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Abstract
The generalization analysis of deep kernel learn-
ing (DKL) is a crucial and open problem of kernel
methods for deep learning. The implicit nonlin-
ear mapping in DKL makes existing methods of
capacity-based generalization analysis for deep
learning invalid. In an attempt to overcome this
challenge and make up for the gap in the gener-
alization theory of DKL, we develop an analysis
method based on the composite relationship of
function classes and derive capacity-based bounds
with mild dependence on the depth, which gener-
alizes learning theory bounds to deep kernels and
serves as theoretical guarantees for the general-
ization of DKL. In this paper, we prove novel and
nearly-tight generalization bounds based on the
uniform covering number and the Rademacher
chaos complexity for deep (multiple) kernel ma-
chines. In addition, for some common classes,
we estimate their uniform covering numbers
and Rademacher chaos complexities by bound-
ing their pseudo-dimensions and kernel pseudo-
dimensions, respectively. The mild bounds with-
out strong assumptions partially explain the good
generalization ability of deep learning combined
with kernel methods.

1. Introduction
Recent work in machine learning has given a revival of
attention to deep learning due to its impressive empiri-
cal advances across a wide range of tasks. Deep mod-
els are typically heavily over-parametrized, while they
still achieve good generalization performance, Zhang et al.
(2017) showed that deep neural networks can almost per-
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fectly fit the training data even with random labels, this
sparked a rush to explain this phenomenon through general-
ization analysis based on complexity measures. The prob-
lem of understanding deep learning theoretically remains
relatively under-explored. Meanwhile, kernel machines
have a perfect fit of training data while guaranteeing that
they generalize well (Bartlett & Mendelson, 2002; Belkin
et al., 2018). Therefore, the progress on understanding deep
learning is also greatly affected by the new theoretical re-
search of kernel methods.

In recent years, efforts to explain why deep models general-
ize well have become a hot and important open problem in
learning theory. Uniform convergence is a powerful tool in
learning theory for understanding the generalization ability
of learners, and it is also widely used in the generalization
analysis of deep learning. Although ongoing endeavors have
developed a considerable amount of non-vacuous generaliza-
tion error bounds that reflect weak dependence or even inde-
pendence on the network width and depth, these theoretical
results are elaborate and algorithm-based (i.e. theoretical
analysis incorporates the implicit regularization of stochas-
tic gradient descent (SGD)) (Neyshabur et al., 2017; Soudry
et al., 2018; He et al., 2019; Foret et al., 2021; Lei & Ying,
2021), which makes such theoretical results not applicable
to all deep models. The capacity/complexity-based general-
ization analysis can provide a general theoretical guarantee
for the surprising generalization performance of deep learn-
ing. However, capacity-based generalization bounds tend
to have a strong dependence on the network depth, which
makes theoretical results often of limited significance.

Deep kernel learning (DKL), which combines the represen-
tation power and structural prior knowledge of deep learning
with the non-parametric flexibility of kernel methods, is an
important problem of kernel methods for deep learning. A
satisfactory and complete study of deep kernel learning
should cover three aspects: 1) the design of deep kernels,
2) the efficiency of training algorithms, and 3) the analy-
sis of generalization property. The design of deep kernels
has been developed to a certain extent (Cho & Saul, 2009;
Wilson et al., 2016b;a; Al-Shedivat et al., 2017; Lee et al.,
2018), which mainly benefits from Gaussian processes. In
terms of training algorithms, the studies are often related to
specific deep kernel machines (Cho & Saul, 2009; Mairal
et al., 2014; Al-Shedivat et al., 2017) or involve many heuris-
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tics (Zhuang et al., 2011). As for the theoretical analysis of
generalization, the studies are still in the early stage. Almost
all existing works are for shallow kernel learning problems
(Bartlett & Mendelson, 2002; Ying & Campbell, 2010; Lei
& Ding, 2014), and the kernel machines involved do not
exceed two layers (Zhuang et al., 2011). Therefore, it is
necessary to perform generalization analysis for DKL. As a
matter of fact, theoretical research on deep kernel learning
can also promote the understanding of deep learning (Jacot
et al., 2018).

