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Abstract
The learnware paradigm aims to establish a learn-
ware dock system that contains numerous lean-
wares, each consisting of a well-trained model
and a specification, enabling users to reuse high-
performing models for their tasks instead of train-
ing from scratch. The specification, as a unique
characterization of the model’s specialties, domi-
nates the effectiveness of model reuse. Existing
specification methods mainly employ distribution
alignment to generate specifications. However,
this approach overlooks the model’s discrimina-
tive performance, hindering an adequate specialty
characterization. In this paper, we claim that it
is beneficial to incorporate such discriminative
performance for high-quality specification gen-
eration. Accordingly, a novel specification ap-
proach named DALI, i.e., Learnware Specifica-
tion via Dual ALIgnment, is proposed. In DALI,
the characterization of the model’s discriminative
performance is modeled as discriminative align-
ment, which is considered along with distribution
alignment in the specification generation process.
Theoretical and empirical analyses clearly demon-
strate that the proposed approach is capable of fa-
cilitating model reuse in the learnware paradigm
with high-quality specification generation.

1 Introduction
Currently, the machine learning paradigm of step-by-step
model construction from scratch, tailored to specific tasks,
has achieved remarkable success. However, this success is
heavily dependent on several key factors: a large volume
of high-quality labeled data, significant computational re-
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source investment, and specialized development expertise.
These factors pose substantial challenges for non-experts
building high-performance models from scratch, while it is
ideal if their tasks could be tackled by reusing existing well-
trained models. However, issues such as data privacy, model
inflexibility, and catastrophic forgetting further complicate
the reuse and adaptation of models for users.

The learnware paradigm (Zhou, 2016) provides a systematic
approach that allows users to build new machine learning
solutions by leveraging existing well-established models
instead of developing models from scratch. A learnware
is a well-trained machine learning model equipped with a
small-scale specification that describes its capabilities and
specialties. This specification, serving as the unique identi-
fier for both the learnware and its associated model, enables
the model to be effectively reused by new users without
requiring access to the original training data. In the sub-
mitting stage, developers worldwide can voluntarily submit
their trained models to a learnware dock system (Tan et al.,
2024c), and the system helps developers generate specifi-
cations corresponding to their models. In the deploying
stage, when a user needs to address a specific task, instead
of starting from scratch, she can submit her requirement
to the learnware dock system. The system identifies and
recommends useful learnwares, allowing the user to achieve
better performance than training a model from scratch using
their own data. Recently, to advance research on the learn-
ware paradigm, the learnware dock system, Beimingwu, has
been developed and released (Tan et al., 2024c).

Obviously, the design of the specifications is pivotal in the
learnware paradigm (Zhou & Tan, 2024). Well-crafted spec-
ifications that adequately characterize models’ specialties
can greatly improve the accuracy of learnware identification
and the effectiveness of model reuse. Existing specifica-
tion methods primarily rely on distribution alignment, i.e.,
ensuring that the specification’s distribution is similar to
that of the model’s training data. Although this approach
partially describes the model’s applicable scope from the
perspective of its training data, it overlooks the model’s
inherent discriminative ability, resulting in an inadequate
characterization of the model’s specialties.

In light of the above observations, we postulate that more
adequate characterization of the model’s specialties can be
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expected if the model’s discriminative performance can be
appropriately considered within specification generation pro-
cedure. Accordingly, a novel specification approach named
DALI, i.e., Learnware Specification via Dual ALIgnment,
is proposed. In DALI, the characterization of the model’s
discriminative performance is modeled as discriminative
alignment, which is carefully incorporated along with dis-
tribution alignment in the specification generation process.
For discriminative alignment, our objective is to ensure that
the discriminative performance of the generated specifica-
tion closely approximates the model’s inherent discrimi-
native performance. For distribution alignment, we strive
to guarantee that the distribution of specifications for the
same class is as similar as possible to the distribution of
the training data. Through this dual alignment mechanism,
the DALI approach enables the generated specifications to
simultaneously focus on the model from both discrimina-
tive performance and training data distribution perspectives,
thereby more adequately characterizing the model’s capa-
bilities and specialties. Theoretical and empirical analyses
clearly demonstrate that the proposed DALI approach is ca-
pable of facilitating model reuse in the learnware paradigm
with high-quality specification generation.

2 Related Work
The learnware paradigm (Zhou, 2016; Zhou & Tan, 2024)
offers a systematic approach to managing well-established
models, enabling users to directly reuse existing models
based on their specialties to address specific requirements,
rather than constructing models from scratch. A learnware
consists of a well-trained model and a specification describ-
ing its specialties, where the specification ensures privacy
protection and unique identifiability (Lei et al., 2024; Shen &
Li, 2025). As a core component of the learnware paradigm,
the specification has garnered significant research attention
in recent years, with substantial efforts focused on generat-
ing specifications that effectively characterize model special-
ties. Wu et al. 2023 proposed generating specifications with
Reduced Kernel Mean Embedding (RKME) technique, en-
suring that a reduced set is approximate to the task data dis-
tribution in the Reproducing Kernel Hilbert Space (RKHS).
Subsequently, Zhang et al. 2021 extended this RKME spec-
ification method to handle user requirements with unseen
job components. To date, RKME specification methods
have achieved impressive success across various scenarios
in the learnware paradigm. In the heterogeneous feature
space scenarios, Tan et al. 2023 assumes access to the orig-
inal training data and employs subspace learning to unify
heterogeneous features into a shared feature space, thereby
generating RKME specifications. To relax the strong as-
sumption of data accessibility, Tan et al. 2024b explored
the correlation of heterogeneous feature tasks, enabling the
generation of RKME specifications without accessing the

original data or auxiliary data across feature spaces. To
take the importance of label information into consideration,
Tan et al. 2024a enhances the representation capacity of the
RKME specifications by incorporating label information
into the generation procedure, thereby enabling the hetero-
geneous learnware paradigm. Meanwhile, Guo et al. 2023
encodes label information as a part of the RKME specifi-
cation to address scenarios involving heterogeneous labels.
Based on the above research, the learnware dock system,
Beimingwu, was recently released to systematically sim-
plify the entire learnware paradigm and promote its research
and practical applications (Tan et al., 2024c). Moreover,
since the performance of the learnware paradigm based on
RKME specifications heavily depends on the choice of ker-
nel function, Chen et al. 2025 proposed replacing RKHS
with neural embedding space to overcome this limitation,
achieving specifications that align closely with class feature
distributions of the training data.

Obviously, the aforementioned specification methods pri-
marily rely on distribution alignment to generate spec-
ifications, i.e., ensuring that the specification’s distribu-
tion is similar to that of the model’s training data. How-
ever, neglecting the model’s intrinsic discriminative perfor-
mance may lead to suboptimal specifications of low-quality,
thereby compromising the effectiveness of model reuse. To
address this limitation, this paper proposes a novel specifi-
cation approach DALI, simultaneously considering both the
model’s discriminative performance and the feature distribu-
tion it has mastered, in order to generate specifications that
more adequately characterizations the model’s specialties.

3 Preliminaries
The learnware paradigm consists of two distinct stages: a
submitting stage and a deploying stage.

The Submitting Stage. In this stage, a developer can spon-
taneously submit her well-trained model f to the learnware
dock system. To better characterize the submitted model
f , the system help the developer assign the model a spec-
ification R, which sketches its capabilities and specialties.
Currently, the specification is primarily derived from the
dataset D = {(xi, yi)}ni=1 used to train the model, serving
as its unique identifier. Here, we assume that D comprises
K classes, where X = Rd (x ∈ X ) denotes the feature
space of D, and Y = {1, 2, . . . ,K} (y ∈ Y) represents the
label space of D. The model f , along with its correspond-
ing specification R, forms a learnware (f,R), which is then
stored in the learnware dock system for future use.

