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Abstract
Despite great advances in algorithms for multi-
label learning, research on the theoretical analysis
of generalization is still in the early stage. Some
recent theoretical results has investigated the gen-
eralization performance of multi-label learning
under several evaluation metrics, however, how
to reduce the dependency on the number of la-
bels, explicitly introduce label correlations, and
quantitatively analyze the impact of various in-
ductive biases in the generalization analysis of
multi-label learning is still a crucial and open
problem. In an attempt to make up for the gap
in the generalization theory of multi-label learn-
ing, we develop several novel vector-contraction
inequalities, which exploit the Lipschitz conti-
nuity of loss functions, and derive generaliza-
tion bounds with a weaker dependency on the
number of labels than the state of the art in the
case of decoupling the relationship among dif-
ferent components, which serves as theoretical
guarantees for the generalization of multi-label
learning. In addition, we derive the generaliza-
tion bound for Macro-Averaged AUC and analyze
its relationship with class-imbalance. The mild
bounds without strong assumptions explain the
good generalization ability of multi-label learning
with first-order label correlations and high-order
label correlations induced by norm regularizers.

1. Introduction
Multi-label learning is one of the most studied and impor-
tant machine learning paradigms in practice, in which each
object is represented by a single instance while being asso-

1School of Cyber Science and Engineering, Southeast Univer-
sity, Nanjing 210096, China 2Key Laboratory of Computer Net-
work and Information Integration (Southeast University), Ministry
of Education, China 3School of Computer Science and Engineer-
ing, Southeast University, Nanjing 210096, China. Correspon-
dence to: Min-Ling Zhang <zhangml@seu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ciated with a set of labels instead of a single label. The goal
of multi-label learning is to learn a hypothesis which can
predict the proper sets of labels for unseen instances. It has
made important advances in text categorization (Schapire
& Singer, 2000; Rubin et al., 2012), multimedia content
annotation (Boutell et al., 2004; Cabral et al., 2011), bioin-
formatics (Barutçuoglu et al., 2006; Cesa-Bianchi et al.,
2012) and other fields (Yu et al., 2005). Although multi-
label learning has achieved impressive empirical advances
across a wide range of tasks (Zhang & Zhou, 2014), the
problem of understanding multi-label learning theoretically
remains relatively under-explored.

As we all know, the generalization ability, i.e., the perfor-
mance of learning machines trained on certain datasets on
unseen data, of learning machines is an important ques-
tion of theoretical research in machine learning, and it is
no exception for multi-label learning. Efforts to explain
why multi-label models generalize well is an important
open problem in multi-label learning community. Uniform
convergence is a powerful tool in learning theory for under-
standing the generalization ability of learners, and it is also
used in the generalization analysis of multi-label learning
(Yu et al., 2014; Xu et al., 2016; Wu & Zhu, 2020; Wu et al.,
2021b;a). However, the progress on the generalization anal-
ysis of multi-label learning appears to be severely scarce. A
satisfactory and complete study of the generalization anal-
ysis for multi-label learning should include three aspects:
1) the reduction of the dependency on the number of labels
of the generalization bounds, 2) the explicit introduction
of label correlations in the generalization analysis, and 3)
the impact of various inductive biases on the generalization
performance. First of all, the generalization analysis of
multi-label learning is more difficult than that of traditional
supervised learning since their difference in problem set-
tings. In particular, the vector-valued output of multi-label
learning makes the typical theoretical results not applicable
to multi-label learning (Maurer, 2016; Wu & Zhu, 2020).
Hence, how to reduce the dependency on the number of
labels of the generalization bounds is a very critical prob-
lem. Secondly, the consideration of label correlations can
often effectively improve the generalization performance of
multi-label learning (Zhang & Zhou, 2014), so it is very nec-
essary to explicitly and formally introduce label correlations
in the generalization analysis. Finally, the impressive em-
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pirical success of multi-label learning algorithms motivates
us to further investigate the inductive biases induced by
these algorithms, e.g., the inductive bias induced by various
norm regularizers (Huang et al., 2016) or label-specific fea-
tures (Zhang & Wu, 2015; Hang & Zhang, 2022; Jia et al.,
2023). Therefore, theoretical research on generalization can
promote a better understanding of multi-label learning.

In this paper, we derive novel and tighter bounds based on
the Rademacher complexity for multi-label learning. Specif-
ically, for `2 Lipschitz loss, we improve the basic linear
dependent bound to be independent on the number of labels,
which decouples the relationship among different compo-
nents. For `∞ Lipschitz loss, we improve the square-root
dependent bound to be independent on the number of labels,
which also decouples the relationship among different com-
ponents. These bounds are tighter than the state of the art.
We also give several tight bounds for the coupling case to
study the impact of different types of label correlations on
the generalization analysis. Finally, we derive the general-
ization bound based on the label-based ranking multi-label
Rademacher complexity for Macro-Averaged AUC, and an-
alyze the relationship between Macro-Averaged AUC and
class-imbalance.

Our generalization bounds reduce the dependency on the
number of labels and account for different types of label
correlations. Major contributions of the paper include:

• We prove several novel vector-contraction inequalities
for the generalization analysis of multi-label learning,
which exploits the Lipschitz continuity of the loss func-
tion with respect to the `2 and `∞ norm and decouples
the relationship among different components.

• We derive generalization bounds for general function
classes with a weaker dependency on the number of
labels than the state of the art, which provides general
theoretical guarantees for multi-label learning with
different types of label correlations.

• We introduce the label-based ranking multi-label
Rademacher complexity and analyze the relationship
between Macro-Averaged AUC and class-imbalance
according to the generalization bound.

We structure our work as follows. We first introduce an
overview of the problem setting for multi-label learning,
the definitions of the related evaluation metrics and com-
plexity measures in Section 2. We then present our main
results in Sections 3, where we develop several novel vector-
contraction inequalities and derive bounds with a weaker
dependency on the number of labels than the state of the
art for `2 and `∞ Lipschitz loss, and study the impact of
different types of label correlations. In Section 4, we derive

the bound for Macro-Averaged AUC and analyze its rela-
tionship with class-imbalance. In Section 5, we provide a
comparison of our theoretical results with the related works.
Finally, we give a conclusion of our work in Section 6.

2. Preliminaries
In this section, we first present the problem setting for multi-
label learning. Secondly, we give the definitions of com-
monly used surrogate losses. Finally, we introduce the
related complexity measures involved in the main results.

2.1. Multi-Label Learning

In the context of multi-label learning, given a dataset
D = {(x1, Y1) , . . . , (xn, Yn)} with n examples which are
identically and independently distributed (i.i.d.) from a prob-
ability distribution P on X ×Y , where X ⊂ Rd denotes the
d-dimensional input space and Y = {y1, . . . , yc} denotes
the label space with c class labels, xi ∈ X , Yi ⊆ Y . Let
[n] := {1, . . . , n} for any natural number n and i ∈ [n].

Let Y = {−1,+1}c, i.e., each y = (y1, . . . , yc) is a binary
vector and yj = 1 (yj = −1) denotes that the j-th label
is relevant (irrelevant), j ∈ [c]. The task of multi-label
learning is to learn a multi-label classifier h ∈ H : X 7→
{−1,+1}c which assigns each instance with a set of rele-
vant labels. A common strategy is to learn a vector-valued
function f = (f1, . . . , fc) : X 7→ Rc and derive the classi-
fier by a thresholding function which dichotomizes the label
space into relevant and irrelevant label sets.

We consider the prediction function for each label of the
general form fj(x) = 〈wj , φ(x)〉, where φ represents a
nonlinear mapping. We define a vector-valued function
class of the multi-label learning as follows:

F = {x 7→ f(x) :f(x) = (f1(x), . . . , fc(x)),

fj(x) = 〈wj , φ(x)〉,x ∈ X , j ∈ [c]

w = (w1, . . . ,wc) ∈ Rd×c, α(w) ≤ Λ,

β(φ(x)) ≤ A,Λ > 0, A > 0}, (1)

where α represents a functional that constrains weights, β
represents a functional that constrains nonlinear mappings.

For any function f : X 7→ Rc, the quality of a predic-
tion on a single example (x,y) is measured by a loss
function L : Rc × {−1,+1}c 7→ R+. The goal is
to learn a hypothesis f ∈ F with good generalization
performance from the dataset D by optimizing the loss
L. The generalization performance is measured by the
expected risk: R(f) = E(x,y)∼P [L(f(x),y)]. We de-
note the empirical risk w.r.t. the training dataset D as
R̂D(f) = 1

n

∑n
i=1 L(f(xi),yi). In addition, we denote

the optimal risk as R∗ = inff∈F R(f) and denote the min-
imizer of the empirical risk as f̂∗ = arg minf∈F R̂D(f).
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The above definitions apply to Hamming loss, Subset loss
and Ranking loss.

For Macro-Averaged AUC, it involves the pairwise loss, so
we additionally define the corresponding risks. Maximiz-
ing Macro-Averaged AUC is equivalent to minimizing the
following empirical risk w.r.t. Macro-Averaged AUC:

R̂D(f) (2)

=
1

c

c∑
j=1

1∣∣X+
j

∣∣ ∣∣X−j ∣∣
∑
xi∈X+

j

∑
x′i∈X

−
j

`0/1 (fj(xi)− fj(x′i)) ,

where X+
j = {xi | yj = +1, i ∈ [n]} (X−j = {x′i | yj =

−1, i ∈ [n]}) corresponds to the set of test instances that are
relevant (irrelevant) to the j-th label. The expected risk w.r.t.
Macro-Averaged AUC is defined as R(f) = ED[R̂D(f)].

However, the above mentioned loss is typically the 0 − 1
loss, which is hard to handle in practice. Hence, one usually
consider its surrogate losses.