This paper analyzes the generalization of deep kernel learn-
ing from the perspective of capacity, and aims to provide a
general theoretical guarantee for the generalization ability of
deep kernel machines (DKMs). The DKM is a special deep
model based on kernel methods. The most significant differ-
ence between the DKM and the deep neural network (DNN)
is that the nonlinear mapping (i.e., the kernel mapping) is
implicitly induced by the kernel function, i.e., the nonlinear
mapping is implicit. Golowich et al. (2018) revealed that ex-
isting tight generalization bounds on capacity-based gener-
alization analysis of deep neural networks are accompanied
by strong assumptions about the properties of activation
functions and the norm constraints on the parameter matrix
of each layer. One cannot make assumptions on the implicit
nonlinear mapping in DKMs and the Reproducing Kernel
Hilbert Space (RKHS) norm, which makes existing methods
of generalization analysis for DNNs inapplicable to DKMs.
In view of the challenges brought by the implicit nonlin-
ear mapping in deep kernel learning, we need to develop
a specific generalization analysis method for deep kernel
learning and further derive meaningful generalization error
bounds.

In this paper, we derive novel and nearly-tight capacity-
based generalization bounds based on the uniform covering
number and the Rademacher chaos complexity for DKMs
and deep multiple kernel machines (DMKMs), respectively.
Specifically, we first obtain the composite relationship of
uniform covering numbers, which is used to deal with the
difficulties in theoretical analysis caused by the implicit non-
linear mapping of DKL, then derive bounds for DKMs based
on the uniform covering number which can be bounded us-
ing pseudo-dimensions, and derive bounds for DMKMs
based on the Rademacher chaos complexity which can be
bounded using kernel pseudo-dimensions. Furthermore, we
bound pseudo-dimensions and kernel pseudo-dimensions
for some specific classes, and further estimate their uniform
covering numbers and Rademacher chaos complexities, re-
spectively. Finally, we provide a lower bound for DKMs
based on the Rademacher complexity.

To our knowledge, this is the first formal attempt to extend
generalization analysis to the case of deep kernels and derive
capacity-based generalization bounds for DKL with mild

dependence on the depth. Major contributions of the paper
include:

• We prove novel and nearly-tight capacity-based gener-
alization bounds based on the complexity of the whole
hypothesis space of deep kernel models, which pro-
vides general theoretical guarantees for DKL.

• We introduce and formally describe the composite re-
lationship between layers of DKMs/DMKMs for the
generalization analysis of DKL, which overcomes the
difficulties brought by the implicit nonlinear mapping
in DKL for theoretical analysis and leads to bounds
with square-root dependence on the depth (outside of
log terms).

• We further show how to estimate the uniform covering
number and the Rademacher chaos complexity for the
function class of DKMs/DMKMs by bounding the
pseudo-dimension and the kernel pseudo-dimension.

We structure our work as follows. We first introduce the
related work in Section 2, followed by an overview of the
definitions of related complexities, the problem setting on
DKL and the notation in Section 3. We then present our
main theoretical results in Sections 4 and 5, which are the
generalization bound based on the uniform covering num-
ber for DKL and the generalization bound based on the
Rademacher chaos complexity for deep multiple kernel
learning (DMKL), respectively. In Section 6, we show
how to estimate the relative complexities for DKMs and
DMKMs. In Section 7, we provide a lower bound based
on the Rademacher complexity for DKL. In Section 8, we
provide a discussion of the implications and inspirations of
our theoretical results. Finally, we give a conclusion of our
work in Section 9.

2. Related Work
In this section, we introduce the related work about kernel
methods for deep learning and capacity-based generalization
bounds for deep learning.

