or videosySRCv2 [Liu and Dietterich, 201p As shown in Table 1, parameters employed bl are set
for object classification, angi r dSong [Briggset al., 2017 ask = 10. o = 0.95 andT = 100.2 In the rest of this sec-
for bird song classification. The average number_ of candidatyjgp, ten-fbld cross-validation is performed on each aitifi

labels (Avg. #CLs) for each real-world data set is alsodiste 55 well as real-world partial label data set. Accordinghg t

in Table 2. , , mean predictive accuracies (and also the standard dewstio
The performance ofAAL is compared against four state- e recorded for all comparing algorithms.

of-the-art partial label learning algorithms, each confégl
with parameters suggested in respective literature: 4.2 Experimental Results
e PL-KNN [Hllermeier and Beringer, 20p6an instance-  Controlled UCI Data Sets
based approach to partial label learning by adopting thesigure 1 illustrates the classification accuracy of each-com
averaging strategy, where the number of nearest neigtyaring algorithm as the co-occurring probabitityaries from
bors considered bylRKNN is set to be 10; 0.1 to 0.7 with step-size 0.(= 1,7 = 1). One labely’
e CLPL [Couret al, 2011: a parametric approach to is designated as the extra candidate label for each clask lab
partial label learning by adopting the averaging strate4 € Y, wherey’ is chosen to co-occur withwith probability
gy, where the parametric model is set to be SVM withe wheny is the ground-truth label. Otherwise, any other class
squared hinge loss; label would be chosen to co-occur wihFigures 2 to 4 illus-
e PL-svM[Nguyen and Caruana, 200& maximum mar- trate the classi_fication_ accuracy of each co_mparing algnrit
gin approach to partial label learning by adopting the2S the proportiop varies f_rom 0.1 to 0.7 with step-size 01
EM-based disambiguation strategy, where the regularl” = 1,2,3). For any partially labeled example, along with

ization parameter is chosen amofig 2, . . ., 103} via the ground-truth label; class labels iy will be randomly
cross-validation: T picked up to constitute the candidate label set.
e LsB-cMM [Liu and Dietterich, 201 a maximum like- 3Sensitivity analysis onFAL’s parameter configuration is report-

lihood approach to partial label learning by adopting theed in Subsection 4.3.
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Figure 2: Classification accuracy of each comparing algorithanges gs(proportion of partially labeled examples) increases
(with one false positive candidate laljel= 1]).
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Figure 3: Classification accuracy of each comparing algorithanges gs(proportion of partially labeled examples) increases
(with two false positive candidate labédls= 2]).
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Figure 4: Classification accuracy of each comparing algorithanges gs(proportion of partially labeled examples) increases
(with three false positive candidate labgls= 3]).

I — . ... the comparing algorithms. Out of the 112 statistical compar
Table 3: Win/tie/loss counts (pairwigetest at 0.05 signifi-  jgqong (25 con?igu%ations 4 UCI data sets), it is shown thaILDt:
cance level) on the cla§S|f|cat|on performancerafil against 1) IPAL achieves superior performance againstkAN in
other comparing algorithms. 81.2% cases and has been outperformediby RN in only
13.4% cases; 2)PAL achieves superior performance against

I inst
PAL 8gain CLPL and LsB-cMM in 94.6% and 80.3% cases respectively,

PL-KNN_ CLPL  PL-SVM LSB-CMM and is comparable to both of them in the rest casespA) |
[Figure 1] 22/4/2 24/4/0  28/0/0 23/5/0 is shown to be inferior to B-svm in only 1 out of 112 cases,
[Figure 2] 24/0/4  28/0/0  28/0/0 23/5/0 and outperforms P-svM in the rest cases.
[Figure 3] 23/1/4  28/0/0  28/0/0 22/6/0 Real-World Data Sets
[Figured] 22/1/5  26/2/0  27/0/1 22/6/0 Table 4 reports the performance of each comparing algorithm

In Total 91/6/15 106/6/0 111/0/1 90/22/0 on the real-world partial label data sets. Pairwigest at

0.05 significance level is conducted based on the results of
ten-fold cross-validation, and the test outcomes between |
and other comparing algorithms are recorded.