2.2. Related Evaluation Metrics

A number of evaluation metrics are proposed to measure
the generalization performance of different approaches for
multi-label learning. Here we focus on commonly used
evaluation metrics, i.e., Hamming loss, Subset loss, Ranking
loss and Macro-Averaged AUC, and their surrogate losses
are defined as follows:

Hamming Loss: LH(f(x),y) = 1
c

∑c
j=1 ` (yjfj(x)) ,

where the base convex surrogate loss ` can be various popu-
lar forms, such as the hinge, logistic and exponential loss.

Subset Loss: LS(f(x),y) = maxj∈[c] {` (yjfj(x))} .

Ranking Loss:

LR(f(x),y) =
1

|Y +| |Y −|
∑
p∈Y +

∑
q∈Y −

` (fp(x)− fq(x)) ,

where Y + (Y −) denotes the relevant (irrelevant) label index
set induced by y, and | · | denotes the cardinality of a set.

The surrogate loss for Macro-Averaged AUC:

LM (f(xi,x
′
i),y) =

1

c

c∑
j=1

` (fj(xi)− fj(x′i)) , (3)

where xi (x′i) corresponds to the instances that are relevant
(irrelevant) to the j-th label.

2.3. Related Complexity Measures

Here we use the Rademacher complexity to perform gener-
alization analysis for multi-label learning.

Definition 2.1 (Rademacher complexity). Let G be a class
of real-valued functions mapping from X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. The empirical
Rademacher complexity over G is defined by

<̂D(G) = Eε

[
sup
g∈G

1

n

n∑
i=1

εig (xi)

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables. In
addition, we define the worst-case Rademacher complexity
as <̃n(G) = supD∈Xn <̂D(G).

In multi-label learning, F is a class of vector-valued func-
tions, which makes traditional Rademacher complexity anal-
ysis methods invalid. A common practice is to use the multi-
label Rademacher complexity to bound the Rademacher
complexity of a loss function space associated with the
vector-valued function class F according to the vector-
contraction inequality in (Maurer, 2016).

Definition 2.2 (Multi-label Rademacher complexity). Let
F be a class of vector-valued functions mapping from X to
Rc. Let D = {x1, . . . ,xn} be a set with n i.i.d. samples.
The empirical multi-label Rademacher complexity over
F is defined by

<̂D(F) = Eε

sup
f∈F

1

n

n∑
i=1

c∑
j=1

εijfj (xi)

 ,
where each εij is an independent doubly indexed
Rademacher random variable, and fj (xi) is the j-th com-
ponent of f (xi).

Here we use the covering number to bound the Rademacher
complexity for multi-label learning. The covering number
can be bounded by the fat-shattering dimension (Srebro
et al., 2010; Lei et al., 2019; Zhang & Zhang, 2023):

Definition 2.3 (Covering number). Let F be a class of
real-valued functions mapping from X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. For any ε > 0,
the empirical `2 (or `∞) norm covering numberN2(ε,F , D)
(orN∞(ε,F , D)) w.r.t. D is defined as the minimal number
m of a collection of vectors v1, . . . ,vm ∈ Rn such that (vji
is the i-th component of the vector vj)√√√√ 1

n

n∑
i=1

(f (xi)− vji )2 ≤ ε.
(

or max
i=1,...,n

∣∣∣f (xi)− vji
∣∣∣ ≤ ε)

In this case, we call
{
v1, . . . ,vm

}
an (ε, `2)-cover (or

(ε, `∞)-cover) of F with respect to D. We also denote
N2(ε,F , n) = supDN2(ε,F , D) (or N∞(ε,F , n) =
supDN∞(ε,F , D)).

Definition 2.4 (Fat-shattering dimension). Let F be a
class of real-valued functions mapping from X to R. We
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define the fat-shattering dimension fatε(F) at scale ε >
0 as the largest p ∈ N such that there exist p points
x1, . . . ,xp ∈ X and witnesses s1, . . . , sp ∈ R satisfying:
for any δ1, . . . , δp ∈ {−1,+1} there exists f ∈ F with

δi (f(xi)− si) ≥
ε

2
, ∀i = 1, . . . , p.

3. Generalization Bounds Based on the
Rademacher Complexity

In this section, we derive several novel bounds under the
assumption that the loss is Lipschitz continuous w.r.t. `2
norm or `∞ norm. For `2 Lipschitz loss, we first introduce a
basic bound with a linear dependency on c, then we develop
a novel vector-contraction inequality and improve the bound
with no dependency on c, which is tighter than the state of
the art. For `∞ Lipschitz loss, we first introduce a basic
bound with a square-root dependency on c, then we develop
a novel vector-contraction inequality and improve the bound
with no dependency on c, which is tighter than the state of
the art in the decoupling case. We also give several tight
bounds for the coupling case to study the impact of different
types of label correlations on the generalization analysis.
The theoretical results in this section hold for surrogate
Hamming loss, surrogate Subset loss and surrogate Ranking
loss. The detailed proofs of the theoretical results in this
paper are provided in the appendix.

3.1. Generalization Bounds for `2 Lipschitz Loss

We first introduce the assumptions used, and we show that
for general function classes, Lipschitz continuity of the loss
function w.r.t. the `2 norm combined with the multi-label
Rademacher complexity yields basic generalization bounds
with a linear dependency on the number of labels, which
exploits the typical vector-contraction inequality (Maurer,
2016). Second, we develop a novel vector-contraction in-
equality and derive a tighter bound with no dependency on
the number of labels for `2 Lipschitz loss.

Assumption 3.1. Assume that the loss function and the
components of the vector-valued function are bounded:
L(·, ·) ≤ M , |fj(·)| ≤ B for j ∈ [c] where M > 0 and
B > 0 are constants.

Assumption 3.2. Assume that the loss function is µ-
Lipschitz continuous w.r.t. the `2 norm.

Assumption 3.1 is a relatively mild assumption. In fact,
when we consider the function class (1) for multi-label
learning, we often use the assumptions ‖wj‖2 ≤ Λ, φj is ρ-
Lipschitz w.r.t. the `2 norm and ‖xi‖2 ≤ A for any j ∈ [c],
i ∈ [n] to replace the boundedness of the components of the
vector-valued function. The following Proposition 3.3 also
illustrates that Assumption 3.2 is very mild.

Proposition 3.3 (Lemma 1 in (Wu & Zhu, 2020)). Assume
that the base loss function ` defined in Subsection 2.2 is
µ-Lipschitz continuous, then the surrogate Hamming Loss
is µ√

c
-Lipschitz w.r.t. the `2 norm, the surrogate Subset Loss

is µ-Lipschitz w.r.t. the `2 norm, and the surrogate Ranking
Loss is µ-Lipschitz w.r.t. the `2 norm.

3.1.1. A BASIC BOUND FOR `2 LIPSCHITZ LOSS

Using the `2 Lipschitz continuity of loss and the multi-label
Rademacher complexity, we have the following theorem:

Theorem 3.4. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.2 hold. Given a dataset D of size n. Then, for any
0 < δ < 1, with probability at least 1 − δ, the following
holds for any f ∈ F:

R(f) ≤ R̂D(f) +
2
√

2µcB√
n

+ 3M

√
log 2

δ

2n
.

Proof Sketch. We first use the multi-label Rademacher com-
plexity to bound the Rademacher complexity of the loss
function space associated with the vector-valued function
class F according to the typical vector-contraction inequal-
ity (Maurer, 2016), and then complete the proof with the Mc-
Diarmid’s inequality and the symmetrization technique.

Remark 3.5. The above bound with a linear dependency
on the number of labels indicates that good generaliza-
tion performance will be obtained when the number of
examples (

√
n) is larger than the number of labels (c),

but in practice, it is often encountered in the case of an
extremely large number of labels, that is, extreme multi-
label learning (Yu et al., 2014; Prabhu & Varma, 2014;
Yen et al., 2016; Liu & Shen, 2019). At this time, the
number of labels will probably be more than the num-
ber of examples, so the bound in Theorem 3.4 will not
be able to provide theoretical guarantees, thus prompting
us to develop the bound that is tighter on the number of
labels. Our analysis in Theorem 3.4 implies the follow-
ing inequality: Eε

[
supf∈F

1
n

∑n
i=1

∑c
j=1 εijfj (xi)

]
≤

cmaxj Eε
[
supfj∈Fj

1
n

∑n
i=1 εijfj (xi)

]
, which shows

that decoupling the relationship among different compo-
nents (since the maximization over j ∈ [c] is outside of
the expectation operator) will lead to bounds with a linear
dependency on c for general function classes. When consid-
ering kernel function classes, the dependency of the bounds
on c can be improved to square-root (Maurer, 2016; Wu &
Zhu, 2020; Wu et al., 2021a). Such improvements essen-
tially come from preserving the coupling among different
components reflected by the constraint, i.e., ‖w‖ ≤ Λ. As
a comparison, when ‖wj‖2 ≤ Λ for any j ∈ [c], if we
consider the group norm ‖ · ‖2,2, we have ‖w‖2,2 ≤

√
cΛ,
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which means that these improved bounds still suffer from
a linear dependency on the number of labels. Hence, the
improvement in the preservation of coupling by a factor of√
c benefits from replacing Λ with

√
cΛ in the constraint

to some extent. This reveals that in order to improve the
existing bounds, we need to improve the dependency on the
number of labels in the decoupling case.

3.1.2. TIGHTER BOUNDS FOR `2 LIPSCHITZ LOSS

We develop a novel vector-contraction inequality for `2 Lips-
chitz loss, which decouples the relationship among different
components and guarantees that the derived generalization
bounds are tighter than the state of the art.

We show that the Rademacher complexity of the loss func-
tion space associated with F can be bounded by the worst-
case Rademacher complexity of the projection function class
P(F). We first define a function class P consisting of pro-
jection operators pj : Rc 7→ R for any j ∈ [c] which project
the c-dimensional vector onto the j-th coordinate. Then, we
have P(F) = {(j,x) 7→ pj(f(x)) : pj(f(x)) = fj(x),
f ∈ F , (j,x) ∈ [c]×X}. With the above definitions, we
develop the following vector-contraction inequality:
Lemma 3.6. Let F be a vector-valued function class of the
multi-label learning defined by (1). Let Assumptions 3.1
and 3.2 hold. Given a dataset D of size n. Then, we have

<̂D(F) ≤ 48µ
√
c<̃nc(P(F))

(
1 + log

1
2 (nc) · log

M
√
n

µB

)
,

where <̃nc(P(F)) is the worst-case Rademacher complex-
ity of the projection function class.

