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Abstract

Semi-supervised learning (SSL) is a classical ma-
chine learning paradigm dealing with labeled and
unlabeled data. However, it often suffers perfor-
mance degradation in real-world open-set scenar-
ios, where unlabeled data contains outliers from
novel categories that do not appear in labeled data.
Existing studies commonly tackle this challeng-
ing open-set SSL problem with detect-and-filter
strategy, which attempts to purify unlabeled data
by detecting and filtering outliers. In this paper,
we propose a novel binary decomposition strategy,
which refrains from error-prone procedure of out-
lier detection by directly transforming the original
open-set SSL problem into a number of standard
binary SSL problems. Accordingly, a concise yet
effective approach named BDMatch is presented.
BDMatch confronts two attendant issues brought
by binary decomposition, i.e. class-imbalance and
representation-compromise, with adaptive logit
adjustment and label-specific feature learning re-
spectively. Comprehensive experiments on diver-
sified benchmarks clearly validate the superiority
of BDMatch as well as the effectiveness of our
binary decomposition strategy.

1. Introduction
Semi-supervised learning (SSL) allows to improve model
performance by leveraging unlabeled data when available
labeled data is insufficient (Engelen & Hoos, 2020; Yang
et al., 2023). As a classical machine learning paradigm,
SSL has been widely studied in various tasks, such as image
annotation (Sohn et al., 2020; Shi et al., 2023) and text

1School of Computer Science and Engineering, Southeast Uni-
versity, Nanjing 210096, China 2Key Laboratory of Computer
Network and Information Integration (Southeast University), Min-
istry of Education, China. Correspondence to: Min-Ling Zhang
<zhangml@seu.edu.cn>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Figure 1. An exemplary open-set semi-supervised learning sce-
nario. Unlabeled set contains outliers from novel categories that
do not appear in labeled set.

categorization (Xie et al., 2020).

Most existing SSL approaches are designed under the
closed-world assumption, i.e. labeled and unlabeled data
share exactly the same label space. However, such a closed-
world assumption is rather strict or even impractical in real-
world scenarios. Without the intervention of human annota-
tors, unlabeled set inevitably contains outliers from novel
categories that do not appear in labeled set, as shown in
Figure 1. Thus, a realistic setting called open-set semi-
supervised learning (Oliver et al., 2018) arises, which aims
to induce a prediction model that can both accurately clas-
sify inliers from seen categories and correctly reject outliers
from novel categories.

A straightforward strategy for open-set SSL is to purify un-
labeled set by detecting and filtering outliers. Following this
strategy, existing works either rely on heuristic criterions
(Chen et al., 2020; He et al., 2022a; Du et al., 2023), or
learn a parameterized detector (Guo et al., 2020; Yu et al.,
2020; Saito et al., 2021; Wang et al., 2023c) to filter out
potential outliers from unlabeled set so that classifier can
be induced on purified unlabeled data with standard SSL
approaches. However, this detect-and-filter strategy may
lead to suboptimal performance, since it is not an easy job
to obtain a reliable detection function with no labeled outlier
but only limited inliers.

In this paper, a novel strategy to tackle open-set SSL prob-
lem is proposed, which refrains from error-prone proce-
dure of outlier detection in existing detect-and-filter strategy.
From the perspective of problem transformation, our binary
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decomposition strategy decomposes the original open-set
SSL problem into a number of standard binary SSL prob-
lems, each of which aims to derive a one-vs-all classifier for
a seen category from a binary labeled set and an unlabeled
set consisting of potential positive and negative samples.
This strategy provides a concise way for open-set SSL, but
two attendant issues should be carefully considered before
it works well.

Firstly, the binary SSL problems may suffer from a high
degree of class-imbalance, even though the original class
distributions of labeled and unlabeled data are balanced. For
example, imbalance ratio of a binary labeled set derived
from a balanced multi-class labeled set is 1

K−1 with K be-
ing the size of label space in labeled set. What makes the
problem more challenging is that class distribution of the
binary unlabeled set is different from that of binary labeled
set and concealed from the learning algorithm. Secondly,
solving theses binary problems together could lead to a
compromised representation, as these problems may pos-
sess distinct discriminative preferences. For example, in
image annotation task, shape-based features would be more
essential in recognizing the plane category, while color-
based features might be preferred in discriminating the sky
category.

Taking the above two issues into considering, we provide
the first instantiation, BDMatch, for Binary Decomposition
strategy. Specifically, BDMatch learns class-balanced bi-
nary classifiers via an adaptive logit adjustment mechanism,
which accumulates model predictions during training to es-
timate a proxy of the potential class distributions of each
binary training set and adjusts classifiers’ outputs to be ap-
propriately biased toward the minority classes. Instead of
sharing a compromised representation among all binary clas-
sifiers, BDMatch learns label-specific features, i.e. the most
pertinent and discriminative features for each class label, to
fully consider distinct discriminative preferences of each
binary problem. Comprehensive experiments on various
benchmark data sets show that BDMatch performs better
than existing open-set SSL algorithms.

The rest of this paper is organized as follows. Section 2
briefly reviews related works. Section 3 presents details
of the BDMatch approach. Section 4 reports experimental
results over a wide range of benchmark data sets. Section 5
concludes this paper.

2. Related Works
Semi-Supervised Learning. With the ability to exploit
both labeled and unlabeled data, semi-supervised learning
is one of the research hotspots in the last decade (Engelen
& Hoos, 2020; Yang et al., 2023). As the most popular SSL
technique, consistency regularization is widely adopted and

investigated in recent literatures (Xie et al., 2020; Xu et al.,
2021; Wang et al., 2023b). The basic idea is to enforce
the model to output similar predictions among different
perturbations of a sample, which endows model with local
smoothness so that decision boundary would go through low-
density data regions (Miyato et al., 2019). As a represen-
tative SSL approaches, FixMatch (Sohn et al., 2020) com-
bines consistency regularization with a confidence-based
filtering mechanism. Follow-up works further enhance it by
customized strategies, such as debiasing the model predic-
tions with distribution alignment (Berthelot et al., 2020) or
neighbor voting (Li et al., 2021), selecting reliable samples
with adaptive thresholding (Zhang et al., 2021; Chen et al.,
2023), incorporating extra learning objectives from self-
supervised pretext tasks (Zheng et al., 2022; Nassar et al.,
2023). However, all these SSL approaches are developed
with the assumption that labeled and unlabeled data share
the same label space, which prevents them from deploying
in real-world SSL scenarios.