2.1. Kernel Methods for Deep Learning

A considerable amount of deep kernels and DKMs have
been proposed to link kernel methods with deep learning.
Various deep kernels were designed to simulate the compu-
tation of deep neural networks based on Gaussian processes
(Cho & Saul, 2009; Hazan & Jaakkola, 2015; Wilson et al.,
2016a;b; Al-Shedivat et al., 2017; Lee et al., 2018). Convo-
lution kernels and convolution kernel networks were used
to encode the invariance of image representations Mairal
et al. (2014); Mairal (2016). Furthermore, SVM-based deep
stacking networks (Wang et al., 2019), deep spectral kernel
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networks (Xue et al., 2019; Li et al., 2020; 2022) and deep
models based on multiple kernel fusion (Song et al., 2017)
were all designed to introduce kernels into deep learning.
In terms of theoretical analysis, The relationship between
the representer theorem and DKMs was established (Bohn
et al., 2019). Regularizing deep neural networks with Re-
producing Kernel Hilbert Space norm was proposed (Bietti
et al., 2019) and generalization error bounds of specific
deep networks were derived (Suzuki, 2018) for the gener-
alization theory. Similarity indexes and kernel PCA were
used to measure the relationship between representations
in deep networks (Kornblith et al., 2019; Montavon et al.,
2011). The neural tangent kernel obtained at initialization
was proven to control the learning dynamics of gradient de-
scent in the over-parameterized regime (Jacot et al., 2018),
and its inductive bias was also studied (Bietti & Mairal,
2019). Nevertheless, there is still a lack of new theories
for kernel methods to analyze deep learning (Belkin et al.,
2018). To make up for the gap in the generalization the-
ory, in this paper, we derive capacity-based generalization
bounds for DKMs and DMKMs, respectively.

2.2. Capacity-based Generalization Bounds for Deep
Learning

The capacity-based generalization bounds established by
traditional statistical learning theory aim to provide gen-
eral theoretical guarantees for deep learning. Goldberg
& Jerrum (1995); Bartlett & Williamson (1996); Bartlett
et al. (1998) proposed upper bounds based on the VC di-
mension for DNNs. Unfortunately, these theoretical results
heavily rely on both the depth and the width of the net-
work, which makes these bounds less attractive once the
model size is extremely large, even for the tightest upper
bounds based on the VC dimension by Bartlett et al. (2019).
There are many bounds that can alleviate the dependence
on the width, but often still have a strong dependence on
the depth. Neyshabur et al. (2015) used Rademacher com-
plexity to prove the bound with exponential dependence on
the depth. Neyshabur et al. (2018) and Bartlett et al. (2017)
used the PAC-Bayesian analysis and the covering number
to obtain bounds with polynomial dependence on the depth,
respectively. Golowich et al. (2018) provided bounds with
(sublinear) square-root dependence on the depth and further
improved the bounds to be depth-independent. However,
these results are all accompanied by strong assumptions
about the properties of activation functions and the norm
constraints on the parameter matrix of each layer, making
these methods of generalization analysis invalid for DKL.

3. Preliminaries
In the context of classification, given a dataset D =
{(x1, y1) , . . . , (xn, yn)} with n samples which are iden-

tically and independently distributed (i.i.d.) from a prob-
ability distribution P on X × Y , where X ⊂ Rd and
Y = {−1, 1}. Let [n] := {1, . . . , n} for any natural num-
ber n. For any function f : X → Y , we denote the ex-
pected risk E(f) as E(x,y)∼P [`(f(x), y)] and denote the
empirical risk ÊD(f) with respect to the training dataset
D as 1

n

∑n
i=1 `(f(xi), yi). Let K : X × X → R denote

a kernel function and denote the RKHS by H with norm
‖ · ‖H. In this paper, we assume that all kernels fulfill
r := sup

√
K(x,x) <∞ for all x ∈ X .

3.1. Deep Kernel Learning

Although the nonlinear mapping induced by a kernel is
implicit, we can avoid the limitation and directly construct
DKMs by combining nonlinear mappings in a composite
way:

Kl(x,x′) =
〈
Φl(x),Φl(x′)

〉
=
〈
φl
(
φl−1(· · ·φ1(x))

)
, φl
(
φl−1(· · ·φ1(x′))

)〉
,

where Kl denotes the l-layer deep kernel, φl denotes the
l-th layer kernel mapping. With the method of constructing
deep kernels, we can denote the l-layer DKM as

f(x) = W l>Φl(x) =

n∑
i=1

αiK
l (x,xi) .