The Deploying Stage. In this stage, suppose a user has
a task requirement corresponding to the dataset D̂ =
{(x̂i, ŷi)}n̂i=1. Here, we assume that D̂ comprises K̂ classes,
where X̂ = Rd̂ (x̂ ∈ X̂ ) denotes the feature space of D̂, and
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Ŷ = {1, 2, . . . , K̂} (ŷ ∈ Ŷ) represents the label space of D̂.
To address this task, the system will help the user generate a
specification R̂ tailored to their requirements. The user then
submit R̂ to the learnware dock system, which will match
and return potentially useful learnwares to the user based on
the submitted specification R̂. Subsequently, the user can
solve the task by reusing these learnware models.

RKME Specification. The specification is the central part
of the learnware paradigm, functioning both as a characteri-
zation of the model’s capabilities and as its unique identifier.
Currently, specifications primarily characterize the distribu-
tions mastered by the model while ensuring privacy protec-
tion. The RKME specification method (Tan et al., 2024c)
learns the data distribution in the RKHS Hk through the
Kernel Mean Embedding (KME) technique (Muandet et al.,
2017). This approach safeguards data privacy by employing
a reduced set to approximate the empirical KME. Specifi-
cally, the RKME specification is generated by optimizing
the following objective:

min
β,Z

∥∥∥∥∥∥ 1n
n∑
i=1

k(xi, ·)−
m∑
j=1

βjk(zj , ·)

∥∥∥∥∥∥
2

Hk

. (1)

Here, the m-sized tuple R = {(βj , zj)}mj=1 acts as the
specification, where m ≪ n, Z = {zj}mj=1 is the reduced
set, and β = {βj}mj=1 are non-negative weight coefficients.
k(·, ·) is a predefined kernel function, and Hk is the RKHS
associated with this kernel. It is evident that a major draw-
back of the RKME specification method is that its per-
formance heavily relies on the predefined kernel function,
which limits its applicability in different scenarios.

4 Methodology
In practice, the class distributions of the training data under
true-labels are often entangled in the feature space. How-
ever, the corresponding well-trained model possesses dis-
criminative ability, enabling disentanglement in the output
space. If the generated specification focuses solely on the
feature distribution to describe the model’s capabilities, it
often fails to characterize its discriminative performance,
resulting in an inadequate specialty characterization. There-
fore, the proposed approach considers both the model’s dis-
criminative performance and the feature distribution of the
training data, providing a comprehensive characterization
of the model’s capabilities and specialties.

4.1 The Proposed of DALI Approach

Let {ȳi}ni=1 be the pseudo-labels generated by the model
trained on the dataset D = {(xi, yi)}ni=1, where {yi}ni=1

represents the true-labels. Generally, these two groups of
labels are not identical, which leads to different latent infor-
mation between the pseudo-labels and the true-labels. The

pseudo-labels convey the model’s inherent discriminative
performance, while the true-labels provide the class feature
distribution that the model has mastered. Therefore, our
goal is to ensure that the specification captures both of these
types of information, thereby comprehensively characteriz-
ing the model’s capabilities and specialties.

Discriminative alignment. According to the learnware
specification mechanism, both the training data and the
specification lie within a hypothesis set H ⊂ {ψ : X → Y},
where ψ is the predictor (e.g., neural network). Moreover,
the training data distribution in the pseudo-label space, i.e.,
D̄ = {(xi, ȳi)}ni=1, effectively reflects the model’s discrim-
inative performance. By aligning the specification with
this distribution through encoding, we can characterize the
model’s inherent discriminative performance. In theory, any
distance metric in the distribution space can be employed
to measure the difference between distributions, facilitating
the corresponding approximations. However, most of these
(e.g., the Kullback-Leibler divergence) are independent of
the learning process of the model, making it hard to estimate
from finite data and overly strict (Konstantinov & Lampert,
2019). Intuitively, a well-trained model should demonstrate
performance consistent with its performance on the training
data when applied to distributions that are similar to the
characteristic distribution of the training data. Specifically,
if a network performs well on training data distribution in
the pseudo-label space but poorly on the specification, the
performance discrepancy between them is significant. Con-
versely, if all functions in H exhibit similar performance
on both, they are considered to be identical. From this, we
can use H-discrepancy (Konstantinov & Lampert, 2019)
to measure this performance discrepancy, ensuring that the
distribution of the training dataset D̄ = {(xi, ȳi)}ni=1 in the
pseudo-label space is aligned to that of the specification
R, thus achieving discriminative alignment. The specific
formula is as follows:

Ldis = sup
ψθ∈H,θ∼Pθ

g(ℓ(ψθ(x), ȳ)− ℓ(ψθ(z), yz)), (2)

where ℓ is the cross-entropy loss function, g(x) =
√
x2 + α

is the smooth approximation of the absolute value opera-
tor, and α is a small constant. Here, the specification is
denoted as R = {(zj , yzj

)}Kmj=1 , where Km ≪ n with
the initialization of the specification involving random sam-
pling of m data points from each class in the training data
D = {(xi, yi)}ni=1. In addition, to avoid the inter-class
dependent discriminative disparities1 introduced by the net-

1Assume there are 3 classes of data: {a, b, c}. If the model is
trained on the set {a, b}, the resulting parameters will characterize
the discriminative information between a and b, while training on
{b, c} will characterize the discriminative information between b
and c. This leads to significant variations in the model parameters
related to class b, resulting in discrepancies in the synthesized
representation of b generated from different parameter sets.
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work parameter θ, ψθ ∈ H is denoted as numerous random
initialized neural networks under the distribution Pθ. Due
to the strong representational capability of random neural
networks (Saxe et al., 2011; Cao et al., 2018; Amid et al.,
2022; Lee et al., 2023), which ensure the preservation of
both intra-class and inter-class information when mapping
data to the embedding space (Giryes et al., 2016), it can
be regarded as providing a partial interpretation of the in-
puts. Meanwhile, a combination of numerous random neu-
ral networks offers a comprehensive interpretation. Thus,
numerous random neural networks can effectively encode
the discriminative performance in the pseudo-label space
and, through H-discrepancy, align the specification with
it for discriminative alignment, thereby characterizing the
well-trained model’s discriminative performance.

Distribution alignment. While characterizing the model’s
discriminative performance, we also desire the specification
to capture the feature distribution provided by the true-label
space. This provides a more comprehensive characterization
of the model’s capabilities. To achieve this, in numerous
random neural embedding spaces, we use the Maximum
Mean Discrepancy (MMD) to compute the unbiased es-
timate of the class expectation between the training data
D = {(xi, yi)}ni=1 in the true-label space and the specifi-
cation R, ensuring that their class feature distributions are
aligned. The formula is expressed as:

LMMD = Eϑ∼Pϑ

K∑
k=1

∥∥∥∥∥∥ 1

|Dk|
∑

(x,y)∈Dk

ψϑ(x)

− 1

|Rk|
∑

(z,yz)∈Rk

ψϑ(z)

∥∥∥∥∥∥
2

,

(3)

where Dk and Rk represent the subsets of the training data
and the specification corresponding to the k-th class, respec-
tively. ψϑ : Rd → Rd′ is the embedding neural network,
where d′ ≪ d and ϑ ∼ Pϑ represents the randomly initial-
ized parameters under the distribution Pϑ of the embedding
network parameter.