Proof Sketch. First, the Rademacher complexity of the loss
function space associated with F can be bounded by the
empirical `2 norm covering number with the refined Dud-
ley’s entropy integral inequality. Second, according to the
Lipschitz continuity w.r.t the `2 norm, the empirical `2 norm
covering number of F can be bounded by the empirical `2
norm covering number of P(F). Third, the empirical `2
norm covering number of P(F) can be bounded by using
Sudakov’s minoration (Wainwright, 2019), which bounds
the `2 norm covering number of a function class by the
expectation of a Gaussian process indexed by the function
class, and the expectation of the Gaussian process can be
bounded by the worst-case Rademacher complexity of the
projection function class P(F). Hence, the problem is trans-
ferred to the estimation of the worst-case Rademacher com-
plexity. Finally, we estimate the lower bound of the worst-
case Rademacher complexity of P(F), and then combined
with the above steps, the Rademacher complexity of the loss
function space associated with F can be bounded.

With the vector-contraction inequality above, we can derive
the following tight bound for `2 Lipschitz loss:

Theorem 3.7. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.2
and 3.1 hold. Given a dataset D of size n. Then, for any
0 < δ < 1, with probability at least 1 − δ, the following
holds for any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

96Bµ
(

1 + log
1
2 (nc) · log M

√
n

µB

)
√
n

.

Proof Sketch. We first upper bound the worst-case
Rademacher complexity <̃nc(P(F)), and then combined
with Lemma 3.6, the desired bound can be derived.

Remark 3.8. Although Lemma 3.6 shows a factor of
√
c,

the term <̃nc(P(F)) ≤ B√
nc

, which makes the Rademacher
complexity of the loss function space associated withF (i.e.,
<̂D(F)) actually independent on c, and results in a tighter
bound than theO(c/

√
n) bound in Theorem 3.4 with a faster

convergence rate Õ(1/
√
n). Lemma 3.6 decouples the rela-

tionship among different components (since the supremum
over j ∈ [c] is outside of the expectation operator by the
definition of P(F)). Hence, the bound with no dependency
on c in Theorem 3.7 is clearly tighter than the state of the
art with square-root dependency on c in (Lei et al., 2015;
Maurer, 2016; Wu & Zhu, 2020; Wu et al., 2021a) for `2
Lipschitz loss assumption, where the analyzes all preserve
the coupling among different components, not to mention,
as discussed in Remark 3.5, the constraint on preserving
the coupling (‖w‖ ≤ Λ) directly implies the improvement
by a factor of

√
c. In fact, decoupling the relationship or

preserving the coupling among different components corre-
sponds to different types of label correlations in multi-label
learning (Zhang & Zhou, 2014). The former corresponds
to first-order label correlations (which tackle multi-label
learning problem by decomposing it into a number of in-
dependent binary classification problems, i.e., ignorance
of label correlations), and the latter corresponds to high-
order label correlations (which tackle multi-label learning
problem by exploiting high-order relationships among la-
bels) induced by norm regularizers. The assumption of the
coupling case that holds for many learning scenarios (e.g.,
multi-class learning) does not hold in multi-label learning
methods with first-order label correlations. This means that
we need to develop new vector-contraction inequalities to
handle the assumption of the decoupling case. The projec-
tion function class is used to help handle the generalization
analysis in the decoupling case. The above bounds provide
theoretical guarantees for first-order label correlations meth-
ods, e.g., Binary Relevance methods (Boutell et al., 2004;
Zhang & Zhou, 2014; Zhang & Wu, 2015; Hang & Zhang,
2022). Furthermore, according to the Proposition 3.3, we
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can obtain a Õ(1/
√
nc) bound for `2 Lipschitz surrogate

Hamming Loss in the decoupling case.

3.2. Generalization Bounds for `∞ Lipschitz Loss

We first introduce the assumption of Lipschitz continuity
w.r.t. the `∞ norm, and we derive a basic bound with a
square-root dependency on c for general function classes by
refining Theorem 1 in (Foster & Rakhlin, 2019). Second,
we develop a novel vector-contraction inequality and derive
a tighter bound with no dependency on c for `∞ Lipschitz
loss in the decoupling case, up to logarithmic terms, and we
also give several bounds with no dependency on c for `∞
Lipschitz loss in the coupling case.

Assumption 3.9. Assume that the loss function L is µ-
Lipschitz continuous w.r.t. the `∞ norm, that is:∣∣L(f(x), ·)− L(f ′(x), ·)

∣∣ ≤ µ∥∥f(x)− f ′(x)
∥∥
∞ ,

where µ > 0, ‖t‖∞ = maxj∈[c] |tj | for t = (t1, . . . , tc).

In fact, the commonly used loss functions in multi-label
learning actually satisfy the Lipschitz continuity w.r.t. the
`∞ norm, and it has been considered in some literature (Lei
et al., 2019; Wu et al., 2021b). The following Proposition
3.10 further illustrates that Assumption 3.9 is very mild.

Proposition 3.10. Assume that the base loss ` defined in
Subsection 2.2 is µ-Lipschitz continuous, then the surrogate
Hamming Loss is µ-Lipschitz w.r.t. the `∞ norm, the surro-
gate Subset Loss is µ-Lipschitz w.r.t. the `∞ norm, and the
surrogate Ranking Loss is 2µ-Lipschitz w.r.t. the `∞ norm.

3.2.1. A BASIC BOUND FOR `∞ LIPSCHITZ LOSS

Using the Lipschitz continuity w.r.t. the `∞ norm, we first
show that the Rademacher complexity of the loss function
space associated with F can be bounded by the worst-case
Rademacher complexity of the restriction of the function
class along each coordinate with timing a factor of Õ(

√
c).

Then, we derive the basic bound with a square-root depen-
dency on the number of labels in the decoupling case.

Lemma 3.11. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.9 hold. Given a dataset D of size n. Then, for any
0 < η < 1, 0 < a < 1, we have

<̂D(F) ≤48
√

2Eµ

a

√
cmax

j
<̃n (Fj)×(

1 + log
1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
,

where <̃n (Fj) is the worst-case Rademacher complexity,
Fj is the restriction of the function class along the j-th
coordinate, fj ∈ Fj and E > 0 is an absolute constant.

Proof Sketch. We obtain the lower bound of the worst-case
Rademacher complexity <̃n (Fj) through the Khintchine-
Kahane inequality, combined with the refined Theorem 1 in
(Foster & Rakhlin, 2019), the Rademacher complexity of the
loss function space associated with F can be bounded.

With the vector-contraction inequality above, we can derive
the following basic bound for `∞ Lipschitz loss:

Theorem 3.12. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.9 hold. Given a dataset D of size n. Then, for any
0 < δ, η, a < 1, there exists an absolute constant E > 0
such that with probability at least 1− δ, the following holds
for any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

96
√

2EµB

a

√
c

n
×(

1 + log
1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
.

Proof Sketch. We first upper bound the worst-case
Rademacher complexity <̃n (Fj), and then combined with
Lemma 3.11, the desired bound can be derived.

Remark 3.13. Lemma 3.11 is not a direct application of The-
orem 1 in (Foster & Rakhlin, 2019) which absorbs all terms
independent of c and n into an unspecified numerical con-
stant and yields a logarithmic term of orderO(log

3+η
2 (
√
n)).

We refine the proof of Theorem 1 in (Foster & Rakhlin,
2019), bound the relevant constant terms and imporve the
order of the logarithmic term toO(log

1+η
2 (
√
n) · log(

√
n
c )).

The term maxj <̃n (Fj) ≤ B√
n

means that Lemma 3.11 de-
couples the relationship among different components, which
results in a tighter bound than the O(c/

√
n) bound in Theo-

rem 3.4 with a faster convergence rate Õ(
√
c/n).

3.2.2. TIGHTER BOUNDS FOR `∞ LIPSCHITZ LOSS

We first give a corollary with no dependency on c, which
preserves the coupling among different components.

Corollary 3.14. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.9 hold. Given a dataset D of size n. Then, for any
0 < δ < 1, with probability at least 1 − δ, the following
holds for any f ∈ F:

1.) If α(w) := ‖w‖, β(φ(x)) := supx∈X ,j∈[c] ‖φ̃j(x)‖∗,
and ‖ · ‖∗ is the dual norm of ‖ · ‖, we have:

R(f) ≤ R̂D(f) +
36µΛA log

3
2
2 (
√

2n
3
2 c)√

n
+ 3M

√
log 2

δ

2n
.

6



Generalization Analysis for Multi-Label Learning

2.) If α(w) := ‖w‖Sp , β(φ(x)) := maxi∈[n] ‖φ(xi)‖2,
when 1 ≤ p ≤ 2, we have:

R(f) ≤ R̂D(f) +
36µΛA log

3
2
2 (
√

2n
3
2 c)√

n
+ 3M

√
log 2

δ

2n
,

when p > 2, we have:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

36µΛAmin{c, d}
1
2−

1
p log

3
2
2 (
√

2n
3
2 c)√

n
.

The Schatten-p norm is defined as the `p norm of the singu-
lar value vector of a matrix, i.e., ‖w‖Sp = ‖σ(w)‖p, where
the singular values are sorted in non-increasing order. For
any x ∈ X and j ∈ [c], the notation φ̃j(x) is defined by
φ̃j(x) := (0, . . . , 0︸ ︷︷ ︸

j−1

, φ(x), 0, . . . , 0︸ ︷︷ ︸
c−j

) ∈ Rd×c.