Open-Set Semi-Supervised Learning. The problem of
open-set SSL is firstly studied in (Oliver et al., 2018), which
shows standard SSL approaches would suffer performance
degradation when unlabeled set contains outliers. As an intu-
itive solution, existing works commonly attempt to alleviate
the effect of outliers with detect-and-filter strategy. Gen-
erally speaking, these approaches can be roughly grouped
into two categories, which differ in the way to detect out-
liers, namely criterion-based approaches and detector-based
approaches. Criterion-based approaches rely on heuristic
criterions, such as prediction confidence (Chen et al., 2020;
Huang et al., 2023c), sample similarity (Du et al., 2023),
or energy discrepancy (He et al., 2022a), to detect outliers.
While detector-based approaches turn to a parameterized
detector to filter outliers. Various ways have been developed
to train the detector. For example, MTCF (Yu et al., 2020)
trains it under a noisy label learning framework, where all
the unlabeled samples are treated as noisy outliers. Some
works induce detector with self-training techniques, e.g.
entropy minimization regularization (Huang et al., 2021;
Wang et al., 2023c) and pseudo-label assignment (Saito
et al., 2021; Fan et al., 2023). While other works (Guo et al.,
2020; He et al., 2022b) formalize the training procedure as
a bi-level optimization problem, where detector is learned
by optimizing derived classifier on labeled data.

Along this line, some recent studies point out outliers can
be useful and reconsider filtered outliers for model training
by self-supervised representation learning (Huang et al.,
2021; Mo et al., 2023; Wang et al., 2023c), adversarial
feature adaptation (Huang et al., 2023c), or style-based
data augmentation (Huang et al., 2023b). However, since
there is no labeled outlier but only limited inliers, it is an
inherently hard task to obtain a reliable detection function.
As a consequence, errors of outlier detection will propagate
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to derived classifier, leading to suboptimal performance in
inlier classification.

To circumvent the error-prone procedure of outlier detection,
some studies attempt to transfer the open-set SSL problem to
closed-set one (Li et al., 2023; Ma et al., 2023). They regard
all outliers as samples from a new virtual category and train
a (K + 1)-way classifier with pseudo-labels constructed by
heuristics. While Fix-A-Step (Huang et al., 2023a) intro-
duces the mixup trick to blend samples from both inliers and
outliers. Instead, our binary decomposition strategy directly
decomposes the open-set SSL problem into a number of
standard binary SSL problems, which is more straightfor-
ward and has no need to design complicated heuristics for
constructing pseudo-labels.

Class-Imbalanced Learning. Class-imbalanced learning
has been widely studied by machine learning community,
since real-world data sets are typically long-tailed (Zhang
et al., 2023). In supervised learning, imbalanced class dis-
tributions can be easily tackled by re-balancing methods,
including data re-sampling (Kang et al., 2020) and loss re-
weighting (Cui et al., 2019). However, they become rather
intractable when the data set contains unlabeled data, e.g. in
SSL scenarios. In this challenging direction, early attempts
(Wei et al., 2021; Lee et al., 2021) assume the labeled and
unlabeled data share the same class distribution, so that
classical re-balancing methods can be adapted for class-
imbalanced SSL. Subsequent studies (Guo & Li, 2022; Lai
et al., 2022; Wang et al., 2022a; 2023a; Wei & Gan, 2023)
move one step further. They resort to distribution estimation
techniques (Kim et al., 2020; Zhao et al., 2022), with which
fine-grained balance can be achieved when the real distri-
butions are mismatched between the labeled and unlabeled
data. Both as realistic settings of SSL, class-imbalanced
SSL and open-set SSL are investigated separately. Our work
makes a first attempt to find the point of intersection be-
tween these two lines of studies. With binary decomposition
strategy, open-set SSL problem is transformed into a num-
ber of class-imbalanced SSL problems, so that advanced
techniques in class-imbalanced SSL can be exploited for
open-set SSL.

3. The BDMatch Approach
3.1. Preliminaries

In open-set SSL, the training set consists of a labeled set
Dl = {(x(l)

i , yi)}Ni=1 ⊂ X × Y and an unlabeled set
Du = {x(u)

i }Mi=1 ⊂ X , where X denotes the input space
and Y = {1, 2, . . . ,K} denotes the label space with K
categories. The labeled set contains and only contains sam-
ples belonging to K categories in label space Y . While
the unlabeled set contains both inliers from K categories in
label space Y and outliers from novel categories that do not

appear in labeled set. For notation briefness, we denote the
set of all novel categories by U and thus the potential label
space of unlabeled set is Y ∪ U with Y ∩ U = ∅. Formally,
open-set SSL aims to derive a prediction model which can
accurately classify inliers from seen categories and correctly
reject outliers from novel categories.

3.2. Limitations of Detect-and-Filter Strategy

We firstly review the general framework of existing detect-
and-filter strategy and analyze its limitations, which moti-
vates us to investigate a more straightforward strategy for
tackling open-set SSL problem.

Given a detection function d : X → {0, 1}1, the detect-and-
filter strategy derives classifier f : X → RK by minimiz-
ing a supervised classification loss on labeled set Dl and a
masked unsupervised regularization term on unlabeled set
Du. Formally, the learning objective can be formalized as
follows

min
θ

N∑
i=1

`(f(x
(l)
i ; θ), yi) +

M∑
i=1

d(x
(u)
i ) · Ω(x

(u)
i ; θ), (1)

where θ parametrizes the K-way classifier f , and ` denotes
the cross-entropy loss. d(x

(u)
i ) describes the detection and

filtering procedure, where d(x
(u)
i ) = 1 indicates x

(u)
i is

detected as an inlier and d(x
(u)
i ) = 0 otherwise. For inliers,

a per-sample regularization term Ω(x
(u)
i ; θ) incorporates

some expected properties (e.g. smoothness) into derived
decision boundary, which is generally implemented as the
consistency regularization in literatures

Ω(x
(u)
i ; θ) = `(f(A(x

(u)
i ); θ), qi), (2)

where qi = arg maxy∈Y f(x
(u)
i ; θ)y denotes the pseudo-

label constructed from predictions of classifier f , andA(·) is
the data augmentation scheme (Cubuk et al., 2020) imposed
to obtain a perturbed version of sample x

(u)
i .

The above general framework discloses limitations of detect-
and-filter strategy in dealing with open-set SSL problem. (1)
Errors of outlier detection will propagate to derived classi-
fier: If an outlier is detected as an inlier, then the pseudo-
label assigned to it dooms to be a wrong one, since its real
label is not in the label space Y . Such a mislabeled example
will become a permanent noise for classifier induction. (2)
Outliers are wasted: Even with an oracle detection func-
tion which can perfectly distinguish outliers from inliers,
classifier is only trained on inliers, which means outliers
contribute no useful information for classifier induction.

1Existing approaches have different implementations of detec-
tion function, e.g. heuristic criterions or parameterized models.
We omit technical details here and suppose it is ready to use for
brevity.
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Instead, our binary decomposition strategy does not have
these limitations. We will describe it in the next subsection.