Overall. During the overall specification generation pro-
cess, by integrating discriminative alignment and distribu-
tion alignment, the objective function of the proposed DALI
approach can be expressed as:

min
z

Ldis + LMMD. (4)

It is worth noting that the specification R = {(zj , yzj
)}Kmj=1

characterizes the well-trained model’s discriminative perfor-
mance and mastered feature distribution by simultaneously
aligning the discriminative performance in the pseudo-label
space and the class feature distributions in the true-label
space across numerous random neural networks, thereby

achieving an adequate characterization of the model’s capa-
bilities and specialties. The overall procedure of the DALI
approach is outlined in Algorithm 1 of Appendix A.

The following detailed propositions provide a theoretical
analysis of the expected loss bound of the proposed DALI
approach, as well as its privacy protection. For simplicity,
we consider only one class and omit the label vectors, while
also providing some assumptions.

Assumption 4.1. Let the random neural network ψϑ :
Rd → Rd′ be considered nonlinear, where ϑl represents the
weight parameter of the l-th layer and the corresponding
activation function is denoted as ρl. Except for the final
layer, which is a linear classification layer, the other layers
of the network ψθ : Rd → RK are similar to those of ψϑ.

Assumption 4.2. We assume here at least one specification
R∗ = {z∗

1, · · · , z∗
|R|} that minimizes Eq.(4).

For further simplification in analysis, we separately perform
the upper bound analysis for Ldis and LMMD. The details
of upper bound analysis are as follows:

Proposition 4.3 (Upper bound for Ldis). According to the
theorem 1 of (Mohri & Muñoz Medina, 2012), we assume
that the loss function ℓ is bounded by M , where M lies
between 0 and 1. Let a hypothesis set H ⊂ {ψ : X → Y}.
For any δ > 0, with probability at least 1− δ over the data,
the following holds for ψθ:

Ldis = |ℓ(ψθ(x), ȳ)− ℓ(ψθ(z), yz)|

≤2qMq−1ℜ(ψ) + discH(D, R) +M

√
log 1

δ

2
.

(5)

where

ℜ(ψ) = Eσ

[
sup
ψθ∈ψ

σℓ(ψθ(x), ȳ)

]
,

and σ are independent Rademacher random variables. In
addition, the ψθ is the random initialized neural network
under distribution Pθ, and ℓ is the ℓq loss function.

Proposition 4.4 (Upper bound for LMMD). Let x ∈
{xi|(xi, yi) ∈ D} and z ∈ {zi|(zi, yzi

) ∈ R} be con-
sidered Borel probability measures in the data topological
space X . According to (Golowich et al., 2018), the empir-
ical Rademacher complexity of ψ for dataset D is defined
by:

ℜD(ψ) ≤
B(

√
2 log(2)l + 1)

∏l
j=1MF (j)√

|D|
, (6)

where ψ is the embedding network of depth l over the topo-
logical space X , and each layer network parameter matrix
ϑj has a Frobenius norm bounded by MF (j). The acti-
vation function is a 1-Lipschitz and positive-homogeneous
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activation function (such as the ReLU ), and the input sat-
isfies ∥x∥ ≤ B. If D ∼ R, then, with probability at least
1 − δ, and for any arbitrary small δ > 0, the empirical
MMD with neural embedding is bounded by:

LMMD(D, R)

≤2ℜD + 2ℜR + ℜDℜR

√
(|D|+ |R|) log 1

δ

2|D||R|
.

(7)

The detailed relevant proof can be found in Appendix B. By
combining the upper bound analysis of Proposition 4.3 and
4.4, in the DALI approach, we bound the gap between the
empirical loss of the training data in neural networks and the
expected loss of the specification. This bound is influenced
by performance discrepancy, network parameter norms, and
network depth. However, by leveraging numerous random
neural networks, we can mitigate the impact of these factors
on the discrepancy, enabling the specification to comprehen-
sively characterize the model’s discriminative performance
and mastered feature distribution.

Based on Assumption 4.1 and 4.2, we can further prove the
minimization of the proposed DALI approach’s objective
function loss, while ensuring privacy protection.
Proposition 4.5 (Minimizer of Eq.(4)). In the DALI ap-
proach, the specification R is initialized by randomly se-
lecting |R| samples from D, i.e., ∀z ∈ {zi|(zi, yzi) ∈ R},
∃x ∈ {xi|(xi, yi) ∈ D}, z = x. Then, the specification
R∗ is optimized using Eq.(4) to ensure that the model per-
formance of R∗ and D are consistent under the hypothesis
set H, and that the barycenters of R∗ coincides with the
barycenters of D. Specifically, it can be expressed as:

L(θl+1(ρl · · · (ρ1(θ1 · x))), ȳ)−
L(θl+1(ρl · · · (ρ1(θ1 · z∗))), yz)+

1

|D|

|D|∑
n=1

ρl(ϑl · · · (ρ1(ϑ1 · xn)))−

1

|R|

|R|∑
m=1

ρl(ϑl · · · (ρ1(ϑ1 · z∗
m))) → 0.

(8)

The relevant proof can be found in Appendix C. This indi-
cates that the proposed DALI method can optimize the dis-
criminative alignment and distribution alignment between
the specification and the training dataset.
Proposition 4.6 (Private protection). Based on to Proposi-
tion 4.5, Assumption 4.2 and the specification R is initial-
ized by randomly selecting |R| samples from D, i.e.,∀z ∈
{zi|(zi, yzi) ∈ R}, ∃x ∈ {xi|(xi, yi) ∈ D}, z = x, we
can derive the conclusion:

z∗
i =xj + ℓ(ψθ(x), ȳ)− ℓ(ψθ(z), yz)

+
1

|Dk|
∑
j∈Dk

ψϑ(xj)−
1

|Rk|
∑
j∈Rk

ψϑ(zj).
(9)

The relevant proof can be seen in Appendix D. Evidently,
in the DALI approach, the discrepancy between the initial
specification and the pseudo-barycenter of the training data
decreases as the specification size increases. Conversely,
the discrepancy becomes more pronounced when the speci-
fication size is smaller. This offers a compelling rationale
for why a larger specification size could lead to data leak-
age. However, in the learnware paradigm, the specification
size remains significantly smaller than the training data size,
thereby ensuring the privacy protection of DALI approach.

4.2 The Submitting Stage

In this stage, a developer spontaneously submits her task
and well-trained model to the learnware dock system to
generate a specification. This specification, combined with
the model, constitutes the learnware, which is subsequently
stored within the system. Suppose the developer can vol-
untarily submit their well-trained model f : X → Y along
with a local private training dataset D = {(xi, yi)}ni=1.
Since the DALI approach requires additional discriminative
performance from the well-trained model, the outputs of the
model on the training data are used as pseudo-labels. This
is specifically represented as follows:

ȳi = f(xi), i = 1, 2, . . . , n, ȳ ∈ Y (10)

This label setup ensures that the generated pseudo-labels
encapsulate the discriminative performance of the will-
trained model. Then, the system processes the dataset
{(xi, yi, ȳi)}ni=1, which includes both true-labels and the
pseudo-labels, using Eq.(4) to generate a specification R =
{(zj , yzj

)}Kmj=1 that completely characterizes the model’s
specialties. This specification R is subsequently combined
with the well-trained model f to form the learnware {f,R},
which is stored within the system. The detailed procedure
is provided in Algorithm 2 of Appendix A.