Proof Sketch. We first show that the Rademacher complex-
ity of the loss function space associated with F can be
bounded by the worst-case Rademacher complexity of F̃ ,
which refines Theorem 5 in (Lei et al., 2019) (i.e., <̂D(F) ≤
16
√

log 2µ
√
c<̃nc(F̃)(1 + log

3
2
2

ΛAn
√
c

<̃nc(F̃)
)), where F̃ :={

v 7→ 〈w,v〉 : w,v ∈ Rd×c, α(w) ≤ Λ, β(v) ≤ A,v ∈ S̃
}

and S̃ = {φ̃j(xi) : j ∈ [c], i ∈ [n]}. Then, we upper
bound <̃nc(F̃) for different norm regularizers. Combining
these results, the desired bounds can be derived.

Remark 3.15. Corollary 3.14 for preserving the coupling
case has less novelty, which has the same order Õ(1/

√
n)

as the results in (Lei et al., 2019; Wu et al., 2021b), since
these results all use the same vector-contraction inequality,
i.e., Theorem 5 in (Lei et al., 2019). However, here we are
more concerned with investigating the impact of the label
correlation induced by the norm regularizer on the gener-
alization analysis. The bounds here involve a constraint
on the overall weight w, which consider that the compo-
nents share some constraint properties with each other, that
is, the label correlation induced by the norm regularizer.
The above bounds involve label correlations induced by the
general norm regularizer (case 1) and the Schatten-p norm
regularizer (case 2), respectively. Trace norm regularizer,
corresponding to Schatten-p norm regularizer with p = 1,
is a common practice to consider the label correlation in
multi-label learning, which imposes a low-rank constraint
on the spectrum of w. The bounds here also explain the
good generalization ability of multi-label learning with the
label correlation induced by the trace norm regularizer.

Then, we develop a novel vector-contraction inequality,
which guarantees that the derived bounds are tighter than
the state of the art in the decoupling case.

Lemma 3.16. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.9 hold. Given a dataset D of size n. Then, for any
0 < η < 1, 0 < a < 1, E > 0, we have

<̂D(F) ≤96
√
Eµ

a

√
c<̃nc(P(F))×(

1 + log
1+η
2 (

8

5B

√
nc) · log(

M
√
n√

EµB
)

)
,

where <̃nc(P(F)) is the worst-case Rademacher complex-
ity of the projection function class.

Proof Sketch. The overall proof idea is similar to Lemma
3.6, but there are two obvious differences. First of all, the
covering numbers involved in the proof here are all `∞
norm covering numbers instead of `2 norm covering num-
bers, which makes the proof techniques involved completely
different. Secondly, in the third step, instead of using Su-
dakov’s minoration inequality, we use the fat-shattering di-
mension to bound the empirical `∞ norm covering number
of P(F), and the fat-shattering dimension can be bounded
by the worst-case Rademacher complexity of P(F).

Theorem 3.17. Let F be a vector-valued function class of
the multi-label learning defined by (1). Let Assumptions 3.1
and 3.9 hold. Given a dataset D of size n. Then, for any
0 < δ, η, a < 1, there exists an absolute constant E > 0
such that with probability at least 1− δ, the following holds
for any f ∈ F:

R(f) ≤R̂D(f) + 3M

√
log 2

δ

2n
+

192
√
EµB

a

1√
n
×(

1 + log
1+η
2 (

8

5B

√
nc) · log(

M
√
n√

EµB
)

)
.

Proof Sketch. We first upper bound <̃nc(P(F)), then com-
bined with Lemma 3.16, the bound is immediate.

Remark 3.18. Lemma 3.16 decouples the relationship
among different components, and the term <̃nc(P(F)) ≤
B√
nc

, which makes the Rademacher complexity <̂D(F)

actually independent on c, and results in a tighter bound
than the Õ(

√
c/n) bound in Theorem 3.12 with a faster

convergence rate Õ(1/
√
n). How to develop novel vector-

contraction inequalities that can induce Õ(1/
√
n) bounds

and deal with the assumption of the decoupling case are the
two most critical difficulties in deriving tighter bounds. The
introduction of the projection function class plays an impor-
tant role in solving these two difficulties. It improves the
vector-contraction inequalities by a factor of

√
c and handles

the assumption of the decoupling case indirectly. Theorem
3.17 improves the bounds from Õ(

√
c/n) to Õ(1/

√
n) for

7
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`∞ Lipschitz Loss in the decoupling case, and explains
the good generalization ability of multi-label learning with
first-order label correlations.

4. Generalization Analysis for
Macro-Averaged AUC

Macro-Averaged AUC is a typical label-based ranking met-
ric (Zhang & Zhou, 2014). Here we analyze the relationship
between Macro-Averaged AUC and class-imbalance accord-
ing to the generalization bound. We use Lemma 3.11 for the
generalization analysis, since improving the dependency on
the number of labels is not our main concern here.

Rademacher complexity has proved to be a powerful data-
dependent measure of hypothesis space complexity (Bartlett
& Mendelson, 2002; Koltchinskii & Panchenko, 2002).
However, a sequence of pairs of i.i.d. individual obser-
vation in (2) is no longer independent, which makes stan-
dard techniques in the i.i.d case for traditional Rademacher
complexity inapplicable for Macro-Averaged AUC. We con-
vert the non-sum-of-i.i.d pairwise function to a sum-of-i.i.d
form by using permutations in U-process (Clémençon et al.,
2008). We denote

∣∣X+
j

∣∣ and
∣∣X−j ∣∣ in (2) as sj and tj ,

rj = min{sj , tj}, r0 = minj∈[c]{rj}, and sj + tj = n for
any j ∈ [c]. Then, we have the following definition:

Definition 4.1. Let F be a class of vector-valued functions
mapping from X to Rc and ` be the base loss defined in (3).
Let D = {x1, . . . ,xn} be a set with n i.i.d. samples. The
empirical label-based ranking multi-label Rademacher
complexity of a loss function space associated with the
vector-valued function class F is defined by

<̂D(F) = Eε

sup
f∈F

1

c

c∑
j=1

1

rj

rj∑
i=1

εij` (fj(xi)− fj(x′i))

 ,
where each εij is an independent doubly indexed
Rademacher random variable, and fj (xi) is the j-th
component of f (xi). We refer to the expectation
<(F) = ED[<̂D(F)] as the label-based ranking multi-label
Rademacher complexity of F .

With this definition, we then derive the bound as follows:

Theorem 4.2. LetF be a vector-valued function class of the
multi-label learning defined by (1) and the loss be Macro-
Averaged AUC. Let Assumptions 3.1 and 3.9 hold. Given
a dataset D of size n. Then, for any 0 < δ < 1, with
probability at least 1−δ, the following holds for any f ∈ F :

R(f̂∗)−R∗ = Õ(
√
c/r0).

Proof Sketch. First, by using the U-process technique, we
bound E[R(f̂∗)]−R∗ with the label-based ranking multi-
label Rademacher complexity. Second, combining with

Lemma 3.11 and bounding the worst-case Rademacher
complexity, we can upper bound the label-based ranking
multi-label Rademacher complexity. Finally, with the Mc-
Diarmid’s inequality, the desired bound can be derived.

Remark 4.3. Theorem 4.2 shows that when class-imbalance
occurs, r0 will be smaller than n

2 . When class-imbalance
is more serious, r0 will be smaller, which will lead to a
looser bound for Macro-Averaged AUC. This means that
when class-imbalance becomes more and more serious, if
the learned classifier cannot handle the problem of class im-
balance well, then its performance on Macro-Averaged AUC
will be worse. Wu et al. (2023) also obtained similar conclu-
sions, but the methods used were completely different. Wu
et al. (2023) transformed the macro-averaged maximization
problem in multi-label learning into the problem of learn-
ing multiple tasks with graph-dependent examples-which is
hard to verify in practice, then proposed a new McDiarmid-
type inequality to develop O( 1√

n
) bound in the balanced

case. Our method is simpler and can also yield bounds with
no dependency on c by combining Lemma 3.16.

5. Comparison with Related Work
The generalization analysis of multi-label learning origi-
nated from (Dembczynski et al., 2010), which performed
regret analysis on Hamming and Subset loss, and derived
the relationship between the expectations of Hamming and
Subset loss. Dembczynski et al. (2012) performed regret
analysis on Ranking loss. These analyses laid the foundation
for research in (Wu & Zhu, 2020; Wu et al., 2021a).

Theorem 3.4 shows that when using the typical vector-
contraction inequality (Maurer, 2016) (i.e., `2 norm Lip-
schitz loss) and the multi-label Rademacher complexity,
one can only derive bounds of order O(c/

√
n) for gen-

eral function classes in the decoupling case. Wu & Zhu
(2020); Wu et al. (2021a) also obtained similar results for
surrogate Hamming, Subset and Ranking losses, which
mainly exploited the relationship between losses. Wu &
Zhu (2020); Wu et al. (2021a) also showed that for kernel
function classes, the order of the bounds for some losses
can be improved to O(

√
c/n) when preserving the cou-

pling. Lei et al. (2015) first derived a O(
√
c/n) bound for

multi-class SVM with `p norm regularized kernel function
classes under the assumption of `2 Lipschitz loss. Li et al.
(2018) used the local Rademacher complexity to derive a
O(log2 c/n) bound for multi-class classification with `p
norm regularized kernel function classes under the assump-
tion of `2 Lipschitz and smooth loss. Theorem 3.7 improves
the bounds to O(1/

√
n) for `2 Lipschitz loss even in the

decoupling case.

Theorem 3.12 shows that when using `∞ norm Lipschitz
loss, one can derive bounds of order Õ(

√
c/n) for general

8
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function classes. Liu et al. (2018) also obtained a bound of
orderO(

√
c/n) for the dual set multi-label learning for mar-

gin loss and kernel function classes. Lei et al. (2019); Wu
et al. (2021b) improved the dependency on c in the coupling
case, where Lei et al. (2019) derived a Õ(1/

√
n) bound

for multi-class classification with norm regularized function
classes under `∞ Lipschitz loss, and Wu et al. (2021b) de-
rived a O(log3(nc)/nσ) bound for vector-valued learning
with norm regularized kernel function classes under the as-
sumption of `∞ Lipschitz and σ-strongly convex loss. Here
Theorem 3.17 shows a Õ(1/

√
n) bound for general func-

tion classes with `∞ Lipschitz loss in the decoupling case.
Yu et al. (2014) obtained a O(1/

√
n) bound for trace norm

regularized linear function classes with the decomposable
loss. In addition, Xu et al. (2016) used the local Rademacher
complexity to derive a Õ(1/n) bound for trace norm regu-
larized linear function classes with the assumption that the
singular values ofw decay exponentially. Compared with
these works, we obtain tighter bounds with the state-of-the-
art dependency on c for general function classes under the
mild assumptions in both decoupling and coupling cases.