3.3. The Binary Decomposition Strategy

From the perspective of problem transformation, our binary
decomposition strategy directly decomposes open-set SSL
problem into a number of standard binary SSL problems.
Specifically, given an open-set SSL data set consisting of
a labeled set Dl = {(x(l)

i , yi)}Ni=1 and an unlabeled set
Du = {x(u)

i }Mi=1, we decompose it into K binary SSL data
sets {(Dlc,Duc )}Kc=1 as follows

Dlc = P lc ∪N l
c , Duc = Du

with P lc = {(x(l)
i , 1)|(x(l)

i , yi) ∈ D
l, yi = c}

N l
c = {(x(l)

i , 0)|(x(l)
i , yi) ∈ D

l, yi 6= c}, (3)

where Dlc,Duc denote binary labeled and unlabeled sets for
the cth seen category in original label space Y respectively.
Labeled set Dlc consists of a positive sample set P lc and a
negative sample set N l

c , which correspond to the samples
in the original labeled set Dl with the cth seen category and
without the cth seen category respectively.

It is worth noting that the unlabeled set Duc contains only
potential positive and negative samples for each seen cat-
egory. Namely, labeled set Dlc and unlabeled set Duc now
share the same binary label space, which means that these
binary SSL problems follow standard SSL setting.

We solve these binary SSL problems with the popular con-
sistency regularization framework

min
Θ

K∑
c=1

[

N∑
i=1

B̀CE(fc(x
(l)
i ; θc), y

c
i ) +

M∑
i=1

Ωc(x
(u)
i ; θc)], (4)

where a one-vs-all classifier fc : X → R, (1 ≤ c ≤ K) is
learned for each binary problem and Θ = {θ1, θ2, . . . , θK}
is the set to parametrize these classifiers. `BCE denotes
the binary cross-entropy loss and yci is the binary label of
sample x(l)

i , which can be determined according to whether
x

(l)
i is a positive sample or not for the cth binary problem

yci =

{
1, if x

(l)
i ∈ P lc

0, otherwise.
(5)

Following FixMatch (Sohn et al., 2020), the per-sample
regularization term is implemented as follows

Ωc(x
(u)
i ; θc) = `BCE(fc(A(x

(u)
i ); θc), q

c
i ), (6)

where we denote by pci = σ(fc(x
(u)
i ; θc)) the prediction

probability that sample x
(u)
i belongs to the cth seen cat-

egory, with σ(·) being the sigmoid function. Then, the

pseudo-label qci can be constructed via qci = I[pci > 0.5].
Here, I[P ] = 1 if predicate P holds and I[P ] = 0 otherwise.
Following (Sohn et al., 2020), we mask out samples that the
current classifier is not confident about to alleviate confir-
mation bias (Arazo et al., 2020) in self-training. The mask
mc
i is generated via a simple thresholding process

mc
i = I[(pci > ρ) ∨ (pci < 1− ρ)], (7)

where pci > ρ (resp. pci < 1 − ρ) means that x(u)
i is a

confident positive (resp. negative) sample. The threshold ρ
is set to 0.99 in this paper.

With binary decomposition strategy, inherent limitations
of detect-and-filter strategy are completely overcome. By
decomposing the original multi-class classification problem
into a number of binary classification problems, outliers
become potential negative samples of each binary classi-
fication problem. Therefore, classifiers can assign right
pseudo-labels for outliers and include them as a normal part
of training data to improve the performance of prediction
model. However, as a cost for its conciseness, binary de-
composition strategy brings new issues, i.e. class-imbalance
and representation-compromise. We will describe our con-
siderations towards these two issues in detail.

3.3.1. ADAPTIVE LOGIT ADJUSTMENT FOR
CLASS-IMBALANCED ISSUE

The derived binary SSL data sets in Eq.(3) may suffer from
a high degree of class-imbalance, which will lead to biased
classifiers with low accuracy on minority classes. We will
firstly take a deep look at the class-imbalance issue arising
with the binary decomposition procedure, and then present
our solution tailored for this specific binary SSL problem.

Let Nc,Mc (1 ≤ c ≤ K) denote the number of samples
for the cth seen category in the original labeled set Dl and
unlabeled set Du respectively. And we denote the number
of outliers in Du by Mo. Then, imbalance ratios of the
binary SSL data set (Dlc,Duc ) can be derived as follows

γlc =
|P lc|
|N l

c |
=

Nc∑K
i=1,i6=cNi

γuc =
|Puc |
|N u

c |
=

Mc∑K
i=1,i6=cMi +Mo

, (8)

where | · | denotes the cardinality of a set. It indicates that
derived binary SSL data sets are generally imbalanced and
class distributions are different between the labeled and
unlabeled data. Particularly, suppose the original labeled
and unlabeled sets are balanced (i.e. N1 = N2 = · · · = NK
and M1 = M2 = · · · = MK ), then we have γlc = 1

K−1 and
γuc <

1
K−1 , which is highly imbalanced when the number

of the seen categories is large.
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To improve classification performance in such a challenging
scenario, training techniques against class-imbalance are
necessary. For balancing the supervised classification loss
on labeled set, we replace the naive binary cross-entropy
loss with a re-margining version (Ren et al., 2020; Menon
et al., 2021) as follows

Lsup =

K∑
c=1

N∑
i=1

−yci log σ[fc(x
(l)
i ; θc) + τ · log γlc]

−(1− yci ) log σ[−fc(x(l)
i ; θc)− τ · log γlc], (9)

where the imbalance ratio γlc can be obtained from labeled
set, and τ > 0 is a scaling parameter controlling the strength
of balance. The above re-margining loss encourages training
process to pay more attention to the tail class (i.e. the
positive class when γlc < 1), so that bias of model can be
alleviated.

However, it is not an easy work to balance the unsupervised
regularization term on unlabeled data, since imbalance ratio
of unlabeled set γuc is unknown and different from γlc. In-
stead of trying to estimate the concealed imbalance ratio γuc ,
we attempt to capture the current learning state of each class.
Intuitively, if learning state of the positive class lags behind
the negative class, then subsequent learning process should
be biased toward the positive class to confront the imbalance.
Following (Lai et al., 2022; Wang et al., 2022a), we use the
empirical prediction probability of classifier on unlabeled
set, i.e. p̃c = 1

M

∑M
i=1 σ(fc(x

(u)
i ; θc)), as a proxy of learn-

ing state of the positive class. And for the negative class,
the proxy can be derived as 1− p̃c. To improve efficiency,
we adopt a running averaging mechanism to approximate
the proxy

p̃c ← µ·p̃c+(1−µ)· 1

|B(u)|
∑

x(u)∼B(u)

σ(fc(x
(u); θc)), (10)

where µ ∈ [0, 1] is a momentum factor and B(u) denotes
a batch of unlabeled data. With the proxy, we can derive
a counterpart of the imbalance ratio of unlabeled set as
follows

γ̃uc =
p̃c

1− p̃c
. (11)

Recent works (Kim et al., 2020; Wei & Gan, 2023) find that
predictions of the classifier induced on imbalanced data are
biased toward the majority classes. Such bias may affect
the quality of generated pseudo-labels and thus accumulates
during the self-training process. To prevent accumulation of
bias, we adapt the logit adjustment technique (Menon et al.,
2021) with the proxy in Eq.(11) to adaptively adjust classi-
fiers’ outputs to be appropriately biased toward the minority
classes. Specifically, we fix the prediction probability on
unlabeled sample x

(u)
i by

p̂ci = σ(fc(x
(u)
i ; θc)− τ · log γ̃uc ). (12)

The above adjusted prediction probability is used to replace
the original prediction probability pci to obtain the pseudo-
label and mask used in Eq.(6).