4.3 The Deploying Stage

At this stage, users search for useful learnwares in the learn-
ware dock system based on their requirements, reusing either
a single well-established model or a combination of mod-
els to fulfill their requirements. According to the DALI ap-
proach in Eq.(4), the requirement dataset D̂ = {(x̂i, ŷi)}n̂i=1

submitted by the user is first processed to generate a speci-
fication R̂ = {(ẑj , yẑj

)}K̂m̂j=1 representing the requirement.
In this process, pseudo-labels are replaced with true-labels,
ensuring that the specification generated under discrimi-
native alignment and distribution alignment maintains fea-
ture distribution similarity while preserving discriminability
among class distributions. Here, the learnware dock sys-
tem contains c learnwares. Then, the system searches for
matching existing learnware specifications through the re-
quirement specification, identifying useful learnwares to
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meet the user requirement. This process is expressed as:

min
W

∥∥∥∥∥∥ 1

|R̂|

∑
(ẑ,ŷẑ)∈R̂

ẑ −
c∑
i=1

Ki∑
j=1

wi,j
1

|Ri,j |
∑

(z,yz)∈Ri,j

z

∥∥∥∥∥∥
2

.

(11)
Here, Ri,j represents the j-th class specification in the i-th
learnware. The relationship between the existing learnware
specifications and requirement specification is denoted by
W = [w1,1, . . . , wc,Kc

]⊤, where
∑c
i=1

∑Ki

j=1 wi,j = 1,

and
∑Ki

j=1 wi,j represents the usefulness of the i-th learn-
ware in addressing the user requirement. W can be obtained
by optimizing the quadratic programming problem shown
in Eq.(11) using any off-the-shelf solvers.

After this process, we can obtain c′ candidate useful learn-
wares by

∑Ki

j=1 wi,j (ranked from largest to smallest),
where c′ = K̂. Then, due to the potential heterogeneity
of label spaces, to enhance learnware model reuse, we uti-
lize Cosine similarity to quantify the differences between
the classes in the requirement specification and those in the
candidate learnware specifications. This similarity estab-
lishes the relationship between the learnware models and
the requirement class data, and is expressed as:

SimilarityCosine(
1

|R̂î|

∑
(ẑ,ŷẑ)∈R̂î

ẑ,
1

|Ri,j |
∑

(z,yz)∈Ri,j

z)

(12)
where î ∈ [K̂], i ∈ [c′] and j ∈ [Ki]. Subsequently, a
bipartite graph is constructed based on the Cosine similarity
between the classes of the requirement specification and the
classes of the candidate learnware specifications, where the
edge weights represent the similarity. The two node sets cor-
respond to the classes of the requirement specification and
the learnware specifications, respectively. Through the Hun-
garian algorithm (Kuhn, 1955), we can obtain the maximum
matching for each bipartite graph. This enables the system
to identify the most similar learnware based on the maxi-
mum class similarity, thereby allowing the corresponding
requirement class data to reuse the associated learnware’s
well-established model f . The procedure of this stage is
detailed in Algorithm 3 of Appendix A.

5 Experiments
To demonstrate the superior specification quality of the
proposed DALI approach in the learnware paradigm, we
conduct comparative experiments under different (homoge-
neous or heterogeneous) label space settings and mixed task
settings. Furthermore, we perform additional tests to verify
the privacy protection and provide a visualization of the
specification. Additionally, an ablation study is carried out
to analyze each alignment component of the DALI approach.

5.1 Experimental Setup

Dataset. We evaluate the learnware paradigm by extracting
and reconstructing datasets from DomainNet (Peng et al.,
2019) and NICO (He et al., 2021). These two image datasets
are commonly used to assess the effectiveness of model
reuse. Specifically, both datasets contain domains with over-
lapping classes. In the NICO dataset, we selected 6 different
domains: [autumn, dim, grass, outdoor, rock, water]. The
DomainNet dataset includes 5 domains: [clipart, infograph,
painting, quickdraw, real]. Such hierarchical structures are
well-suited for the learnware paradigm. Here, we extract
4 label spaces from the overlapping classes of 11 domains
across the two datasets, which facilitate the subsequent ex-
perimental design of developer tasks and user requirements
according to different scenarios in the learnware paradigm.
The specific label spaces are as follows:

• Label space A: [“flower”, “horse”, “cow”, “rabbit”,
“tiger”, “bird”, “bus”, “sailboat”, “train”, “helicopter”]

• Label space B: [“butterfly”, “owl”, “bird”, “giraffe”,
“frog”, “squirrel”, “train”, “tent”, “truck”, “umbrella”]

• Label space C: [“flower”, “horse”, “cow”, “rabbit”,
“tiger”]

• Label space D: [“bird”, “giraffe”, “frog”, “squirrel”,
“tiger”]

Implementation details. In this experiment, we use RKME,
RKME-W (Guo et al., 2023), and LANE specification meth-
ods as baselines, with parameters set to their optimal choices.
To ensure the fairness of the comparative experiments, the
global feature extractor and the well-established models
included in the learnware dock system are derived from
DenseNet201 (Huang et al., 2017) and ResNet18 (He et al.,
2016). The random neural network ψ in the DALI approach
is set to ConvNetBN (Rawat & Wang, 2017). The detailed
implementation can be found in Appendix E.

5.2 Different Label Space Settings

The proposed DALI approach incorporates label informa-
tion, while in the learnware paradigm, both homogeneous
and heterogeneous label space scenarios exist between the
specification label space and the user requirement label
space. Therefore, we use different label space settings to
validate the proposed approach. In the homogeneous label
space setting, we have 11 domains × 2 label spaces (A and
B) = 22 developer tasks. Each model trained on these tasks
is treated as a learnware’s well-trained model, and the cor-
responding specifications are used together to construct the
learnware dock system. Moreover, the data not included
in the 22 tasks is treated as the 22 user requirements. For
each user requirement, the system contains 22 candidate

6
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Table 1. The result of Pre@k (%) metric in the useful learnwares
identification under different label space settings.

LABEL SETTING METHODS SIZE PRE@1 PRE@2

HOMOGENEOUS
LABEL SPACE

RKME 20 50.00 77.27
100 40.91 63.64

RKME-W 20 100.00 100.00
100 100.00 100.00

LANE
K×5 90.91 100.00
K×10 95.94 100.00

DALI
K×5 100.00 100.00
K×10 100.00 100.00

HETEROGENEOUS
LABEL SPACE

RKME 20 45.46 54.55
100 59.10 63.63

RKME-W 20 63.64 68.18
100 63.64 68.18

LANE
K×5 63.64 68.18
K×10 63.64 63.64

DALI
K×5 68.18 72.73
K×10 63.64 63.64

learnwares. In the heterogeneous label space setting, we
treat data from the 11 domains and label spaces C/D as the
user requirements, and the data from the 11 domains and
label spaces A/B as the developer tasks. In this setting, no
learnware in the system shares the same label space as the
user requirement. Here, we use Pre@k (Guo et al., 2023)
as the evaluation metric for this experiment to assess the
performance of the learnware dock systems, constructed
with different methods under two label space settings, in
identifying useful learnwares based on user requirements.
The Pre@k metric is defined as:

Pre@k =
1

T

T∑
t=1

I(πfbestt ≤ k), (13)

where πf is ranked from smallest to largest based on the
similarity measure between the learnware specifications and
the requirement specification, while also considering the
performance of each learnware model f on requirement
(ranked from largest to smallest). T represents the num-
ber of requirements. The specific experimental results are
shown in Table 1. The results show that the proposed DALI
approach achieves precise identification of useful learnwares
in homogeneous label space and maintains high identifica-
tion accuracy even in the more challenging heterogeneous
environment. Furthermore, under two different specification
sizes, the proposed approach outperforms or matches other
methods in both label space scenarios.