6. Discussion
The main goal of our capacity-based generalization bounds
is to provide general and efficient theoretical guarantees for
empirically successful multi-label learning methods, espe-
cially regarding the dependency on the number of labels.
The generalization differences of different multi-label learn-
ing models or algorithms are mainly reflected in two as-
pects. On the one hand, the differences are reflected in
the Lipschitz constant of the loss functions, as we showed
in Proposition 3.3 and 3.10, different loss functions have
different µ values in our bounds. On the other hand, the
differences are reflected in the nonlinear mappings corre-
sponding to the specific models used. In fact, when we
analyze the generalization of the specific models, the con-
straint on nonlinear mappings β(φ(x)) ≤ A is actually
refined as ‖φ(x)‖ ≤ A in our analysis, and we will further
have ‖φ(x)‖ ≤ ρ‖x‖ (ρ is the Lipschitz constant of the
nonlinear mappings) to take into account the differences
or characteristics of different models. The generalization
differences are further reflected in the corresponding Lips-
chitz constants ρ. Compared with the Lipschitz constants
of deep models and shallow models, their differences are
particularly obvious (Bartlett et al., 2017; Golowich et al.,
2018; Bartlett et al., 2019; Zhang & Liao, 2020; Ledent
et al., 2021; Zhang & Zhang, 2023). In order to provide
general theoretical guarantees for multi-label learning, here
we only make the most general assumptions (e.g., for non-
linear mappings) and do not specify specific models, so the
generalization differences of different multi-label learning
models or algorithms are not explicitly shown. And if a spe-
cific model or algorithm is specified or refined, the results

obtained will lose their generality and will not be able to
provide theoretical guarantees for all or most multi-label
learning models or algorithms.

The analysis of the lower bound will greatly promote our
theoretical understanding of multi-label learning and is the
most powerful criterion for testing whether the given upper
bound is the tightest. However, the effective lower bound
remains relatively under-explored. We believe that such a
lower bound Ω(1/

√
n) is still not tight enough. The main ev-

idence is as follows: if we regard the classification problem
corresponding to each label as a task, then multi-label learn-
ing can be regarded as multi-task learning. Since tasks share
some constraint or generative properties with each other, the
typical bound for multi-task learning is O(1/

√
nt), where t

is the number of tasks. Hence, if we consider that the compo-
nents share some constraint properties or information with
each other, i.e., the label correlations, then appropriate label
correlations will improve the generalization performance
of multi-label learning. This means that some constraint
properties shared between labels (i.e., label correlations)
will facilitate the learning effect of multiple labels. In such
a case, we should have the lower bound Ω(1/

√
nc). A

Õ(1/
√
nc) bound for `2 Lipschitz surrogate Hamming loss

in the decoupling case (as we discussed in Remark 3.8) pro-
vides evidence for this analysis. Hence, although our bounds 
are tighter than the state of the art, the above analysis actu-
ally motivates us to develop new theories to investigate the 
lower bound and break through the theoretical limitations 
of current methodologies.

7. Conclusion
In this paper, we propose several novel vector-contraction 
inequalities and derive bounds with a weaker dependency 
on c, and study the impact of different label correlations on 
the generalization analysis. In addition, with the label-based 
ranking multi-label Rademacher complexity, we derive the 
bound for Macro-Averaged AUC and analyze the relation-
ship between Macro-Averaged AUC and class-imbalance.

In future work, we will extend our bounds to more general 
settings (especially for label correlations induced by label-
specific features and other norm regularizers), and derive 
tighter bounds for multi-label learning with a faster conver-
gence rate with respect to the number of observations, and 
further design efficient algorithms to construct multi-label 
models with good generalization performance.
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A. Appendix Outline
In the appendix, we give the detailed proofs of those theoretical results which we only provide proof sketches in the main
paper. Our main proofs include:

• The basic generalization bound for `2 Lipschitz loss (Theorem 3.4).

• The novel vector-contraction inequality for for `2 Lipschitz loss (Lemma 3.6).

• The generalization bound with a square-root dependency on c for `2 Lipschitz loss (Theorem 3.7).

• The `∞ Lipschitz continuity of the commonly used loss for multi-label learning (Proposition 3.10).

• The novel vector-contraction inequality for `∞ Lipschitz loss with a square-root dependency on c (Lemma 3.11).

• The generalization bound with a square-root dependency on c for `∞ Lipschitz loss (Theorem 3.12).

• The generalization bounds with no dependency on c for `∞ Lipschitz loss in the coupling case (Corollary 3.14).

• The novel vector-contraction inequality for `∞ Lipschitz loss with no dependency on c (Lemma 3.16).

• The generalization bound with no dependency on c for `∞ Lipschitz loss in the decoupling case (Theorem 3.17).

• The generalization bound for Macro-Averaged AUC w.r.t. `∞ Lipschitz loss (Theorem 4.2).

B. Preliminaries
First, we define the loss function space as follows:

L = {L(f(x),y) : f ∈ F},

where F is the vector-valued function class (1) of multi-label learning defined in the main paper:

F = {x 7→ f(x) :f(x) = (f1(x), . . . , fc(x)), fj(x) = 〈wj , φ(x)〉,
w = (w1, . . . ,wc) ∈ Rd×c, α(w) ≤ Λ, β(φ(x)) ≤ A,x ∈ X , j ∈ [c]},

For any training dataset D = {(xi,yi) : i ∈ [n]}, let D′ = {(xi,yi) : i ∈ [n]} be the training dataset with only one
sample different from D, where the k-th sample is replaced by (x′k,y

′
k). Let Φ(D) = supf∈F [E(x,y)∼P [L(f(x),y)]−

1
n

∑n
i=1 L(f(xi),yi)] = supf∈F [R(f)− R̂D(f)], then

Φ (D′)− Φ(D)

= sup
f∈F

[R(f)− R̂D′(f)]− sup
f∈F

[R(f)− R̂D(f)]

≤ sup
f∈F

[R̂D(f)− R̂D′(f)]

= sup
f∈F

[L(f(xk),yk)− L(f(x′k),y′k)]

n

≤ M

n
.

According to McDiarmid’s inequality, for any 0 < δ < 1, with probability at least 1− δ
2 over the training dataset D, the

following holds:

Φ(D) ≤ ED[Φ(D)] +M

√
ln(2/δ)

2n
. (4)

12
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Then, we will estimate the upper bound of ED[Φ(D)].

ED[Φ(D)]

=ED

[
sup
f∈F

[
ED′

[
R̂D′(f)− R̂D(f)

]]]

≤ED,D′
[

sup
f∈F

[
R̂D′(f)− R̂D(f)

]]

=ED,D′
[

sup
f∈F

1

n

[
n∑
i=1

L(f(x′i),y
′
i)− L(f(xi),yi)

]]

=Eε,D,D′
[

sup
f∈F

1

n

[
n∑
i=1

εi (L(f(x′i),y
′
i))− L(f(xi),yi))

]]

≤Eε,D′
[

sup
f∈F

1

n

n∑
i=1

εiL(f(x′i),y
′
i)

]

+Eε,D

[
sup
f∈F

1

n

n∑
i=1

−εiL(f(xi),yi)

]

=2Eε,D

[
sup
f∈F

1

n

n∑
i=1

εiL(f(xi),yi)

]
. (5)

Then apply McDiarmid’s inequality to Eε
[
supf∈F

1
n

∑n
i=1 εiL(f(xi),yi)

]
, we have

Eε,D

[
sup
f∈F

1

n

n∑
i=1

εiL(f(xi),yi)

]
≤ Eε

[
sup
f∈F

1

n

n∑
i=1

εiL(f(xi),yi)

]
+M

√
ln(2/δ)

2n
,

i.e.,

<(L) ≤ <̂D(L) +M

√
ln(2/δ)

2n
. (6)

Combining with (4), (5) and (6), then

R(f) ≤ R̂D(f) + 2<̂D(L) + 3M

√
log 2

δ

2n
. (7)

C. Generalization Bounds for `2 Lipschitz Loss
C.1. Proof of Theorem 3.4

We first introduce the following lemmas:

Lemma C.1 (Corollary 1 in (Maurer, 2016)). Let F be a vector-valued function class. Given a dataset D of size n. Assume
that the loss function is µ-Lipschitz continuous with respect to the `2 norm. Then

Eε

[
sup
f∈F

1

n

n∑
i=1

εiL(f(xi))

]
≤
√

2µEε

sup
f∈F

1

n

n∑
i=1

c∑
j=1

εijfj (xi)

 ,
where each εij is an independent doubly indexed Rademacher random variable, and fj (xi) is the j-th component of f (xi).

Lemma C.2 (Khintchine-Kahane inequality (Lust-Piquard & Pisier, 1991)). Let v1, . . . ,vn ∈ H, where H is a Hilbert
space with ‖ · ‖ being the associated p-th norm. Let ε1, . . . , εn be a sequence of independent Rademacher variables. Then,
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for any p ≥ 1 there holds

min(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

≤

[
Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
p] 1

p

≤ max(
√
p− 1, 1)

[
n∑
i=1

‖vi‖2
] 1

2

,

and

Eε

∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥ ≥ 2−
1
2

[
n∑
i=1

‖vi‖2
] 1

2

.