LetHl represent the RKHS induced by the deep kernel Kl

and ‖ · ‖Hl denote the norm inHl. We define a class of i-th
layer deep kernels as follows:

Kisin =
{
Ki(·, ·) = gi

([
Ki−1(·, ·)

])}
,

where Ki−1(·, ·) ∈ Ki−1
sin , i ∈ {2, · · · , l}, gi is a function

produced by Ki(·, ·) which composites Ki−1(·, ·), while
ensuring that the composite result is still a valid kernel.

For ease of understanding, we consider an example of a two-
layer Gaussian kernel. A Gaussian kernel is typically de-
fined as K(x,x′) = exp

(
−γ‖x− x′‖2

)
, where γ > 0 is

the kernel parameter. We can construct a two-layer Gaussian
kernel by compositing the nonlinear mapping corresponding
to the Gaussian kernel:

K2(x,x′)

=
〈
Φ2(x),Φ2(x′)

〉
= 〈φ (φ(x)) , φ (φ(x′))〉

=e−γ‖φ(x)−φ(x′)‖2 = e−2γ(1−K(x,x′)) = κe2γK(x,x′),

where κ is a constant that can be omitted. Hence, the corre-
sponding g function (operation) induced by the composition
of the Gaussian kernel to other kernels is g(·) = κe2γ(·).
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Figure 1. The architecture of DMKL framework. We show the
deep multiple kernel machine with l layers, where kernels in i-th
layer are from the kernel domain of i-th layer.

The function class of DKMs can be denoted as

F = {x 7→
n∑
i=1

αiK
l (x,xi) :

∑
i,j

αiαjK
p (xi,xj) ≤ 1,

Kp(xi,xi) ≤ A2,Kp(·, ·) ∈ Kpsin,
xi ∈ X ,∀p ∈ [l]}.

Then the DKL framework can be cast as the following mini-
mization problem:

min
f∈F

1

n

n∑
i=1

` (yif (xi)) + λ‖f‖Hl , (1)

where `(·) is the loss function and λ is a positive regulariza-
tion parameter. When the loss function is hinge loss, then
(1) is reduced to deep support vector machines (SVMs).

However, there are some limitations in the DKMs mentioned
above, they are often specific, non-automated and inflexible
since the type of kernels involved is single. Therefore, we
have to further consider allowing a combination of a variety
of different kernels when designing deep kernels, which we
refer to as DMKL.

To this end, we first consider the initial set of basis kernel
functions as K1

mul = {K1, . . . ,Km}, then we define a
domain (or class) of i-th layer deep multiple kernels as
follows:

Kimul
=
{
Ki(·, ·) = gi ◦ hi−1

([
Ki−1

1 (·, ·), . . . ,Ki−1
m (·, ·)

])}
,

(2)

where Ki−1
t (·, ·) ∈ Ki−1

mul(∀t ∈ [m]), i ∈ {2, · · · , l}, hi−1

is a function that combines multiple (i − 1)-layer deep
kernels (such as the linear or convex combination of several
base kernels in multiple kernel learning), gi is a function
which composites the results of hi−1, while ensuring that
the composite result is still a valid kernel. The function class
of DMKMs is similar to that of DKMs, the main difference
is that Kp(·, ·) ∈ Kpmul instead of Kpsin. Hence, we can

formulate the DMKL framework as the following two-layer
minimization problem:

min
Kl∈Klmul

min
f∈F

1

n

n∑
i=1

` (yif (xi)) + λ‖f‖Hl , (3)

where `(·) is the loss function, λ is a positive regularization
parameter. As a matter of fact, if the hi−1 operation is
the identity transformation and the initial kernel domain
contains only a single type of kernels, it degenerates into
DKL. The architecture of DMKL is shown in Figure 1.