5.3 Mixed Task Setting

One important purpose of learnware paradigm is to enable
well-trained models in the learnware dock system to be used
”beyond the capabilities of any single model”. Therefore,
we use the mixed task setting to validate the proposed ap-
proach. In this setting, we have 11 domains × 2 label spaces

Table 2. The result of superclass accuracy (%) and quality (%) in
the mixed task setting of learwnare paradigm. Noting that Label
refers to the real label of the specification.

METHODS SIZE ACC QUALITY LABEL?

RKME 20 63.64 - ×
100 90.91 - ×

RKME-W 20 100.00 - ×
100 100.00 - ×

LANE
K×5 95.94 53.19

√

K×10 100.00 90.23
√

DALI
K×5 100.00 75.68

√

K×10 100.00 94.05
√

(A and B) = 22 developer tasks as superclasses, i.e., 22 su-
perclasses; and label space A ∪B × 11 domains = 11 user
requirement tasks. Thus, each requirement task contains
two superclasses, i.e., each requirement task requires two
corresponding learnware to be solved. This ensures that no
single learnware model in the system can solve the require-
ment independently, but rather, a combination of models is
required to address the requirement. Furthermore, in order
to evaluate the performance of the learnware dock system
constructed by each specification method, it is implemented
here by evaluating the accuracy of the system in identifying
useful learnware, i.e., the superclass accuracy. Meanwhile,
our proposed method is to generate a class specification. In
order to verify the inter-class discriminability of the class
specification, it is evaluated here by accessing the class
accuracy of the corresponding specifications through the de-
veloper’s pre-trained model test, i.e., quality. Table 2 shows
that the proposed approach outperforms or matches other
methods in both metrics under the mixed task setting. More-
over, the DALI approach outperforms the LANE method in
quality metrics, indicating that the DALI provides a superior
specification quality compared to methods that only capture
the mastered feature distribution of the model. Note that the
specifications of the related RKME methods do not have
labels, so the quality assessment cannot be performed.

5.4 Further Analysis

Privacy protection analysis. Privacy protection in the spec-
ification has always been a key concern in the learnware
paradigm. Here, we assess the privacy protection perfor-
mance of the proposed approach using the Binary Classifier
based Membership Inference Attack (MIA) in the White-
Box Setting method (Hu et al., 2022). In this method, the
Table 3. The prediction correctness (%) result of the Membership
Inference Attack in the White-Box Setting method.

METHODS ACCURACY ROC PRECISION

RANDOM 90.55±0.16 90.55±0.16 84.48±0.30
RKME 66.13±0.81 66.13±0.81 60.32±0.44
LANE 64.00±0.52 64.00±0.52 58.55±0.27
DALI 64.57±0.49 64.57±0.49 58.92±0.24
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(a)DALI (c) RKME(b)LANE

Figure 1. Visualization of the training data and specification from the task perspective.

(a)DALI (b)LANE

Figure 2. Visualization of the training data and specification from
the task class perspective.

target model is obtained using the training data as mem-
ber data, and the feature representations of non-member
specification and member data are recorded in the target
model. Then, a binary classification attack model is trained
using the recorded feature representations. Finally, the at-
tack model predicts whether the specification corresponds
to member or non-member, and the evaluation is performed
using three classification metrics: Accuracy, ROC and Pre-
cision. Note that in this experiment, the specification size is
set to 100, and the random method involves randomly select-
ing 100 samples from the training data as no-member data.
Table 3 shows that, except for the random method, other
specification methods exhibit privacy protection capability.

Visualization analysis. To further highlight the superior
specification quality of the DALI approach, we use the t-
SNE method to visually represent the training data from
different domains and the corresponding specifications un-
der various methods. Figure 1 shows that all three methods
effectively enable the specifications to capture the feature
distributions of the tasks that the model is proficient in.
Moreover, we provide a visualization of the class data and
class specifications from the task, as shown in Figure 2.
It is apparent that the DALI approach’s class specification
is more discriminative than the class specification of the
LANE method. This indicates that the specification, by cap-
turing both the model’s discriminative performance and the
mastered feature distribution, achieves an adequate charac-
terization of the model’s capabilities and specialties.

Table 4. Ablation study results of DALI approach for identifying
useful learnwares by Pre@k metric under different label space
settings.

LABEL SETTING Ldis LMMD PRE@1 PRE@2

HOMOGENEOUS
LABEL SPACE

✓ 59.09 90.91
✓ 90.91 100.00

✓ ✓ 100.00 100.00

HETEROGENEOUS
LABEL SPACE

✓ 59.09 63.64
✓ 63.64 68.18

✓ ✓ 68.18 72.73

Analysis of the ablation study. The objective function of
the proposed DALI approach consists of two components:
one that is discriminative alignment, denoted as Ldis, and
another that is distribution alignment, denoted as LMMD.
Here, we validate and analyze the effectiveness of these two
alignment components through an ablation study. Table 4
presents the ablation study results of the Pre@k evaluation
for identifying useful learnwares under different label space
settings. The results show that the specification generated
by each individual component achieves good accuracy in
identifying useful learnwares, while the combination of both
components yields the greatest performance improvement.

6 Conclusion
In summary, this paper introduces the DALI approach, which
achieves more adequate characterization of model’s capabil-
ities and specialties through discriminative alignment and
distribution alignment. Discriminative alignment is accom-
plished by modeling the model’s intrinsic discriminative
performance to ensure that the generated specification’s dis-
criminative performance aligns with its. Simultaneously,
distribution alignment is realized by ensuring the specifi-
cation’s class feature distribution closely resembles that of
the training data. This enables the constructed learnware
dock system to handle various label space scenarios be-
yond mixed tasks. Theoretical and experimental analyses
demonstrate that the proposed approach achieves superior
specification quality in the learnware paradigm.
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Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A Algorithm details
The detailed procedure of the proposed DALI approach is presented in Algorithm 1. First of all, the specification is initialized
through random sampling from the developer dataset D (Step 1). Then, among numerous random neural networks, the
model’s discriminative performance and the feature distributions of training dataset are encoded, allowing the specification to
align both discriminatively and distributively during the optimization process (Step 2-7). Finally, the generated specification
is combined with the well-established model to create the learnware.

The proposed approach, as an integral part of the learnware paradigm, will be applied in this framework. The learnware
paradigm is primarily divided into two stages: the submitting stage and the deploying stage. The detailed procedures for the
submitting and deploying stages based on the DALI approach are outlined in Algorithm 2 and Algorithm 3.

Algorithm 1 The DALI approach
Input: Dataset D = {(xi, yi)}ni=1 with pesudo-lables {ȳi}ni=1.
Parameter: Neural network ψθ parameterized with θ, random probability distribution over parameters Pθ, neural em-
bedding network ψϑ parameterized with ϑ, random probability distribution over parameters Pϑ, iteration T , learning rate
η.

1: Randomly initialize the specification R from D, with each class having a size of m, and the specification class label yz
is consistent with the true label y of the sampled data class;

2: for i = 1 to T do
3: Sample θ ∼ Pθ;
4: Sample ϑ ∼ Pϑ;
5: Compute the objective function DALI approach of Eq.(4);
6: Update z by the Adam optimizer;
7: end for

Output: Specifiction R = {(zj , yzj
)}Kmj=1 .

Algorithm 2 The Submitting stage
Input: Developer training dataset D = {xi, yi}ni=1, well-trained model f , and learnware dock sys-
tem.