3.3.2. LABEL-SPECIFIC FEATURES FOR
REPRESENTATION-COMPROMISE ISSUE

Existing SSL approaches generally obey theK-way softmax
classification paradigm, where a linear softmax classifier
transfers the representation z extracted by a backbone into
prediction probabilities for each class label. Analogously,
in binary decomposition scenario, one can achieve classifi-
cation by attaching a group of linear one-vs-all classifiers to
the identical representation z extracted by a backbone.

Though such an implementation is feasible, it might be sub-
optimal as it fails to consider that each binary problem may
possess its own discriminative preferences. For example,
in image annotation task, color-based features would be
preferred in recognizing the sky and non-sky images, while
they can be nuisance factors in discriminating the plane
and non-plane images. Intuitively, these potentially distinct
discriminative preferences will result in a compromised rep-
resentation, if we tackle these binary problems with a shared
feature extractor. Therefore, we hypothesize that if label-
specific features, i.e. the most pertinent and discriminative
features for each class label, could be used in the learning
process, a more effective approach to solve these different
binary problems could be achieved. The methodology can
be formalized as

lc = hc(gc(x)), 1 ≤ c ≤ K (13)

where each linear one-vs-all classifier hc is fed with the tai-
lored representation zc (i.e. label-specific features) extracted
by a feature extractor gc specific to each binary problem,
instead of the identical representation z shared among all
binary problems.

Here, we present the implementation to learn label-specific
features for image data, since existing studies on open-set
SSL all evaluate their approaches on image annotation task.
Implementation recommendations for text and tabular data
classifications can be found in the appendix.

For image data x, a feature map Zmap ∈ Re×h×w can
be obtained by removing the top pooling layer of widely-
used backbones (e.g. Wide ResNet-28-2 (Zagoruyko &
Komodakis, 2016) and ResNet-18 (He et al., 2016)). After
flattening the spatial dimension of the feature map, we adopt
a dot-product attention module to extract the most pertinent
and discriminative features for each binary problem

zc = Zfmap · softmax(
KTrc√

e
)

with Zfmap = Flatten(Zmap) ∈ Re×(h·w), (14)
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where K = WkeyZ
f
map ∈ Re×(h·w) is the key matrix

and Wkey denotes the parameter of a linear layer. R =
[r1, r2, . . . , rK ] ∈ Re×K is a learnable query matrix mod-
elling the discriminative preferences of each binary problem.
The above module can be regarded as a weighted-averaging
pooling layer which uses different weights to aggregate the
feature map Zmap for each class label, while the compro-
mised representation z is simply obtained by aggregating
the feature map Zmap with uniform weights.

3.3.3. INFERENCE

For an unseen sample u ∈ X , the inference procedure is
rather simple, which can be formalized as follows

y =

{
K + 1, if pm < 0.5

arg max1≤c≤K σ(fc(u; θc)), otherwise

with pm = max
1≤c≤K

σ(fc(u; θc)), (15)

where y = K + 1 means the prediction model assigns
unseen sample u to a novel category, since all the one-vs-all
classifiers predict it as a negative sample.

4. Experiments
4.1. Experimental Setup

4.1.1. DATA SETS

Following (Saito et al., 2021; Fan et al., 2023; Li et al.,
2023), experiments are conducted on benchmark data sets
CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and Ima-
geNet (Deng et al., 2009) with different numbers of labeled
data and diversified open-set settings.

CIFAR-10: The 6 animal classes are used as seen cate-
gories and other 4 classes as unseen categories. For each
seen category, we randomly select 4 or 25 samples from
training set as the labeled set. The rest of training set is used
as the unlabeled set. For evaluation, we report algorithm
performance on test set of CIFAR-10.

CIFAR-100: Seen/unseen categories are split on the hier-
archy of super classes. Three settings are considered by
using the first 4, 10, or 16 super-classes as seen categories,
resulting in seen/unseen category split of 20/80, 50/50, and
80/20 respectively. For each seen category, we randomly
select 4 or 25 samples from training set as the labeled set.
The rest of training set is used as the unlabeled set. For
evaluation, we report algorithm performance on test set of
CIFAR-100.

ImageNet: Following (Saito et al., 2021; Fan et al., 2023;
Li et al., 2023), we use ImageNet-30, which is a subset of
ImageNet containing 30 categories. The first 20 classes
are used as seen categories and other 10 classes as unseen
categories. For each seen category, we randomly select 1%

or 5% samples from training set as the labeled set (13 or
65 samples per category respectively). The rest of training
set is used as the unlabeled set. For evaluation, we report
algorithm performance on test set of ImageNet-30.

4.1.2. EVALUATION METRICS

For comprehensive performance evaluation, we follow (Li
et al., 2023) to evaluate an algorithm with the following two
evaluation metrics.

Inlier accuracy: It is the test accuracy on seen categories,
which reflects the ability of an algorithm to utilize open-set
unlabeled set for improving classification performance on
inliers.

Overall accuracy: It measures classification performance
on the whole open-set test set including both seen and un-
seen categories, which reflects the real performance of an
algorithm in open-set environment. In evaluation, all un-
seen categories are regarded as a single category, i.e. the
(K + 1)th category. Since open-set test set may have class-
imbalance problem, the balanced accuracy (BA) (Brodersen
et al., 2010) is calculated, which is defined as follows

BA =
1

K + 1

K+1∑
c=1

Recallc, (16)

where Recallc denotes the recall score of the cth category.

4.1.3. IMPLEMENTATION DETAILS

Following (Li et al., 2023), we use Wide ResNet-28-2
(Zagoruyko & Komodakis, 2016) as the backbone for exper-
iments on CIFAR-10/100, and ResNet-18 (He et al., 2016)
for ImageNet. The scaling parameter τ controlling the
strength of balance is set as 0.5 and the momentum fac-
tor µ in Eq.(10) is set as 0.999. Models are all trained by
the SGD optimizer and the learning rate is set as 0.03 with
a cosine decay. For CIFAR experiments, models are trained
for 256 ∗ 1024 iterations and each iteration contains a batch
of 64 labeled samples and 64 ∗ 7 unlabeled samples. For
ImageNet experiments, models are trained for 100 ∗ 1024
iterations and each iteration contains a batch of 32 labeled
samples and 32 unlabeled samples.