3.2. Related Complexity Measures

In this paper, we use the uniform covering number to bound
the sample complexity for DKL. The uniform covering num-
ber can be bounded by the pseudo-dimension:

Definition 3.1 (uniform covering number). A subset C ⊆ G
is an ε-cover of a function class G under the metric d if for
any g ∈ G and ε > 0 there exists c ∈ C with d(g, c) ≤ ε.
The covering number N (ε,G, d) is the size of the smallest
ε-cover of G. Given a dataset D of size n, we define the
uniform covering number corresponding to the metric dp
for a function class G:

Np(ε,G, n) = max
|D|=n

{
N
(
ε,G|D, dp

)}
,

where G|D denotes the restriction of the function class G
to the dataset D (that is, the set of restrictions to D of all
functions in G).

Definition 3.2 (pseudo-dimension). Let F be a set of
functions mapping from X to R. We say that Dn =
{x1,x2, . . . ,xn} ⊂ X is pseudo-shattered by F if
there are real numbers {ri ∈ R : i ∈ [n]} such that for any
b ∈ {−1, 1}n there is a function f ∈ F with property
sgn (f(xi)− ri) = bi for any i ∈ [n]. Then, we define a
pseudo-dimension dp

F of F to be the maximum cardinality
of Dn that is pseudo-shattered by F .

In this paper, we also use the Rademacher complexity to
provide a lower bound for DKL.

Definition 3.3 (Rademacher complexity). Let F be a class
of real-valued functions mapping from X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. The empirical
Rademacher complexity over F is defined by

R̂D(F) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif (xi)

∣∣∣∣∣
]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables,
and we refer to the expectation Rn(F) = ED[R̂D(F)] as
the Rademacher complexity of F .

The Rademacher chaos complexity was introduced into the
discussion on learning rates of MKL machines (Ying &
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Campbell, 2010). Some comprehensive studies and signif-
icant results were provided to justify that the Rademacher
chaos complexity is appropriate to treat the learning rates
(Ying & Campbell, 2009; 2010; Lei & Ding, 2014), which
also demonstrate that the Rademacher chaos complexity
has inherited the advantage of the Rademacher complexity.
Here we use the Rademacher chaos complexity to perform
generalization analysis for DMKL.

Definition 3.4 (Rademacher chaos complexity). Let F be
a class of functions mapping from X × X to R. Let D =
{x1, . . . ,xn} be a set with n i.i.d. samples. The empirical
Rademacher chaos complexity over F is defined by

ÛD(F) = Eε

sup
f∈F

∣∣∣∣∣∣ 1n
∑

i,j∈[n],i<j

εiεjf (xi,xj)

∣∣∣∣∣∣
 ,

where ε1, . . . , εn are i.i.d. Rademacher random variables,
and we refer to the expectation Un(F) = ED[ÛD(F)] as
the Rademacher chaos complexity of F .

The Rademacher chaos complexity can be bounded by the
kernel pseudo-dimension of the set of candidate kernels.
The kernel pseudo-dimension measures the complexity of a
kernel domain.

Definition 3.5 (kernel pseudo-dimension). Let K be a set
of reproducing kernel functions mapping from X × X to R.
We say that Sn = {(xi,x′i) ∈ X × X : i ∈ [n]} is pseudo-
shattered by K if there are real numbers {ri ∈ R : i ∈ [n]}
such that for any b ∈ {−1, 1}n there is a function K ∈ K
with property sgn (K (xi,x

′
i)− ri) = bi for any i ∈ [n].

Then, we define a kernel pseudo-dimension dk
K of K to be

the maximum cardinality of Sn that is pseudo-shattered by
K.

4. Generalization Bounds Based on the
Uniform Covering Number

In this section, we are committed to establishing a general-
ization error bound based on the uniform covering number
for DKMs. Since the composite relationship between layers
of DKMs, to derive tight generalization error bounds, we
first have to reveal the relationship between uniform cover-
ing numbers of composite function classes, and then bound
these uniform covering numbers with the pseudo-dimension.

Suppose that the input space is X = Rd, a l-layer DKM can
be simplified to the composition of a series of mappings:

f = fl ◦ · · · ◦ f1 ◦ f0(x)

f0 : Rd → H1,

fi : Hi → Hi+1, 1 ≤ i ≤ l − 1,

fl : Hl → {−1, 1}.