1: Obtain the pseudo-labels {ȳi)}ni=1 by Eq.(10);
2: Obtain the specification R by Alg.1;
3: Learnware {f,R} is stored in the learnware dock system.

Algorithm 3 The Deploying stage

Input: User requirement dataset D̂ = {(x̂i, ŷi)}n̂i=1 and learnware dock system.
1: Load the learnware dock system;
2: Obtain the specification R̂ by Alg.1, where the pseudo-labels are substituted with true labels;
3: Compute W by Eq.(11);
4: Select c′ candidate learnware by W;
5: Compute the similarity between each class in the specification R̂ and each class in the c′ candidate learnware specification

by Eq.(12) to construct a bipartite graph;
6: Run the Hungarian algorithm to find the maximum matching for each specification R̂ class;
7: Reuse the corresponding learnware model f for the corresponding requirement D̂ class by maximum matching.

B Proof of the upper bound of DALI specification.
For further simplification in analysis, we transform the upper bound analysis of the DALI approach into separate upper
bound analyses for Ldis and LMMD, where the formulas of Ldis and LMMD are given Eq.(2) and Eq.(3).
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B.1 The upper bound of Ldis

According to the theorem 1 of (Mohri & Muñoz Medina, 2012), let Φ be the function defined over any sample D and R in
the (X × Y) by

Φ(R) = sup
ψθ∈ψ

E(x,y)∼D[ℓ(ψθ(x), ȳ)]− ℓ((ψθ(z), yz)). (14)

where H ⊂ {ψ : X → Y}. In addition, ψθ is denoted as numerous random initialized neural networks under the distribution
Pθ. Now, we assume that (z, yz) ∈ R and (z′, y′z) ∈ R′ are two sample sets differing by one labeled point. We have:

Φ(R)− Φ(R′) ≤ sup
ψθ∈ψ

[ℓ(ψθ(z), yz)− ℓ(ψθ(z
′), y′z)] ≤M, (15)

where M is a constant and 0 ≤M ≤ 1. Thus, by the McDiarmid’s inequality theorem (McDiarmid, 1989), the following
holds:

Pr
R∼D

[Φ(R)− ER∼D[Φ(R)] > ϵ] ≤ exp(−2ϵ2

M
) (16)

Then, the bound of ER∼D[Φ(R)] is given as:

ER∼D[Φ(R)]

=ER∼D

[
sup
ψθ∈ψ

E(x,ȳ)∼D[ℓ(ψθ(x), ȳ)]− ℓ((ψθ(z), yz)

]

=E

[
sup
ψθ∈ψ

E(x,ȳ)∼D[ℓ(ψθ(x), ȳ)]− E(z,yz)∼R[ℓ(ψθ(z), yz)] + E(z,yz)∼R[ℓ(ψθ(z), yz)]− ℓ((ψθ(z), yz)

]

≤E

[
sup
ψθ∈ψ

E(x,ȳ)∼D[ℓ(ψθ(x), ȳ)]− E(z,yz)∼R[ℓ(ψθ(z), yz)]

]
+ E

[
sup
ψθ∈ψ

E(z,yz)∼R[ℓ(ψθ(z), yz)]− ℓ((ψθ(z), yz)

]

≤E

[
sup
ψθ∈ψ

(E(x,ȳ)∼D[ℓ(ψθ(x), ȳ)]− E(z,yz)∼R[ℓ(ψθ(z), yz)]) + sup
ψθ∈ψ

(E(z,yz)∼R[ℓ(ψθ(z), yz)]− ℓ((ψθ(z), yz))

]
≤discH(D, R) + sup

ψθ∈ψ
E(z,yz)∼R[ℓ(ψθ(z), yz)]− ℓ((ψθ(z), yz)]

≤discH(D, R) + 2ℜ(ψ, ℓq)
(17)

where ℜ(ψ, ℓq) is the empirical Rademacher complexity of the loss function ℓq and ℓq is the ℓq loss for some q ≥ 1,
ℓ(ψθ(x, ȳ)) = |ȳ′ − ȳ|q for ȳ, ȳ′ ∈ Y . It can be expressed as the upper bound of the hypothesis set H ⊂ {ψ : X → Y}.
From the (Mohri & Muñoz Medina, 2012), the Rademacher complexity ℜ(ψ, ℓq) ≤ qMq−1ℜ(ψ), where ℜ(ψ) is given as:

ℜ(ψ) = Eσ

[
sup
ψθ∈ψ

σℓ(ψθ(x), y)

]
. (18)

Therefore, by combining Eq.(16), (17) and (18), the upper bound of Ldis can be expressed as:

ℓ(ψθ(z), yz)− ℓ(ψθ(x), y) ≤ 2qMq−1ℜ(ψ) + discH(D, R) +M

√
log 1

ϵ

2
. (19)

B.2 The upper bound of LMMD

First, we perform the upper bound analysis for LMMD. Based on Definition 1 of (Mohri & Muñoz Medina, 2012), we
can obtain the Rademacher complexity of the network embedding function ψϑ with respect to |D|-sample. The specific
expression is

ℜD(ψ) = Eσ

 sup
ψϑ∈ψ

1

|D|

|D|∑
i=1

σiψϑ(xi)

 , (20)
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where σ = (σi, . . . , σD)
⊤, with σi independent uniform random variables taking values in {−1, 1}. According to (Golowich

et al., 2018), let ψ be the embedding network of depth l over the topological X , where each network parameter matrix
ϑj has Frobenius norm at most MF (j), and the activation function be a 1-Lipschitz and positve-homogeneous activation
function (such as the ReLU ). Then,

ℜD(ψ) ≤
B(

√
2 log(2)l + 1)

∏l
j=1MF (j)√

|D|
. (21)

where assuming the input ∥x∥ ≤ B. Let x and z be random variables defined on a topological space X , with respective
Borel probability measures p and q. Given observations D := {x1, . . . ,xn} and R := {z1, . . . ,zm}, independently and
identically distributed (i.i.d) for p and q, respectively. Moreover, we use the shorthand notation Ex[ψϑ(x)] := Ex∼p[ψϑ(x)]
and Ez[ψϑ(z)] := Ez∼q[ψϑ(z)] to denote expectations with respect to p and q, respectively, where x ∼ p denotes x has
distribution p. The ψ : Rd → Rd′ , where Rd is the toplogical space X , d≪ d′ and ϑ is the function parameter. Based on
the above definition, the Maximum Mean Discrepancy (MMD) can be expressed as:

MMD[ψ, p, q] := sup
ψϑ∈ψ

(Ex[ψϑ(x)]− Ez[ψϑ(z)]). (22)

A biased empirical estimate of the MMD (Gretton et al., 2006) is

MMDb[ψ,D, R] := sup
ψϑ∈ψ

 1

|D|

|D|∑
i=1

ψϑ(xi)−
1

|R|

|R|∑
j=1

ψϑ(zj)

 . (23)

Furthermore, according to (Garriga-Alonso et al., 2019), the output of a neural network ψϑ (CNN) can be viewed as a
Gaussian process under the constraints of an infinite number of (convolutional) filters. Assume the p and q are different, the
upper bound on the absolute difference between MMD[ψ, p, q] and MMDb[ψ,D, R] is expressed as:

|MMD[ψ, p, q]−MMDb[ψ,D, R]|

=

∣∣∣∣∣∣ supψϑ∈ψ
(Ep(ψϑ)− Eq(ψϑ))− sup

ψϑ∈ψ

 1

|D|

|D|∑
i=1

ψϑ(xi)−
1

|R|

|R|∑
j=1

ψϑ(zj)