To tackle class-imbalance, we find it to be helpful to adopt
the dual-branch architecture (Kang et al., 2020; Wei & Gan,
2023) during training, where two groups of one-vs-all clas-
sifiers are learned simultaneously on shared backbone. One
group of classifiers (balanced classifiers) is trained with the
adaptive logit adjustment mechanism, responsible for learn-
ing unbiased classifiers. While another group of classifiers
(standard classifiers) is trained with the standard consistency
regularization framework in Eq.(4) to elicit good representa-
tion from the original data distribution. After training, we
only use balanced classifiers for inference.
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Table 1. Inlier accuracy of each comparing approach (mean±std. deviation) on data sets with varying seen/unseen class splits and labeled
set sizes. Best results are highlighted in boldface.

Data set CIFAR-10 CIFAR-100 ImageNet-30

Class split (Seen / Unseen) 6 / 4 20 / 80 50 / 50 80 / 20 20 / 10

Number of labels per class 4 25 4 25 4 25 4 25 1% 5%

St
an

da
rd

SS
L

MixMatch NeurIPS’19 43.08±1.79 63.13±0.64 28.13±5.06 51.28±1.45 26.97±0.46 56.93±0.84 28.35±0.83 53.77±0.97 - -
ReMixMatch ICLR’20 72.82±1.81 87.08±1.12 36.02±3.56 61.83±0.81 37.57±1.54 65.80±1.33 40.64±2.97 62.90±1.07 - -

FixMatch NeurIPS’20 81.58±6.63 92.94±0.80 46.27±0.64 66.45±0.74 48.93±5.05 68.77±0.89 43.06±1.21 64.44±0.51 52.52±3.82 78.55±1.46
CoMatch ICCV’21 86.08±1.08 92.57±0.47 43.53±3.01 66.82±1.37 43.17±0.55 67.85±1.17 37.89±1.22 62.04±0.08 62.92±0.90 79.17±0.42

FlexMatch NeurIPS’21 73.34±4.42 86.44±3.72 37.93±4.49 62.68±2.02 44.10±1.88 68.98±0.94 43.44±2.40 64.34±0.64 - -
SimMatch CVPR’22 79.84±4.76 90.07±2.44 36.93±5.72 67.23±1.13 51.53±2.02 69.71±1.44 50.32±2.57 65.68±1.43 64.15±0.94 80.23±0.53
FreeMatch ICLR’23 79.26±4.11 92.27±0.15 45.18±8.36 64.62±0.79 50.26±1.92 68.57±0.27 47.34±0.57 64.41±0.55 - -

O
pe

n-
Se

t S
SL

UASD AAAI’20 35.25±1.07 56.42±1.34 29.78±4.28 53.78±0.67 29.08±1.44 54.24±1.10 26.41±2.16 50.33±0.62 - -
DS3L ICML’20 39.09±1.24 51.83±1.06 19.70±1.98 41.78±1.45 21.62±0.54 47.41±0.61 20.10±0.48 40.51±1.02 - -
MTCF ECCV’20 49.15±6.12 74.42±2.95 32.58±3.36 55.93±1.66 35.35±2.39 57.72±0.20 25.40±1.20 54.59±0.49 - -

T2T ICCV’21 73.89±1.55 85.69±1.90 44.23±2.27 65.60±0.71 39.31±1.16 68.59±0.92 38.16±0.59 63.86±0.32 63.70±0.83 78.87±0.49
OpenMatch NeurIPS’21 43.63±3.26 66.27±1.86 37.45±2.67 62.70±1.76 33.74±0.38 66.53±0.54 28.54±1.15 61.23±0.81 56.35±3.35 73.90±1.05

SAFE-STUDENT CVPR’22 59.28±1.18 77.87±0.14 34.53±0.67 58.07±1.40 35.84±0.86 62.75±0.38 34.17±0.69 57.99±0.34 58.38±2.34 75.85±0.99
SSB ICCV’23 70.93±1.73 93.52±0.23 45.25±3.06 66.30±0.83 49.87±2.64 68.86±0.82 45.89±1.58 44.85±1.05 42.07±2.45 78.08±3.28
OSP CVPR’23 78.14±0.54 85.41±3.56 43.65±0.97 66.13±1.37 43.14±1.35 68.69±1.11 37.27±2.24 62.55±0.23 72.12±1.50 78.45±0.48

IOMatch ICCV’23 89.68±2.04 93.87±0.16 53.73±2.12 67.28±1.10 56.31±2.29 69.77±0.58 50.83±0.99 64.75±0.52 69.18±1.68 81.43±0.78

BDMatch Ours 91.77±1.62 93.86±0.57 57.40±2.44 69.58±0.75 59.37±1.57 71.79±0.16 52.30±1.43 66.53±0.47 75.18±0.98 82.88±1.35

Table 2. Overall accuracy of each comparing approach (mean±std. deviation) on data sets with varying seen/unseen class splits and
labeled set sizes. Best results are highlighted in boldface.

Data set CIFAR-10 CIFAR-100 ImageNet-30

Class split (Seen / Unseen) 6 / 4 20 / 80 50 / 50 80 / 20 20 / 10

Number of labels per class 4 25 4 25 4 25 4 25 1% 5%

O
pe

n-
Se

t S
SL

UASD AAAI’20 17.10±0.32 36.01±0.22 10.50±0.83 26.96±0.53 6.92±0.55 32.23±0.54 5.77±0.21 27.61±1.15 - -
DS3L ICML’20 30.89±0.33 40.45±0.77 12.56±1.21 34.35±0.41 12.14±0.39 35.17±0.48 11.10±1.27 29.09±0.31 - -
MTCF ECCV’20 33.35±7.21 46.13±0.54 8.12±2.10 26.60±3.66 4.13±0.37 38.36±0.29 1.46±0.17 30.75±0.52 - -

T2T ICCV’21 50.57±0.38 61.10±0.39 17.17±1.37 37.18±0.60 12.74±2.66 44.24±0.42 34.23±0.57 51.41±0.96 48.81±0.88 58.51±0.41
OpenMatch NeurIPS’21 14.37±0.05 20.35±3.50 8.77±2.84 39.89±1.16 7.00±0.02 49.75±1.08 6.30±0.87 44.83±0.62 21.80±1.90 57.25±0.76

SAFE-STUDENT CVPR’22 45.27±0.36 52.78±0.64 15.94±1.07 28.83±0.46 23.98±0.88 46.71±1.74 29.43±0.66 50.48±0.61 44.08±2.09 55.25±1.46
SSB ICCV’23 62.87±1.80 62.98±3.32 25.76±2.78 33.28±1.68 26.61±1.56 36.25±3.83 19.61±1.10 24.68±0.15 25.81±1.96 62.71±0.44
OSP CVPR’23 66.32±3.67 75.23±3.48 35.61±0.86 63.52±1.49 41.01±2.00 66.38±0.82 32.23±3.56 56.27±3.68 52.62±1.51 62.91±1.64