According to Lemma C.1, we then have

<̂D(L)

≤
√

2µEε

sup
f∈F

1

n

n∑
i=1

c∑
j=1

εijfj (xi)


≤
√

2µcmax
j

Eε

[
sup
fj∈Fj

1

n

n∑
i=1

εijfj (xi)

]

≤
√

2µcmax
j

sup
fj∈Fj

1

n

(
n∑
i=1

(fj (xi))
2

) 1
2

(Use Lemma C.2)

≤
√

2µcB√
n

. (Use Assumption 3.1 in the main paper)

Combining with (7), then

R(f) ≤ R̂D(f) +
2
√

2µcB√
n

+ 3M

√
log 2

δ

2n
.

C.2. Proof of Lemma 3.6

Proof Sketch: First, the Rademacher complexity of the loss function space associated with F can be bounded by the
empirical `2 norm covering number with the refined Dudley’s entropy integral inequality. Second, according to the Lipschitz
continuity w.r.t the `2 norm, the empirical `2 norm covering number of F can be bounded by the empirical `2 norm covering
number of P(F). Third, the empirical `2 norm covering number of P(F) can be bounded by using Sudakov’s minoration
(Wainwright, 2019), which bounds the `2 norm covering number of a function class by the expectation of a Gaussian process
indexed by the function class, and the expectation of the Gaussian process can be bounded by the worst-case Rademacher
complexity of the projection function class P(F). Hence, the problem is transferred to the estimation of the worst-case
Rademacher complexity. Finally, we estimate the lower bound of the worst-case Rademacher complexity of P(F), and then
combined with the above steps, the Rademacher complexity of the loss function space associated with F can be bounded.

We first introduce the following lemmas:
Lemma C.3 (Sudakov’s minoration (Wainwright, 2019)). Let {Zf , f ∈ F} be a zero-mean Gaussian process. Then

E

[
sup
f∈F

Zf

]
≥ sup

ε>0

ε

2

√
logM2(ε,F , D) ≥ sup

ε>0

ε

2

√
logN2(ε,F , D).

Lemma C.4 (Relationship between Rademacher and Gaussian complexity (Wainwright, 2019)). Let G be a class of
real-valued functions mapping from X to R. Let D = {x1, . . . ,xn} be a set with n i.i.d. samples. Then√

2

π
<̂D(G) ≤ ĜD(G) ≤ 2<̂D(G)

√
log n,

where ĜD(G) = Eσ
[
supg∈G

1
n

∑n
i=1 σig (xi)

]
, and σ1, . . . , σn are i.i.d. random variables obeying the normal distribu-

tion.
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The following lemma is a refined result of Proposition 22 in (Ledent et al., 2021), where we replace the function class taking
values in [0, 1] with the b-bounded function class, the refinement is obvious.
Lemma C.5 (Refined Dudley’s entropy integral inequality). Let F be a real-valued function class with f ≤ b, f ∈ F ,
b > 0, and assume that 0 ∈ F . Let S be a finite sample of size n. For any 2 ≤ p ≤ ∞, we have the following relationship
between the Rademacher complexity <̂S(F) and the covering number Np(ε,F , S).

<̂S(F) ≤ inf
α>0

(
4α+

12√
n

∫ b

α

√
logNp(ε,F , S)dε

)
.

Step 1: We first derive the relationship between the empirical `2 norm covering number N2(ε,L, D) and the empirical `2
norm covering number N2(ε,P(F), [c]×D).

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:√√√√ 1

n

n∑
i=1

(
L(f(xi),yi)− L(f ′(xi),yi)

)2
≤

√√√√ 1

n

n∑
i=1

µ2‖f(xi)− f ′(xi)‖22 (Use Assumption 3.2)

≤µ

√√√√c
1

n

n∑
i=1

1

c

c∑
j=1

(
fj (xi)− f ′j (xi)

)2
≤µ
√
c

√√√√ 1

n

n∑
i=1

1

c

c∑
j=1

(
pj(f(xi))− pj(f ′(xi))

)2
. (The definition of the projection function class P(F))

Then, according to the definition of the empirical `2 covering number, we have that an empirical `2 cover of P(F) at radius
ε/µ
√
c is also an empirical `2 cover of the loss function space associated with F at radius ε, and we can conclude that:

N2 (ε,L, D) ≤ N2

(
ε

µ
√
c
,P(F), [c]×D

)
. (8)

Step 2: We show that the empirical `2 norm covering number of P(F) can be bounded by using Sudakov’s minoration
(Wainwright, 2019), which bounds the `2 norm covering number of a function class by the expectation of a Gaussian process
indexed by the function class, and the expectation of the Gaussian process can be bounded by the worst-case Rademacher
complexity of the projection function class P(F).

Let G be a class of real-valued functions. Let D = {x1, . . . ,xn} be a set with n i.i.d. samples. We consider the Gaussian
process Zf = 1√

n

∑n
i=1 σif (xi), then according to Lemma C.3, we have E

[
supf∈F Zf

]
=
√
nĜD(F). Then, combining

Lemma C.3 and Lemma C.4, we can get
√

logN2(ε,F , D) ≤ 4
ε <̂D(F)

√
n log n.

Hence, for the projection function class P(F), we have√
logN2(ε,P(F), [c]×D) ≤ 4

ε
<̂[c]×D(P(F))

√
n log n. (9)

Step 3: According to Assumption 3.1 in the main paper, we can obtain the lower bound of the worst-case Rademacher
complexity <̃nc(P(F)) by the Khintchine-Kahane inequality with p = 1:

<̃nc(P(F)) = sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F)) = sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εipj(f(xi))


= sup
D∈Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εifj (xi)

 ≥ sup
D∈Xn

1

nc
sup
fj∈Fj

1√
2

 n∑
i=1

c∑
j=1

(fj (xi))
2

 1
2

.
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Since |fj(·)| ≤ B, we set supD∈Xn
1
nc supfj∈Fj

[∑n
i=1

∑c
j=1 (fj (xi))

2
] 1

2

= B√
nc

. So,

<̃nc(P(F)) ≥ B√
2nc

. (10)

Then, according to Lemma C.5 and combined with the above steps, we have

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(

ε

µ
√
c
,P(F), [c]×D)dε

)
(Use inequality (8))

≤ inf
α>0

(
4α+ 48

√
cµ<̃nc(P(F)) log

1
2 (nc)

∫ M

α

ε−1dε

)
(Use inequality (9) and the definition of the worst-case Rademacher complexity)

≤48µ
√
c<̃nc(P(F)) + 48µ

√
c<̃nc(P(F)) log

1
2 (nc) · log

M

12
√
cµ<̃nc(P(F))

(Choose α = 12
√
cµ<̃nc(P(F)))

≤48µ
√
c<̃nc(P(F))

(
1 + log

1
2 (nc) · log

M
√
n

µB

)
. (Use inequality (10))

C.3. Proof of Theorem 3.7

We upper bound the worst-case Rademacher complexity <̃nc(P(F)) as the following:

<̃nc(P(F))

= sup
[c]×D∈[c]×Xn

<̂[c]×D(P(F))

= sup
[c]×D∈[c]×Xn

Eε

 sup
pj(f(xi))∈P(F)

1

nc

n∑
i=1

c∑
j=1

εipj(f(xi))


= sup
D∈Xn

Eε

 sup
fj∈Fj

1

nc

n∑
i=1

c∑
j=1

εifj (xi)


≤ sup
D∈Xn

sup
fj∈Fj

1

nc

 n∑
i=1

c∑
j=1

(fj (xi))
2

 1
2

(Use Lemma C.2)

≤ B√
nc
. (Use Assumption 3.1 in the main paper) (11)

Then, we have

<̂D(F) ≤48µ
√
c<̃nc(P(F))

(
1 + log

1
2 (nc) · log

M
√
n

µB

)

≤
48Bµ

(
1 + log

1
2 (nc) · log M

√
n

µB

)
√
n

.

Combining with (7), then

R(f) ≤R̂D(f) +
96Bµ

(
1 + log

1
2 (nc) · log M

√
n

µB

)
√
n

+ 3M

√
log 2

δ

2n
.
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D. Generalization Bounds for `∞ Lipschitz Loss
D.1. Proof of Proposition 3.10

We first prove that the surrogate Hamming Loss is µ-Lipschitz continuous with respect to the `∞ norm.∣∣LH(f(x),y)− LH
(
f ′(x),y

)∣∣
=

∣∣∣∣∣∣1c
c∑
j=1

` (yjfj(x))− 1

c

c∑
j=1

`
(
yjf
′
j(x)

)∣∣∣∣∣∣
=

1

c

c∑
j=1

∣∣` (yjfj(x))− `
(
yjf
′
j(x)

)∣∣
≤1

c

c∑
j=1

µ
∣∣fj(x)− f ′j(x)

∣∣
≤1

c
µcmax

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=µ
∥∥f(x)− f ′(x)

∥∥
∞ .

Then, with the elementary inequality

|max {a1, . . . , ac} −max {b1, . . . , bc}| ≤ max {|a1 − b1| , . . . , |ac − bc|} ,

we proof that the surrogate Subset Loss is µ-Lipschitz continuous with respect to the `∞ norm.∣∣LS(f(x),y)− LS
(
f ′(x),y

)∣∣
=

∣∣∣∣max
j∈[c]

` (yjfj(x))−max
j∈[c]

`
(
yjf
′
j(x)

)∣∣∣∣
≤max
j∈[c]

∣∣` (yjfj(x))− `
(
yjf
′
j(x)

)∣∣
≤µmax

j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=µ
∥∥f(x)− f ′(x)

∥∥
∞ .

Finally, we proof that the surrogate Ranking Loss is 2µ-Lipschitz continuous with respect to the `∞ norm.∣∣LR(f(x),y)− LR
(
f ′(x),y

)∣∣
=

1

|Y +| |Y −|

∣∣∣∣∣∣
∑
p∈Y +

∑
q∈Y −

(
` (fp(x)− fq(x))− `

(
f ′p(x)− f ′q(x)

))∣∣∣∣∣∣
≤ max
p∈Y +,q∈Y −

∣∣` (fp(x)− fq(x))− `
(
f ′p(x)− f ′q(x)

)∣∣
≤µ max

p∈Y +,q∈Y −

∣∣(fp(x)− fq(x))−
(
f ′p(x)− f ′q(x)

)∣∣
≤µ
(

max
p∈Y +

∣∣fp(x)− f ′p(x)
∣∣+ max

q∈Y −

∣∣fq(x)− f ′q(x)
∣∣)

≤2µmax
j∈[c]

∣∣fj(x)− f ′j(x)
∣∣

=2µ
∥∥f(x)− f ′(x)

∥∥
∞ .