∣∣∣∣∣∣
≤ sup
ψϑ∈ψ

∣∣∣∣∣∣(Ep(ψϑ)− Eq(ψϑ))−
1

|D|

|D|∑
i=1

ψϑ(xi) +
1

|R|

|R|∑
j=1

ψϑ(zj)

∣∣∣∣∣∣︸ ︷︷ ︸
△(p,q,D,R)

(24)

Next, we provide an upper bound on the difference between △(p, q,D, R) and its expectation. Changing either of x or z in
△(p, q,D, R) results in changes in magnitude of at most 2ℜD(ψ)/|D| 12 or 2ℜR(ψ)/|R|

1
2 , respectively. We can apply the

McDiarmid’s inequality theorem (McDiarmid, 1989) to obtain

Pr (△(p, q,D, R)− 2ED,R[△(p, q,D, R)] > ϵ) ≤ exp(− ϵ|D||R|
2ℜD(ψ)2ℜR(ψ)2(|D|+ |R|)

), (25)
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where ϵ is the every arbitrary small and ϵ > 0. In addition, we exploit symmetrization to upper bound the expectation of
△(p, q,D, R). we have

ED,R[△(p, q,D, R)]

=ED,R sup
ψϑ∈ψ

∣∣∣∣∣∣Ep(ψϑ)−
1

|D|

|D|∑
i=1

ψϑ(xi)− Eq(ψϑ) +
1

|R|

|R|∑
j=1

ψϑ(zj)

∣∣∣∣∣∣
=ED,R sup

ψϑ∈ψ

∣∣∣∣∣∣ED′(ψϑ)−
1

|D|

|D|∑
i=1

ψϑ(xi)− ER′(ψϑ) +
1

|R|

|R|∑
j=1

ψϑ(zj)

∣∣∣∣∣∣
≤
(a)

ED,R,D′,R′ sup
ψϑ∈ψ

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

ψϑ(x
′
i)−

1

|D|

|D|∑
i=1

ψϑ(xi)−
1

|R|

|R|∑
j=1

ψϑ(z
′
j) +

1

|R|

|R|∑
j=1

ψϑ(zj)

∣∣∣∣∣∣
=ED,R,D′,R′,σ,σ′ sup

ψϑ∈ψ

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi(ψϑ(x
′
i)− ψϑ(xi)) +

1

|R|

|R|∑
j=1

σ′
j(ψϑ(z

′
j)− ψϑ(zj))

∣∣∣∣∣∣
≤
(b)
ED,D′,σ sup

ψϑ∈ψ

∣∣∣∣∣∣ 1

|D|

|D|∑
i=1

σi(ψϑ(x
′
i)− ψϑ(xi))

∣∣∣∣∣∣+ ER,R′,σ′ sup
ψϑ∈ψ

∣∣∣∣∣∣ 1

|R|

|R|∑
j=1

σ′
j(ψϑ(z

′
j)− ψϑ(zj))

∣∣∣∣∣∣
≤
(c)
2[ℜD(ψ, p) + ℜR(ψ, q)].

(26)

where (a) uses Jensen’s inequality, (b) uses the triangle inequality, (c) substitutes Definition 20. By combining Eq.(24) and
Eq.(26), we derive the final upper bound result, specifically given by:

Pr (△(p, q,D, R)− 2[ℜD(ψ, p) + ℜR(ψ, q)] > ϵ) ≤ exp(− ϵ|D||R|
2ℜD(ψ)2ℜR(ψ)2(|D|+ |R|)

) (27)

Therefore, the bound of LMMD is expressed as:

LMMD(D, R) ≤ 2ℜD + 2ℜR + ℜDℜR

√
(|D|+ |R|) log 1

ϵ

2|D||R|
(28)

where the definition of ℜ(ψ, p) is similar to ℜ(ψ) by giving in Eq.(21).

C Proof of Proposition 4.5.

Based on the Assumption 4.1, we assume that the random neural network ψθ : Rd → R1 to be the 2-layer network with
Binary Cross-Entropy Loss and the random neural embedding network ψϑ : Rd → Rd′ to be the 2-layer network for the
sake of inference and analysis. The activation function in both networks is set to ReLU, denoted as ρ. Thus, from a specific
class, the objective function of the DALI approach, represented by Eq.(4), can be rewritten as:

g(
1

|D|

|D|∑
i=1

ℓ0−1(ρ(θ,xi), ȳi))−
1

|R|

|R|∑
j=1

ℓ0−1(ρ(θ, zj), yzj
)︸ ︷︷ ︸

ddis

) +
1

|D|

|D|∑
i=1

ρ(ϑ · xi)−
1

|R|

|R|∑
j=1

ρ(ϑ · zi)︸ ︷︷ ︸
dMMD

, (29)

where
ℓ0−1(xi, ȳi) = ȳi logΘ(xi) + (1− ȳi) log(1−Θ(xi)) (30)

and Θ(x) = 1/(1 + exp(−x)) is the sigmoid activate function for binary classification.

Since each element θi,j of the i-th layer network parameter θi exists as θi,j
i.i.d∼ N (0, 1), for a given input vector

x = [xj ]1≤j≤d ∈ Rd, the operation of this network layer without activation function is given as (Dong et al., 2022):

h = θ · x = [

d∑
j=1

θi,jxj ]i≤i≤d′ = [hi]i≤i≤d′ ∈ Rk, (31)
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where hi
i.i.d∼ N (0,

∑d
j=1 x

2
j ). Then, since activation function ρ(x) := max(0, x), ρ(h) = [max(0, hi)]i≤i≤k ∈ Rk.

Define Y = max(0, X), where the random variable X ∼ N (0, σ2). Moreover, H is following the same distribution of
B|X|, where B ∼ Bernoulli( 12 ) indenpent of X and EX [H] = EB [B]EX [|X|]. As a result, for each input of activation
function, we have the corresponding ouput is given as

ρ(y) = ρ(θx) = B⊙ |θx|, (32)

where ⊙ is element-wise multiplication and B = [Bi]1≤i≤k. By substituting the above formula into Eq.(29), we can obtain
further rewriting of ddis and dMMD, which are expressed as:

ddis =
1

|D|

|D|∑
i=1

ℓ0−1(θB
x
i sgn(θxi)xi, ȳi)−

1

|R|

|R|∑
j=1

ℓ0−1(θB
z
j sgn(θzj)zj , yzj ) (33)

and

dMMD = ϑ

 1

|D|

|D|∑
i=1

Bxi sgn(ϑxi)xi −
1

|R|

|R|∑
j=1

Bzj sgn(ϑzj)zj

 . (34)

In the above of Eq.(36) and Eq.(37), sgn(x) denote the sign of x that |x| = sgn(x)x. Since this focuses on a specific class,
the vector of Bernoulli random variable Bx

i reduces to the single random variable Bxi .