Hi represents the i-th layer RKHS, the class of functions
on the i-th layer can be denoted as F (i), then the class of
l-layer DKMs can be expressed as

F = F (l) ◦ · · · ◦ F (2) ◦ F (1),

we ignore F (0) since it is induced by kernels implicitly.
Then, we first have the following lemma:

Lemma 4.1. Let F (1) ⊂ YX1 and F (2) ⊂ YY1
2 be function

classes of kernels,F = F (1)◦F (2) be the class of composite
functions, we have

Np(2ε,F , n) ≤ Np(ε,F (1), n) · Np(ε,F (2), n).

Proof Sketch. We first bound the cover of F on the dataset
D through appropriate scaling, and then complete the proof
with the arbitrariness of D.

Lemma 4.1 reveals the relationship between uniform cover-
ing numbers of composite function classes, similar results
exist in the deep neural networks literature (Nagarajan &
Kolter, 2019; Wei & Ma, 2019; Ledent et al., 2021; Graf
et al., 2022).

We denote the pseudo-dimension of the i-th layer function
class as dp

i ≥ 1, i ∈ [l], Let dp
max = maxi{dp

i }, then we
have the following lemma:

Lemma 4.2. Let F be a class of functions, which represents
l-layer DKMs. Let N∞(ε,F , n) be the uniform covering
number defined on F . Then we have

N∞(ε,F , n) ≤
(
lenA

ε

)ldpmax
.

Proof Sketch. First, we have to use dp
i to bound

N∞(ε,F (i), n), i ∈ [l]. Then, with Lemma 4.1,
N∞(ε,F , n) can be bounded using dp

max.

With these conclusions about the uniform covering number,
the generalization error bound for DKMs can be derived as
follows:

Theorem 4.3. Let F be a class of functions, which rep-
resents l-layer DKMs, taking values in {−1, 1}. Let γ >
0, 0 < δ < 1 and define the γ-margin cost function by

ψ(x) =

 0, γ ≤ x
1− x/γ, 0 ≤ x ≤ γ
1, x ≤ 0

.

Given a dataset D of size n. Then, for any δ > 0, with
probability at least 1−δ, the following holds for any f ∈ F :

E(f) ≤ ÊD(f) +

√
8 ln 2

δ + 8ldp
max ln( 4leAn

γ )

n
.
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Remark 4.4. The generalization error bounds for traditional
kernel learning problem do not apply to deep kernel learning
since the impact of “deep” is not considered. The explicit
nonlinear mapping in deep learning makes one might often
be constrained to perform generalization analysis using a
peeling argument, but this is not feasible in DKL. We intro-
duce the composite relationship between layers to eliminate
the challenges posed by the implicit nonlinear mapping in
DKL, which makes our theoretical results non-trivial ex-
tensions of kernel learning. The bound in Theorem 4.3 is
represented by the pseudo dimension of kernels. It is obvi-
ous that the generalization error bounds we derived are only
related to the depth of DKMs and the number of samples,
and the convergence rate is Õ(

√
l/n).

5. Generalization Bounds Based on the
Rademacher Chaos Complexity

In this section, we are committed to establishing a tight
generalization error bound based on the Rademacher chaos
complexity for DMKMs. When considering the case of
DMKL, the pseudo-dimension cannot capture the complex-
ity information of multiple deep kernels, so we use the
kernel pseudo-dimension to measure the complexity of a
kernel domain (or class).

Let Kmul be a domain of (multiple) kernel functions on
X × X and D = {x1, · · · ,xn}, we define pseudo-metrics
on Kmul as follows:

d∞(f, g) := max
1≤i,j≤n

|f (xi,xj)− g (xi,xj)| ,

d2(f, g) :=

√
1

n2

∑
1≤i<j≤n

|f (xi,xj)− g (xi,xj)|2.

The uniform covering number N∞(ε,Kmul, n) and
N2(ε,Kmul, n) correspond to the pseudo-metric d∞(f, g)
and d2(f, g). Let Kimul be the domain of i-th layer deep
multiple kernels as defined in (2), that is, the kernels in
Kimul are transformed by multiple (i − 1)-th layer deep
kernels in Ki−1

mul, then the domain of l-layer deep multiple
kernels can be expressed as

Kmul = K(l)
mul ◦ · · · ◦ K

(2)
mul ◦ K

(1)
mul.