As illustrated in Figures 1 to 4, the performance pAl As shown in Table 4, it is impressive that no algorithm
is highly competitive to other comparing algorithms in mosthas outperformedrlaL on the real-world data sets. Further-
cases. Specifically, pairwigetest at 0.05 significance level more, we can also observe that: PaL achieves superior
is conducted based on the results of ten-fold cross-vadidat performance against.PKNN on all data sets, whichis also an
Table 3 summarizes the win/tie/loss counts betweamn bnd  instance-based approach to learning from partial labehexa



Table 4: Classification accuracy (melastd. deviation) of each comparing algorithm on the reallevpartial label data sets.
In addition,e/o indicates whetherrAaL is statistically superior/inferior to the comparing aligiom on each data set (pairwise

t-test at 0.05 significance level).

IPAL PL-KNN CLPL PL-svMm LsB-cMM

Lost 0.726:0.041 0.388-0.036e 0.742+:0.038 0.729-0.040 0.70%0.055

MSRCv2 0.523:0.025 0.445-0.030» 0.413+:0.03% 0.482+:0.043 0.456+0.031e

BirdSong 0.708-0.014 0.642-0.021e 0.632:0.017% 0.663+:0.032 0.7140.024

Soccer Player 0.54{0.014 0.492-0.015 0.368+:0.016 0.443+:0.01% 0.525+0.015

Yahoo! News 0.66Z0.006 0.456-0.010 0.462+:-0.00% 0.636+0.010 0.648+0.007

3}075 /D__D_.D_,D__D_.D.,u_ﬂ_u-ﬂ_u‘u . @0:70 Enoﬂnagﬂoﬂguﬁﬂ‘“aﬂ }50

E ovss ) = Lost 2065 = Lost gs.o Thost

;5 » -0 MSRCv2 EO-GO -0 MSRCv2 g ‘ ——MSRCv2

06 07
J (number of nearest neighbors) a (balancing coefficient)

(a) Varyingk (oo = 0.95,T = 100) (b) Varyinga: (k = 10, T = 100)

T (number of iterations)

(c) VaryingT' (k = 10, = 0.95)

Figure 5: Parameter sensitivity analysis feal on theLost and MSRCv2 data sets. (a) Classification accuracy phl
changes as the number of nearest neighkadrxreases from 5 to 20 with step-size 1; (b) Classificatiotueacy of PAL
changes as the balancing coefficienincreases from 0.30 to 0.99 with step-size 0.03; (c) Difieebetween two adjacent
labeling confidence matrix (measured by norm||F(Y) — F(*~1||) converges with increasing number of iterations.

ples following the averaging strategy; DAL is comparable tions and becomes convergent whemeaches 20 (Fig-
to CLPL and R.-svm on theLost data set, and achieves su- ure 5(c)).

perior performance than both of them on the rest data sets; 3|9herefore, the parameter configuration specified faulin
IPAL is comparable to EB-cMM on theLost, Bi rdSong g psection 4.1 = 10, @ = 0.95, T = 100) naturally fol-
andYahoo! News data sets, and achieves superior perfor{,.s from the above aﬁalysis. ’

mance than EB-cMM on the other two data sets.

4.3 Sendtivity Analysis 5 Conclusion

According to Table 1, BaL learns from partial label exam- In this paper, the problem of partial label learning is stadi
ples by employing three parameters, ike(number of near- where an instance-based approach nanred Is proposed.
est neighbors)q (balancing coefficient) and” (number of  Instead of employing the averaging strateggall aims to
iterations). To study the sensitivity oPAL w.r.t. them, Fig- learn from partial label examples by directly disambigoigti
ure 5illustrates howraL performs under different parameter the candidate label via iterative label propagation. Esiien
configurations. For clarity of illustratiom,ost andMSRCv2 comparative studies clearly validate the effectivene$saif.
are employed here for analysis purpose while similar obser- In terms of label propagation, an important future work is
vations can be made on other data sets. As shown in Figutte explore other ways to construct the weighted graph. For
5, itis obvious that: instance-based approach, it is also interesting to inyesti
e The performance offaL improves slightly a& increas- better distance me_tric c_)t_her_ than Euclidean distancekfor
es from 5 and becomes stable shortly afteeaches 8 Nearest neighbors identification.
(Figure 5(a));
e The performance offaL improves steadily as increas- References
es from 0.3 (Figure 5(b)). These observations indicatd Amores, 2018 J. Amores. Multiple instance classification:
that the amount of labeling information propagated from Review, taxonomy and comparative studytificial Intel-
neighboring instances (i.e. the first term of Eq.(3)) plays ligence 201:81-105, 2013.

a key role for the effectiveness afAL; [Bache and Lichman, 201X. Bache and M. Lichman. U-
e The model of bAL (labeling confidence matrix¥') Cl machine learning repository. School of Information and
changes significantly in initial label propagation itera- Computer Sciences, University of California, Irvine, 2013
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