IOMatch ICCV’23 75.08±1.92 78.96±0.08 45.94±1.70 58.52±0.48 46.36±1.93 60.78±0.71 39.96±0.95 54.39±0.38 57.71±2.69 73.94±0.99

BDMatch Ours 78.31±0.89 79.81±0.57 50.46±2.14 63.71±0.87 55.17±1.52 68.20±0.58 48.09±1.92 63.14±0.19 65.48±1.03 74.17±1.38

4.2. Comparative Studies

We compare BDMatch2 with existing SSL approaches, in-
cluding seven standard SSL approaches and nine open-set
SSL approaches. For fair comparison, experiments are con-
ducted on a unified codebase based on USB (Wang et al.,
2022b). Common hyperparameters sharing among different
approaches are set as the same values, while other hyper-
parameters specific to each approach are set by parameter
configurations suggested in respective literatures. Experi-
mental results are averaged across three independent runs
with different random seeds.

Table 1 and Table 2 report detailed experimental results in
terms of inlier accuracy and overall accuracy respectively.
Based on these results, it is impressive to observe that

• For inlier classification, BDMatch achieves superior
performance to existing standard SSL approaches as
well as open-set SSL approaches. For example, when
labels are extremely scarce, BDMatch outperforms the
second best approach with up to 2.09%, 3.67%, 3.06%,
1.47%, and 3.06% absolute increase in test accuracy

2Code package of BDMatch is publicly available at: http:
//palm.seu.edu.cn/zhangml/files/BDMatch.rar.

on CIFAR-10-6-43, CIFAR-100-20-4, CIFAR-100-50-
4, CIFAR-100-80-4, ImageNet-30-20-p1 respectively.
These consistently better results demonstrate the ef-
fectiveness of our binary decomposition strategy for
open-set SSL.

• Meantime, across various open-set SSL settings,
BDMatch significantly outperforms existing SSL ap-
proaches in terms of overall accuracy, which is a more
comprehensive evaluation metric to measure the ability
of an algorithm to achieve both good inlier classifica-
tion and accurate outlier detection. For example, on
CIFAR-100-80-25 and ImageNet-30-20-p1, BDMatch
improves the existing best results by 12.21% and
13.46% respectively. And performance of BDMatch
keeps relatively stable as the number of labeled sam-
ples decreases, while most of existing open-set SSL ap-
proaches suffer severe performance degradation when
labels are extremely scarce.

We also consider a cross-dataset open-set evaluation setting,
where the test set contains samples from categories that do

3For briefness, the open-set setting on CIFAR-10 with 6 seen
categories and 4 labeled samples per category is denoted by CIFAR-
10-6-4. Other open-set settings are abbreviated similarly.
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Table 3. Predictive performance of BDMatch and its variants
(mean±std. deviation) in terms of inlier accuracy with a fixed
random seed. LA is the abbreviation of logit adjustment.

Algorithm CIFAR-100-20-4 CIFAR-100-80-4

BDMatch 58.05 53.83

(a) w.o. Outliers (Purified data) 54.75 52.36
(b) w.o. Label-specific features 54.45 51.24

(c) w.o. Dual-branch architecture 55.85 52.19
(d) w.o. Proxy γ̃uc for adaptive LA 54.50 49.28
(e) w.o. Non-adaptive LA with γlc 52.55 43.86

(f) w.o. Re-margining in Eq.(9) 55.70 50.14

not appear even in the unlabeled training set. Following (Li
et al., 2023), we expand the original test set with foreign out-
liers from data sets, including SVHN (Yuval, 2011), LSUN
(Yu et al., 2015), Synthetic Gaussian (Yu et al., 2020), and
Synthetic Uniform (Yu et al., 2020). Table A.1 reports de-
tailed experimental results in this evaluation setting, which
shows that BDMatch can still achieve consistently superior
open-set classification performance to existing open-set SSL
approaches.

4.3. Further Analyses

4.3.1. ABLATION STUDIES

Comprehensive ablation studies are conducted to have a
deeper look at important designing elements in BDMatch.

Consideration on representation-compromise issue.
BDMatch accounts for each binary problem’s own dis-
criminative preferences via learning label-specific features.
To validate the effectiveness of this designing element,
we implement a variant of BDMatch, which removes
the dot-product attention module in Eq.(14) and directly
performs classification on the identical representation
z extracted by the backbone. As shown in Table 3(b),
without consideration on representation-compromise
issue, performance of this variant lags behind BDMatch
significantly.

Consideration on class-imbalance issue. We tackle class-
imbalance issue with an adaptive logit adjustment mecha-
nism and the dual-branch architecture. To examine the effec-
tiveness of these designing elements, we remove them suc-
cessively and derive a series of variants. We firstly remove
the dual-branch architecture. As shown in Table 3(c), dual-
branch architecture is essential to confront class-imbalance.
Then, we replace the adaptive logit adjustment mechanism
with a non-adaptive one by directly using the imbalance
ratio γlc of labeled set as a substitute of the adaptive proxy
γ̃uc of unlabeled set (i.e. variant (d) in Table 3). While vari-
ant (e) further removes the non-adaptive logit adjustment
mechanism, which is actually a baseline without any consid-
eration on class-imbalance. We also implement an variant
(f) which removes the re-margining loss for balancing super-
vised classification on labeled set. Results in Table 3 show

Figure 2. Ablation studies of BDMatch. Based on a super-
vised baseline, we successively add consistency regularization
(CR), label-specific features (LSF), non-adaptive logit adjustment
(NALA), adaptive logit adjustment (ALA), and dual-branch archi-
tecture (DB).

Figure 3. Predictive performance of BDMatch with varying confi-
dence threshold ρ and scaling parameter τ .

that the class-imbalance issue is worth careful treatment and
the adaptive proxy is quite effective.

Are outliers utilized effectively by the binary decomposition
strategy? We implement a variant of BDMatch, which is
trained on purified data set containing only inliers. Such a
purified data set is obtained by an oracle detection function.
As shown in Table 3(a), BDMatch achieves better result than
this variant model, which demonstrates that our binary de-
composition strategy does have the ability to utilize outliers
to improve classification performance.

Figure 2 gives an illustrative example on how the perfor-
mance of a supervised baseline, which learned from only
the labeled data, gradually improves when we successively
add designing elements in BDMatch.