D.2. Proof of Lemma 3.11

We first introduce the following vector-contraction inequality in (Foster & Rakhlin, 2019):
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Lemma D.1 (Theorem 1 in (Foster & Rakhlin, 2019)). Let F ⊆ {f : X → Rc}, and let φ : Rc → R be L-lipschitz with
respect to the `∞ norm. For any 1 > η > 0, there exists a constant C > 0 such that if |φ(f(x))| ∨ ‖f(x)‖∞ ≤ β, then

<̂D(φ ◦ F) ≤ CL
√
cmax

j
<̃n (Fj) log

3+η
2

(
βn

maxj <̃n (Fj)

)
,

where <̂D(φ ◦ F) = Eε
[
supf∈F

1
n

∑n
i=1 εiφ(f(xi))

]
, <̃n(Fj) = supD∈Xn <̂D(Fj).

Next we will refine the proof of Lemma D.1. First, we introduce the result in Theorem 1 in (Foster & Rakhlin, 2019):

logN∞(ε, φ ◦ F , D) ≤ maxiEcLri log1+η e2+ηn
riε0

, where ri = 8n(
<̃n(Fj)
aε0

)2, E > 0, 0 < a < 1, ε0 = ε
L .

Then, by direct calculation and proper scaling, we have

logN2(ε, φ ◦ F , D)

≤max
j
Ecri log1+η e

2+ηn

riε0

≤max
j
Ec8n(

<̃n(Fj)
aε0

)2 log1+η 4

(<̃n(Fj))2
(Use inequality 2<̃n(Fj) < ε0 < 1 )

≤max
j
Ec32n(

<̃n(Fj)
aε0

)2 log1+η 2

<̃n(Fj)

≤max
j
Ec32n(

<̃n(Fj)
aε0

)2 log1+η 2
√

2n

B
(12)

(Use the similar technique to the proof of Lemma 3.6, the lower bound of <̃n(Fj) ≥
B√
2n

)

According to Lemma C.5 and combined with (12), we have

<̂D(φ ◦ F)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN2(ε, φ ◦ F , D)dε

)

≤ inf
α>0

4α+
12√
n

∫ M

α

√
max
j
Ec32n(

<̃n(Fj)
aε0

)2 log1+η 2
√

2n

B
dε

 (Use inequality (12))

≤ inf
α>0

(
4α+

48
√

2EcL

a
max
j
<̃n(Fj) log

1+η
2 (

2
√

2n

B
)

∫ M

α

ε−1dε

)

≤48
√

2EcL

a
max
j
<̃n(Fj) +

48
√

2EcL

a
max
j
<̃n(Fj) log

1+η
2 (

2
√

2n

B
) · log

aM

12
√

2EcL<̃n(Fj)

(Choose α =
12
√

2EcL

a
max
j
<̃n(Fj))

≤48
√

2EcL

a
max
j
<̃n(Fj) +

48
√

2EcL

a
max
j
<̃n(Fj) log

1+η
2 (

2
√

2n

B
) · log

M
√
n√

EcLB
(Use 0 < a < 1 and <̃n(Fj) ≥

B√
2n

)

Finally, combined with our problem setting, we have

<̂D(F) ≤ 48
√

2Eµ

a

√
cmax

j
<̃n (Fj)×

(
1 + log

1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
.

D.3. Proof of Theorem 3.12

Using the similar technique to the proof of Theorem 3.4, <̃n(Fj) can be upper bounded by B√
n

, we then have
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<̂D(F) ≤ 48
√

2EµB

a

√
c

n
×

(
1 + log

1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
.

Combining with (7), then

R(f) ≤ R̂D(f) +
96
√

2EµB

a

√
c

n
×

(
1 + log

1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
+ 3M

√
log 2

δ

2n
.

D.4. Proof of Corollary 3.14

We first introduce the following lemmas:
Lemma D.2 (Theorem 5 in (Lei et al., 2019)). Let F be a vector-valued function class of the multi-label learning defined by
(1). Let Assumptions 3.1 and 3.9 hold. Given a dataset D of size n. Suppose that the loss function is L-Lipschitz continuous
w.r.t. `∞ norm. Then the <̂D(L) can be bounded by

<̂D(L) ≤ 16L
√
c log 2<̃nc(F̃)

(
1 + log

3
2
2

(√
2n

3
2 c
))

.

Since log
3
2
2

(√
2n

3
2 c
)
≥ 1 and 16

√
log 2 < 8.8, we have

<̂D(L) ≤ 32L
√
c log 2<̃nc(F̃) log

3
2
2

(√
2n

3
2 c
)
≤ 18L

√
c<̃nc(F̃) log

3
2
2

(√
2n

3
2 c
)
.

Using the similar technique to the proof of Theorem 3.4, <̃nc(F̃) can be upper bounded by ΛA√
nc

. Then combining with (7)
and our problem setting, we have

R(f) ≤ R̂D(f) +
36µΛA log

3
2
2

(√
2n

3
2 c
)

√
n

+ 3M

√
log 2

δ

2n
.

Lemma D.3 (Corollary 10 in (Lei et al., 2019)). Let F be a vector-valued function class defined by (1), where α(w) :=
‖w‖Sp , β(φ(x)) := maxi∈[n] ‖xi‖2, i.e., φ be the identity map, and p ≥ 1. Assume that the loss function is L-Lipschitz
continuous w.r.t. `∞ norm. Then, if 1 ≤ p ≤ 2, for any 0 < δ < 1 with probability of 1− δ, we have

<̂D(L) ≤
16L
√

log 2Λ maxi∈[n] ‖xi‖2√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))
≤

18LΛ maxi∈[n] ‖xi‖2 log
3
2
2 (
√

2n
3
2 c)

√
n

If p > 2,

<̂D(L) ≤
16L
√

log 2Λ maxi∈[n] ‖xi‖2 min{c, d}
1
2−

1
p

√
n

(
1 + log

3
2
2

(√
2n

3
2 c
))

≤
18LΛ maxi∈[n] ‖xi‖2 min{c, d}

1
2−

1
p log

3
2
2 (
√

2n
3
2 c)

√
n

,

where we scale them by log
3
2
2

(√
2n

3
2 c
)
≥ 1 and 16

√
log 2 < 8.8.

This lemma holds for the class of linear functions and is logarithmically dependent on the number of labels. We adjust the
constraint on nonlinear mappings such that our bound holds for the general class of nonlinear functions. Then combining
with (7) and our problem setting, when 1 ≤ p ≤ 2, we have:

R(f) ≤ R̂D(f) +
36µΛA log

3
2
2 (
√

2n
3
2 c)√

n
+ 3M

√
log 2

δ

2n
,

when p > 2, we have:

R(f) ≤ R̂D(f) +
36µΛAmin{c, d}

1
2−

1
p log

3
2
2 (
√

2n
3
2 c)√

n
+ 3M

√
log 2

δ

2n
.
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D.5. Proof of Lemma 3.16

Proof Sketch: First, the Rademacher complexity of the loss function space associated with F can be bounded by the
empirical `∞ norm covering number with the refined Dudley’s entropy integral inequality. Second, according to the Lipschitz
continuity w.r.t the `∞ norm, the empirical `∞ norm covering number of F can be bounded by the empirical `∞ norm
covering number of P(F). Third, the empirical `∞ norm covering number of P(F) can be bounded by the fat-shattering
dimension, and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of P(F). Hence,
the problem is transferred to the estimation of the worst-case Rademacher complexity. Finally, we estimate the lower bound
of the worst-case Rademacher complexity of P(F), and then combined with the above steps, the Rademacher complexity of
the loss function space associated with F can be bounded.

We first introduce the following lemmas:

Lemma D.4 (Lemma A.2 in (Srebro et al., 2010)). For any function class F , any S with a finite sample of size n and any
ε > 2<̂S(F), we have that

fatε(F) ≤ 16n<̂2
S(F)

ε2
.

Lemma D.5 (Theorem 4.4 in (Rudelson & Vershynin, 2006)). For any function class F , any S with a finite sample of size
n, and any η ∈ (0, 1) there exist constants 0 < a < 1 and E > 0 such that for all ε ∈ (0, 1),

logN∞ (ε,F , S) ≤ Ev log (en/vε) logη (en/v) ,

where v = fataε(F).

Step 1: We first derive the relationship between the empirical `∞ norm covering number N∞(ε,L, D) and the empirical
`∞ norm covering number N∞(ε,P(F), [c]×D).

For the dataset D = {(x1,y1), . . . , (xn,yn)} with n i.i.d. examples:

max
i
|L(f(xi),yi)− L(f ′(xi),yi)|

≤µmax
i
‖f(xi)− f ′(xi)‖∞ (Use Assumption 3.9)

≤µmax
i

max
j
|fj (xi)− f ′j (xi) |

≤µmax
i

max
j
|pj(f(xi))− pj(f ′(xi)|. (The definition of the projection function class P(F))

Then, according to the definition of the empirical `∞ covering number, we have that an empirical `∞ cover of P(F) at
radius ε/µ is also an empirical `∞ cover of the loss function space associated with F at radius ε, and we can conclude that:

N∞ (ε,L, D) ≤ N∞
(
ε

µ
,P(F), [c]×D

)
. (13)

Step 2: We show that the empirical `∞ norm covering number of P(F) can be bounded by the fat-shattering dimension,
and the fat-shattering dimension can be bounded by the worst-case Rademacher complexity of P(F).