To simplify the derivation, an auxiliary variable φ is introduced, defined as:

φθ,xi
= Bxi sgn(θxi). (35)

The ddis and dMMD can be rewritten as:

ddis =
1

|D|

|D|∑
i=1

ℓ0−1(φθ,xiθxi)xi, ȳi)−
1

|R|

|R|∑
j=1

ℓ0−1(φθ,zjθzj , yzj )

=
1

|D|

|D|∑
i=1

(ȳi logΘ(φθ,xi
θxi) + (1− yi) log(1−Θ(φθ,xi

θxi)))

− 1

|R|

|R|∑
j=1

(yzj
logΘ(φθ,zj

θzj) + (1− yzj
) log(1−Θ(φθ,zj

θzj)))

(36)

and

dMMD = ϑ

 1

|D|

|D|∑
i=1

φϑ,xi
xi −

1

|R|

|R|∑
j=1

φϑ,zj
zj

 . (37)

For each specification data point zs, the derivatives Ldis and LMMD are given as:

∂Ldis
∂zs

= Eθ

[
ddis√
d2
dis + α

∂ddis
∂zs

]
(38)

and
∂LMMD

∂zs
= Eϑ

[
(dMMD)

2

∂zs

]
= Eϑ

[
2(
∂dMMD

∂zs
)dMMD

]
, (39)

where
∂ddis
∂zs

= − 1

|R|
(yzs

−Θ(φθ,zs
θzs))(φθ,zs

θ⊤) (40)

and
∂dMMD

∂zs
= − 1

|R|
φϑ,xi

ϑ⊤. (41)
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Therefore, the gradient of Ldis and LMMD on zs are given as:

∂Ldis
∂zs

= Eθ

[
ddis√
d2
dis + α

(− 1

|R|
(yzs

−Θ(φθ,zs
θzs))(φθ,zs

θ⊤))

]

= Eθ

[
ddis√
d2
dis + α

(− 1

|R|
(yzs

−Θ(Bzs sgn(θzs)θzs))(B
z
s sgn(θzs)θ

⊤))

]
,

(42)

and
∂LMMD

∂zs

= Eϑ

[
2(− 1

|R|
φϑ,zs

ϑ⊤)dMMD

]

= Eϑ

− 2

|R|
ϑ⊤ϑ(

1

|D|

|D|∑
i=1

φϑ,zs
φϑ,xi

xi −
1

|R|

|R|∑
j=1

φϑ,zs
φϑ,zj

zj)


= Eϑ

− 2

|R|
ϑ⊤ϑ(

1

|D|

|D|∑
i=1

Bzs sgn(ϑzs)B
x
i sgn(ϑxi)xi −

1

|R|

|R|∑
j=1

Bzs sgn(ϑzs)B
z
j sgn(ϑzj)zj)

 .

(43)

According to (Dong et al., 2022), we know that Eϑ[sgn(ϑx)sgn(ϑz)ϑ
⊤ϑ] ∈ Rd×d and

x⊤Eϑ[sgn(ϑx)sgn(ϑz)ϑ
⊤ϑ]z = Eϑ[(sgn(ϑx)ϑx)

⊤sgn(ϑzj)ϑzj ] =
∥x∥2∥z∥2

π
[(π − 2ϕ)cos(ϕ) + 2sin(ϕ)], (44)

where if x = z, Eϑ[sgn(ϑx)sgn(ϑz)ϑ
⊤ϑ] = Id, while Eϑ[sgn(ϑx)sgn(ϑz)ϑ

⊤ϑ] = −Id if x = −z. In fact, this
formula can be seen as a matrix depending on the angle ϕ between x and z.

In summary, in the DALI appoach, the initialization of z is randomly selected from D, ensuring that x ∼ z, D ∼ R
and sharing corresponding labels. Based on Eq.(42) and Eq.(43), it can be concluded that even though z and x undergo
transformations through two layers of a non-linear neural network, their classification performance and mean values can
still be preserved. During optimization, the aforementioned equations also indicate that each z is updated in the direction
that minimizes the task performance discrepancy and the pseudo-barycenter distance between datasets. Therefore, the
specification R not only aligns the class feature distributions but also aligns the discriminative ability during the optimization
process, ensuring that the specification can more comprehensively skecth the model’s capability.

The above reasoning is based on the assumption of a two-layer non-linear network. Extending this analysis to a multi-layer

The average loss of objective function Class mean discrepancy

Number of iterationsNumber of iterations

V
al

u
e

V
al

u
e

Figure 3. During the optimization iterations, the average loss value of the objective function for the DALI approach (left) and the class
mean discrepancy between the optimized specification and the training data (right).
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non-linear network still holds. If ∀z ∈ {zi|(zi, yzi
) ∈ R}, ∃x ∈ {(xi, yi) ∈ D}, z = x and y, yz ∈ H, we have

L(θl+1(ρl · · · (ρ1(θ1 · x))), ȳ)− L(θl+1(ρl · · · (ρ1(θ1 · z∗))), yz)+

1

|D|

|D|∑
n=1

ρl(ϑl · · · (ρ1(ϑ1 · xn)))−
1

|R|

|R|∑
m=1

ρl(ϑl · · · (ρ1(ϑ1 · z∗
m))) → 0.

(45)

Additionally, we provide auxiliary proof through experiments. In this case, data from label space A in the autumn domain of
the NICO dataset is selected as the task training data to generate specification. The training dataset comprises 10 classes,
and the specification size is set to 10 × 5. Throughout this process, we continuously record the average loss value of
the objective function for the DALI approach at each optimization iteration and the class mean discrepancy between the
optimized specification and the training dataset. Details are illustrated in the Figure 3. The experimental results show that
the DALI approach’s objective function reaches optimal performance after approximately 1000 iterations, while the class
mean discrepancy between the specification and the training data remains in the most similar state. This further confirms the
class pseudo-barycenter relationship between the specification and the training dataset, while also supporting the privacy
protection analysis of the DALI approach.

D Proof of Proposition 4.6
Suppose the number of training datasetD classes is one. Since the size of the specificationR, denoted asKm, is significantly
smaller than the size of training dataset D, denoted as n, and based on Assumption 4.2 and Proposition 4.5, in the objective
function’s optimization process of the DALI specification approach, we can obtain:

z∗
i = xj + ℓ(ψθ(x), ȳ)− ℓ(ψθ(z), yz) +

1

|D|

|D|∑
i=1

ψϑ(xi)−
1

|R|

|R|∑
j=1

ψϑ(zj) (46)

where the specification R is initialized with first |R| samples of D, i.e, ∀z ∈ {zi|(zi, yzi) ∈ R}, ∃x ∈ {(xi, yi) ∈ D},
z = x. Evidently, in the DALI approach, the discrepancy between the initial specification and the pseudo-barycenter of the
training data decreases as the specification size increases. Conversely, the discrepancy becomes more pronounced when the
specification size is smaller. This offers a compelling rationale for why a larger specification size could lead to data leakage.
In practice, due to differences in data size, the mean and classification performance of randomly sampled specification and
the training data are different. Consequently, the optimized z∗

i still exhibits certain differences in discriminative alignment
and distribution alignment. This ensures the ability of privacy protection.

E Implementation details
To validate that the proposed DALI approach can generate high-quality specification in the learnware paradigm, we use
RKME, RKME-W, and LANE specification methods as baselines. Detailed descriptions of these methods are provided as
follows:

• RKME (Wu et al., 2023): Using Kernel Mean Embedding (KME), a reduced set is generated in the Reproducing Kernel
Hilbert Space (RKHS) via Maximum Mean Discrepancy (MMD) as the specification.

• RKME-W (Guo et al., 2023): Building upon RKME, class-specific reduced model parameters are incorporated into the
reduced set to form the specification.

• LANE (Chen et al., 2025): In the random neural embedding space, specification is generated by aligning with the
inter-class feature distribution of the training data.

In the comparative experiments, the kernel functions of RKME and RKME-W are Gaussian kernels with a bandwidth
parameter of 2.0, and the reduced model of RKME-W achieves optimal parameters through ResNet-18 (He et al., 2016).
Furthermore, the parameters involved in the LANE method and the proposed DALI approach are identical, including a
batch size set to 64, a ConvNetBN (Rawat & Wang, 2017) network architecture, an activation function set to ReLU, and a
normalization layer set to GroupNorm.
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