4.3.2. PARAMETER SENSITIVITY

Figure 3 gives illustrative examples on how the performance
of BDMatch changes when the values of confidence thresh-
old ρ (in Eq.(7)) and scaling parameter τ (in Eq.(12)) change.
When ρ = 0.5, no sample is masked out during training. So
confirmation bias accumulates and thus leads to degraded
performance. And scaling parameter τ should be treated
carefully, since both under-balancing and over-balancing
may be harmful. For practicers, we recommend a high
enough confidence threshold ρ (e.g. 0.99) and a proper scal-
ing parameter τ around 0.5, which can obtain reasonable
results according to our studies.

5. Conclusion
In this paper, we propose to tackle open-set semi-supervised
learning with a novel binary decomposition strategy. Our
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strategy directly decomposes the original open-set SSL prob-
lem into a number of standard binary SSL problems, and
thus refrains from error-prone procedure of outlier detec-
tion in existing detect-and-filter strategy. Following this
binary decomposition strategy, we present an open-set SSL
approach BDMatch, which confronts two attendant issues,
i.e. class-imbalance and representation-compromise, with
an adaptive logit adjustment mechanism and a label-specific
feature learning mechanism respectively. Comprehensive
experiments against current competing algorithms show the
superiority of our approach and indicate that the binary
decomposition strategy is a promising direction for future
studies.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Canada, 2018.

Ren, J., Yu, C., Sheng, S., Ma, X., Zhao, H., Yi, S., and Li, H.
Balanced meta-softmax for long-tailed visual recognition.
In Advances in Neural Information Processing Systems
33, pp. 4175–4186, virtual, 2020.

Saito, K., Kim, D., and Saenko, K. OpenMatch: Open-set
semi-supervised learning with open-set consistency regu-
larization. In Advances in Neural Information Processing
Systems 34, pp. 25956–25967, virtual, 2021.

Shi, J., Wu, T., Yu, H., Qin, A. K., Jeon, G., and Lei, Y.
Multi-layer composite autoencoders for semi-supervised
change detection in heterogeneous remote sensing images.
Science China Information Sciences, 66(4), 2023.

Sohn, K., Berthelot, D., Carlini, N., Zhang, Z., Zhang, H.,
Raffel, C., Cubuk, E. D., Kurakin, A., and Li, C.-L. Fix-
Match: Simplifying semi-supervised learning with consis-
tency and confidence. In Advances in Neural Information
Processing Systems 33, pp. 596–608, virtual, 2020.

Wang, R., Jia, X., Wang, Q., Wu, Y., and Meng, D. Imbal-
anced semi-supervised learning with bias adaptive classi-
fier. In Proceedings of the 11th International Conference
on Learning Representations, Kigali, Rwanda, 2023a.

Wang, X., Wu, Z., Lian, L., and Yu, S. X. Debiased learning
from naturally imbalanced pseudo-labels. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14627–14637, New Orleans, LA,
2022a.

Wang, Y., Chen, H., Fan, Y., Sun, W., Tao, R., Hou, W.,
Wang, R., Yang, L., Zhou, Z., Guo, L.-Z., Qi, H., Wu, Z.,
Li, Y.-F., Nakamura, S., Ye, W., Savvides, M., Raj, B.,

Shinozaki, T., Schiele, B., Wang, J., Xie, X., and Zhang,
Y. USB: A unified semi-supervised learning benchmark
for classification. In Advances in Neural Information
Processing Systems 35, pp. 3938–3961, New Orleans,
LA, 2022b.

Wang, Y., Chen, H., Heng, Q., Hou, W., Fan, Y., Wu, Z.,
Wang, J., Savvides, M., Shinozaki, T., Raj, B., Schiele,
B., and Xie, X. FreeMatch: Self-adaptive thresholding
for semi-supervised learning. In Proceedings of the 11th
International Conference on Learning Representations,
Kigali, Rwanda, 2023b.

Wang, Y., Qiao, P., Liu, C., Song, G., Zheng, X., and Chen,
J. Out-of-distributed semantic pruning for robust semi-
supervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 23849–23858, Vancouver, Canada, 2023c.

Wei, C., Sohn, K., Mellina, C., Yuille, A. L., and Yang, F.
CReST: A class-rebalancing self-training framework for
imbalanced semi-supervised learning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10857–10866, virtual, 2021.

Wei, T. and Gan, K. Towards realistic long-tailed semi-
supervised learning: Consistency is all you need. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3469–3478, Vancou-
ver, Canada, 2023.

Wu, X., Jiang, B., Yu, K., Chen, H., and Miao, C. Multi-
label causal feature selection. In Proceedings of the 24th
AAAI Conference on Artificial Intelligence, pp. 6430–
6437, New York, NY, 2020.

Xie, Q., Dai, Z., Hovy, E. H., Luong, T., and Le, Q. Unsu-
pervised data augmentation for consistency training. In
Advances in Neural Information Processing Systems 33,
pp. 6256–6268, virtual, 2020.

Xu, Y., Shang, L., Ye, J., Qian, Q., Li, Y., Sun, B., Li, H.,
and Jin, R. Dash: Semi-supervised learning with dynamic
thresholding. In Proceedings of the 38th International
Conference on Machine Learning, pp. 11525–11536, Vir-
tual Event, 2021.

Yang, X., Song, Z., King, I., and Xu, Z. A survey on deep
semi-supervised learning. IEEE Transactions on Knowl-
edge and Data Engineering, 35(9):8934–8954, 2023.

You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H.,
and Zhu, S. AttentionXML: Label tree-based attention-
aware deep model for high-performance extreme multi-
label text classification. In Advances in Neural Informa-
tion Processing Systems 32, pp. 5812–5822, Vancouver,
Canada, 2019.

11



Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning

Yu, F., Zhang, Y., Song, S., Seff, A., and Xiao, J. LSUN:
Construction of a large-scale image dataset using deep
learning with humans in the loop. arXiv preprint,
arXiv:1506.03365, 2015.

Yu, Q., Ikami, D., Irie, G., and Aizawa, K. Multi-task cur-
riculum framework for open-set semi-supervised learning.
In Proceedings of the 16th European Conference of Com-
puter Vision, pp. 438–454, Glasgow, UK, 2020.

Yuval, N. Reading digits in natural images with unsuper-
vised feature learning. In Proceedings of the NIPS Work-
shop on Deep Learning and Unsupervised Feature Learn-
ing, 2011.

Zagoruyko, S. and Komodakis, N. Wide residual networks.
In Proceedings of the British Machine Vision Conference,
York, UK, 2016.

Zhang, B., Wang, Y., Hou, W., Wu, H., Wang, J., Oku-
mura, M., and Shinozaki, T. FlexMatch: Boosting semi-
supervised learning with curriculum pseudo labeling. In
Advances in Neural Information Processing Systems 34,
pp. 18408–18419, virtual, 2021.

Zhang, M.-L. and Wu, L. LIFT: Multi-label learning with
label-specific features. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(1):107–120, 2015.

Zhang, M.-L. and Zhou, Z.-H. A review on multi-label
learning algorithms. IEEE Transactions on Knowledge
and Data Engineering, 26(8):1819–1837, 2014.