According to Lemma D.4, for any ε > 2<̂[c]×D(P(F)), we have

fatε(P(F)) ≤
16nc<̂2

[c]×D(P(F))

ε2
.

Then, combining with Lemma D.5, for any η ∈ (0, 1) there exist constants 0 < a < 1 and E > 0 such that for all ε ∈ (0, 1),
we have

logN∞ (ε,P(F), [c]×D) ≤ Ev log (enc/vε) logη (enc/v) ,
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where v = fataε(P(F)) ≤ 16nc<̂2
[c]×D(P(F))

a2ε2 , and we set d =
16nc<̂2

[c]×D(P(F))

a2ε2 . Hence,

logN∞(ε,P(F), [c]×D)

≤Ev log
enc

vε
logη

enc

v

≤Ed log
e2+ηnc

dε
logη

e2+ηnc

d

≤Ed log1+η e
2+ηnc

dε

≤E
16nc<̂2

[c]×D(P(F))

a2ε2
log1+η

(
1.2

<̂[c]×D(P(F))

)2

, (Use inequality 2<̂[c]×D(P(F)) < ε < 1 ) (14)

where we use that for any s, t > 0, the function x 7→ x log s
x logη t

x is non-decreasing as long as s > t > e1+ηx and that
v ≤ nc in the second inequality, the third and fourth inequalities are obtained by direct calculation and proper scaling.

Then, we have

logN∞(ε,P(F), [c]×D)

≤E
16nc<̂2

[c]×D(P(F))

a2ε2
log1+η

(
1.2

<̂[c]×D(P(F))

)2

≤E
64nc<̂2

[c]×D(P(F))

a2ε2
log1+η

(
1.2

<̂[c]×D(P(F))

)

≤E
64nc<̂2

[c]×D(P(F))

a2ε2
log1+η 8

√
nc

5B
(Use inequality (10))

≤E 64nc<̃2
nc(P(F))

a2ε2
log1+η 8

√
nc

5B
(The definition of the worst-case Rademacher complexity) (15)

Step 3: According to Lemma C.5 and combined with the above steps, we have

<̂D(L)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(ε,L, D)dε

)

≤ inf
α>0

(
4α+

12√
n

∫ M

α

√
logN∞(

ε

µ
,P(F), [c]×D)dε

)
(Use inequality (14))

≤ inf
α>0

4α+
12√
n

∫ M

α

√
64Eµ2nc<̃2

nc(P(F))

a2ε2
log1+η 8

√
nc

5B
dε

 (Use inequality (15))

≤ inf
α>0

(
4α+

96
√
Ecµ

a
<̃nc(P(F)) log

1+η
2 (

8
√
nc

5B
)

∫ M

α

ε−1dε

)

≤96
√
Ecµ

a
<̃nc(P(F)) +

96
√
Ecµ

a
<̃nc(P(F)) log

1+η
2 (

8
√
nc

5B
) · log

aM

24
√
Ecµ<̃nc(P(F))

(Choose α =
24
√
Ecµ

a
<̃nc(P(F)))

≤96
√
Ecµ

a
<̃nc(P(F)) +

96
√
Ecµ

a
<̃nc(P(F)) log

1+η
2 (

8
√
nc

5B
) · log

M
√
n√

EµB
(Use 0 < a < 1 and inequality (10) )

=
96
√
Ecµ

a
<̃nc(P(F))

(
1 + log

1+η
2 (

8
√
nc

5B
) · log

M
√
n√

EµB

)
.
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D.6. Proof of Theorem 3.17

According to the inequality (11), we have <̃nc(P(F)) ≤ B√
nc

, then

<̂D(F) ≤ 96
√
EµB

a

1√
n
×
(

1 + log
1+η
2 (

8
√
nc

5B
) · log

M
√
n√

EµB

)
.

Combining with (7), then

R(f) ≤ R̂D(f) +
192
√
EµB

a

1√
n
×
(

1 + log
1+η
2 (

8

5B

√
nc) · log(

M
√
n√

EµB
)

)
+ 3M

√
log 2

δ

2n
.

E. Generalization Analysis for Macro-Averaged AUC
E.1. Proof of Theorem 4.2

We first proof the following lemma:

Lemma E.1. Let qτ : X × X 7→ R be real-valued functions indexed by τ ∈ T where T is some set. If x1, . . . ,xs and
x′1, . . . ,x

′
t are i.i.d., r = min{s, t}, then for any convex non-decreasing function ψ,

Eψ

sup
τ∈T

1

st

s∑
i=1

t∑
j=1

qτ
(
xi,x

′
j

) ≤ Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ (xi,x
′
i)

)
.

Proof. The proof of this lemma is inspired by (Clémençon et al., 2008).

Eψ

sup
τ∈T

1

st

s∑
i=1

t∑
j=1

qτ
(
xi,x

′
j

)
=Eψ

sup
τ∈T

1

s!

∑
πx

1

t!

∑
πx′

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

)
≤Eψ

 1

s!

∑
πx

1

t!

∑
πx′

sup
τ∈T

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

) (ψ is nondecreasing)

≤ 1

s!

∑
πx

1

t!

∑
πx′

Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ

(
xπ(i),x

′
π(i)

))
(Jensen’s inequality)

=Eψ

(
sup
τ∈T

1

r

r∑
i=1

qτ (xi,x
′
i)

)
.

With this lemma, we first prove that E
[
R
(
f̂
∗)]
−R∗ ≤ 384

√
2EµB
a

√
c
r0

(
1 + log

1+η
2 ( 2

√
2n
B ) · log( M√

EµB

√
n
c )
)

.

E
[
R
(
f̂
∗)]
−R∗ = E

[
R
(
f̂
∗)
− R̂D(f̂

∗
) + R̂D(f̂

∗
)−R∗

]
=E

[
R
(
f̂
∗)
− R̂D(f̂

∗
)
]

+ E
[
R̂D(f̂

∗
)−R∗

]
≤E sup

f∈F

∣∣∣R (f)− R̂D(f)
∣∣∣+ E sup

f∈F

∣∣∣R̂D(f)−R (f)
∣∣∣ = 2E sup

f∈F

∣∣∣R (f)− R̂D(f)
∣∣∣

≤2E sup
f∈F

∣∣∣∣∣∣R (f)− 1

c

c∑
j=1

1

rj

rj∑
i=1

` (fj(xi)− fj(x′i))

∣∣∣∣∣∣ . (Use Lemma E.1)
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Let D = {x1, . . . ,xn} be an independent copy of D = {x1, . . . ,xn}, then by the standard symmetrization technique and
the Jensen’s inequality similar to Preliminaries in Section B, the above inequality can be bounded by:

2ED,D sup
f∈F

∣∣∣∣∣∣1c
c∑
j=1

1

rj

rj∑
i=1

` (fj(xi)− fj(x′i))−
1

c

c∑
j=1

1

rj

rj∑
i=1

` (fj(xi)− fj(x′i))

∣∣∣∣∣∣
=2ED,D,ε sup

f∈F

∣∣∣∣∣∣1c
c∑
j=1

1

rj

rj∑
i=1

εij [` (fj(xi)− fj(x′i))− ` (fj(xi)− fj(x′i))]

∣∣∣∣∣∣
=4ED,ε sup

f∈F

1

c

c∑
j=1

1

rj

rj∑
i=1

εij` (fj(xi)− fj(x′i))

=4<(F)

≤192
√

2Eµ

a

√
cmax

j
<̃ (Fj)×

(
1 + log

1+η
2 (

2
√

2rj

B
) · log(

M√
EµB

√
rj
c

)

)
(Use Lemma 3.11)

=
192
√

2Eµ

a

√
cmax

j

(
1 + log

1+η
2 (

2
√

2rj

B
) · log(

M√
EµB

√
rj
c

)

)
ED sup

D∈Xn
Eε

[
sup
fj∈Fj

1

rj

rj∑
i=1

εi (fj(xi)− fj(x′i))

]

≤192
√

2Eµ

a

√
cmax

j

(
1 + log

1+η
2 (

2
√

2rj

B
) · log(

M√
EµB

√
rj
c

)

)
ED sup

D∈Xn
sup
fj∈Fj

1

rj

(
rj∑
i=1

(fj(xi)− fj(x′i))
2

) 1
2

(Use Lemma C.2)

≤384
√

2EµB

a
max
j

√
c

rj

(
1 + log

1+η
2 (

2
√

2rj

B
) · log(

M√
EµB

√
rj
c

)

)

≤384
√

2EµB
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√
c

r0

(
1 + log

1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
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c
)

)
.

Similarly, we can derive that

R
(
f̂
∗)
−R∗

=R
(
f̂
∗)
− R̂D(f̂

∗
) + R̂D(f̂

∗
)−R∗

≤ sup
f∈F

[R (f)− R̂D(f)] + sup
f∈F

[R̂D(f)−R (f)]

=2 sup
f∈F

[R (f)− R̂D(f)].

Let D′ = {x1, . . . ,x
′
k, . . . ,xn} be the training dataset with only one sample different from D, where the k-th sample is

replaced by x′k. Then

sup
f∈F

[R(f)− R̂D′(f)]− sup
f∈F

[R(f)− R̂D(f)]

≤ sup
f∈F

[R̂D(f)− R̂D′(f)]

≤ sup
f∈F

1

c

c∑
j=1

1∣∣X+
j

∣∣ ∣∣X−j ∣∣
∑

x′i∈X
−
j

(` (fj(xk)− fj(x′i))− ` (fj(xk)− fj(x′i)))

≤ M

r0
.
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According to McDiarmid’s inequality, for any 0 < δ < 1, with probability at least 1− δ over the training dataset D, the
following holds:

R(f̂∗)−R∗ ≤ 384
√

2EµB

a

√
c

r0

(
1 + log

1+η
2 (

2
√

2n

B
) · log(

M√
EµB

√
n

c
)

)
+ 2M

√
log 1

δ

r0
.

Note that when we analyze class-imbalance, we focus on whether sj and tj are seriously imbalanced for a fixed number of
n examples. Hence, the order of the bound is Õ(

√
c
r0

).
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