Zhang, Y., Kang, B., Hooi, B., Yan, S., and Feng, J. Deep
long-tailed learning: A survey. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(9):10795–
10816, 2023.

Zhao, Z., Zhou, L., Duan, Y., Wang, L., Qi, L., and
Shi, Y. DC-SSL: Addressing mismatched class distri-
bution in semi-supervised learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9747–9755, New Orleans, LA, 2022.

Zheng, M., You, S., Huang, L., Wang, F., Qian, C., and Xu,
C. SimMatch: Semi-supervised learning with similarity
matching. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14451–
14461, New Orleans, LA, 2022.

12



Binary Decomposition: A Problem Transformation Perspective for Open-Set Semi-Supervised Learning

A. Cross-Dataset Open-Set Evaluation
In this section, we consider a cross-dataset open-set evaluation setting, where the test set contains samples from categories
that do not appear even in the unlabeled training set. Such an evaluation setting aims to measure the generalization ability
of an algorithm to outliers from brand-new categories. Following (Li et al., 2023), we expand the original test set with
foreign outliers from data sets, including SVHN (Yuval, 2011), LSUN (Yu et al., 2015), Synthetic Gaussian (Yu et al., 2020),
and Synthetic Uniform (Yu et al., 2020). Table A.1 reports detailed experimental results in this evaluation setting, which
shows that BDMatch can still achieve consistently superior open-set classification performance to existing open-set SSL
approaches.

Table A.1. Overall accuracy of each comparing approach (mean±std. deviation) on cross-dataset open-set test sets with varying
seen/unseen class splits and labeled set sizes. Best results are highlighted in boldface.

Data set CIFAR-10 CIFAR-100

Class split (Seen / Unseen) 6 / 4 20 / 80 50 / 50 80 / 20

Number of labels per class 4 25 4 25 4 25 4 25

O
pe

n-
Se

tS
SL

UASD AAAI’20 18.32±0.61 35.78±0.22 11.03±0.43 27.35±0.33 7.03±0.45 31.94±0.74 5.92±0.35 27.83±0.85
DS3L ICML’20 31.38±0.52 40.92±0.68 13.05±1.03 35.03±0.47 11.84±0.79 34.88±0.57 11.38±0.89 29.32±0.38
MTCF ECCV’20 28.35±4.84 46.06±0.69 8.16±2.12 26.77±3.70 4.14±0.38 38.04±0.15 1.46±0.17 30.51±0.27

T2T ICCV’21 51.35±1.76 61.78±0.89 17.82±1.57 37.78±0.73 12.33±1.87 43.86±0.71 34.45±0.67 51.77±1.03
OpenMatch NeurIPS’21 14.37±0.05 20.31±3.49 8.77±2.83 39.96±1.17 9.97±0.37 49.56±1.15 6.31±0.88 44.77±0.58

SAFE-STUDENT CVPR’22 46.37±0.61 54.23±0.42 16.31±0.88 29.44±0.56 23.31±0.93 46.91±1.42 29.52±0.55 50.83±0.41
SSB ICCV’23 64.91±3.47 55.18±3.53 25.84±3.26 33.56±1.13 26.88±1.30 36.29±4.29 19.42±1.09 24.56±0.18
OSP CVPR’23 64.75±1.54 76.81±2.72 35.02±0.66 63.45±1.50 41.13±1.82 66.29±0.86 32.18±3.37 56.31±3.50

IOMatch ICCV’23 77.82±2.48 82.44±0.54 46.97±2.05 60.30±0.99 46.09±1.98 60.64±0.79 40.08±0.75 54.57±0.30

BDMatch Ours 82.90±0.56 83.48±2.99 51.47±1.96 64.05±0.85 56.09±1.59 69.05±0.73 48.55±2.13 63.71±0.08

B. Further Discussion and Comparison with Related Works
Although OpenMatch (Saito et al., 2021), IOMatch (Li et al., 2023) and BDMatch all have one-vs-all classifiers in their
prediction models, the methodologies for tackling open-set SSL problem are totally different.

OpenMatch obeys detect-and-filter strategy. Accordingly, its one-vs-all classifiers are used as parameterized detector to filter
out outliers in unlabeled set so that another K-way softmax classifier can be induced on purified unlabeled set. IOMatch
transfers K-way open-set SSL problem to (K + 1)-way closed-set one, where one-vs-all classifiers are used to generate
pseudo-labels with heuristics for training a closed-set (K + 1)-way softmax classifier. While our approach follows a concise
binary decomposition strategy, which both avoids error-prone outlier detection process in OpenMatch and has no need to
design complicated heuristics for constructing pseudo-labels in IOMatch.

Table B.1 reports further experimental results on the superiority of binary decomposition strategy. To show how much the
performance of detect-and-filter approaches is affected by error-prone outlier detection, we conduct an experiment which
provides oracle detection function for these approaches. We also analyze how much the performance of a (K + 1)-way
classifier can be improved if ground-truth (K+1)-way labels of outliers are provided. Significant performance improvement
is witnessed, which demonstrates both outlier detection and pseudo-label construction are obstacles for good performance.

Table B.1. Further experimental results on the superiority of binary decomposition strategy. Experiments are conducted on CIFAR-100-
80-4.

Algorithm Inlier accuracy Overall accuracy

OpenMatch (detect-and-filter strategy) 28.75 6.42
OpenMatch w. oracle detection function 49.23 49.85

OSP (detect-and-filter strategy) 37.46 28.76
OSP w. oracle detection function 47.40 48.05

IOMatch ((K + 1)-way classification) 51.09 40.49
IOMatch w. oracle labels of outliers 56.73 57.26

BDMatch 53.83 50.14
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C. Label-Specific Feature Learning
Label-specific feature learning works as an effective technique to conciliate the learning conflicts among multiple classifica-
tion problems in multi-label learning (Zhang & Zhou, 2014; Liu et al., 2022). The basic idea is to facilitate the discrimination
of each class label by tailoring its own features, instead of sharing an identical feature among all class labels. A theoretical
interpretation of this technique has been provided in recent study (Hang & Zhang, 2022b). For tabular data classification,
label-specific features can be constructed either by feature transformation (Zhang & Wu, 2015; Guo et al., 2019; Jia et al.,
2023), or by feature selection (Huang et al., 2016; Wu et al., 2020; Hang & Zhang, 2022a). While for text classification, we
would recommend the attention mechanism (You et al., 2019; Kharbanda et al., 2022) to mining the most pertinent features
for each classification problem.

In this paper, we make a first attempt to introduce this technique and validate its effectiveness for open-set SSL problem.
With the binary decomposition strategy, the original open-set problem is transformed into multiple different binary problems.
These binary problems may possess distinct discriminative preferences, and thus have natural requirements for label-specific
features to confront the attendant representation-compromise issue.
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