We denote the kernel pseudo-dimension of the i-th layer
kernel domain Kimul as dk

i ≥ 1, i ∈ [l]. Let dk
max =

maxi{dk
i }, then we have:

Lemma 5.1. Let Kmul be a domain of l-layer deep mul-
tiple kernels defined by (2). Let N∞(ε,Kmul, n) and
N2(ε,Kmul, n) be uniform covering numbers defined on

Kmul. Then we have

N2(ε,Kmul, n) ≤
(

8l2eA4

ε2

)ldkmax
,

N∞(ε,Kmul, n) ≤
(
len2A2

ε

)ldkmax
.

Proof Sketch. First, we use dk
i to bound N2(ε,K(i)

mul, n)

and N∞(ε,K(i)
mul, n), i ∈ [l], respectively. Then, with

Lemma 4.1, N2(ε,Kmul, n) and N∞(ε,Kmul, n) can be
bounded using dk

max.

We then establish a generalization error bound based on the
Rademacher chaos complexity as follows:

Lemma 5.2. Let F be a class of functions mapping from
X to {−1, 1}, Kmul be a class of multiple kernel functions
defined like (2). Given a datasetD of size n. Let γ > 0, 0 <
δ < 1 and the loss function be the γ-margin cost function.
Then, for any δ > 0, with probability at least 1 − δ, the
following holds for any f ∈ F:

E(f) ≤ ÊD (f) +
4

λγ

(
2Un(Kmul)

n

) 1
2

+
4A

λγ
√
n

+

(
ln
(

1
δ

)
2n

) 1
2

+
2√
n
.

Proof Sketch. Let the union of the unit balls of RKHSs be
BKmul , Bλ = 1

λBKmul , Φ(D) = supf∈Bλ |E(f)− ÊD(f)|.
We first have Φ(D) ≤ ED[Φ(D)] +

√
ln(1/δ)/2n by Mc-

Diarmid’s inequality. Then, with the contraction property
of Rademacher complexities and the reproducibility of ker-
nels, we can derive the upper bound on ED[Φ(D)]. Finally,
substituting the upper bound into the above inequality, the
desired bound is immediate.

With the composite relationship between layers, we can
bound the Rademacher chaos complexity with the kernel
pseudo-dimension for DMKMs:

Lemma 5.3. LetKmul be a domain of l-layer deep multiple
kernels. For any D = {x1, . . . ,xn}, there holds

Un(Kmul) ≤ 220eA2ldk
max ln l.

Proof Sketch. Combining with Lemma 5.1 and the rela-
tionship between the uniform covering number and the
Rademacher chaos complexity, the desired bound can be
derived by appropriate scaling.

With Lemma 5.2 and Lemma 5.3, the generalization er-
ror bound based on the Rademacher chaos complexity for
DMKMs is given as follows:

6
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Theorem 5.4. Let F be a class of functions, which repre-
sents l-layer DMKMs. Given a dataset D of size n. Let
γ > 0, 0 < δ < 1 and the loss function be γ-margin cost
function. Then, with probability at least 1− δ, there holds
for any f ∈ F:

E(f) ≤ ÊD (f) +
8

λγ

(
110eA2ldk

max ln l

n

) 1
2

+
4A

λγ
√
n

+

(
ln
(

1
δ

)
2n

) 1
2

+
2√
n
.

Remark 5.5. The theorems above reveal that the generaliza-
tion analysis of deep kernel learning is not only to simply
bound the (kernel) pseudo-dimension of each layer, but also
to clarify the composite relationship of uniform covering
numbers, which makes our bounds with square-root depen-
dence (outside of log terms) on the depth non-trivial. It is
obvious that the bound for DMKMs is tighter than DKMs
with a faster convergence rate O(

√
l ln l/n), since the ker-

nel pseudo-dimension is used to bound the Rademacher
chaos complexity. Next we will further show that the kernel
pseudo-dimension of DMKMs is related to the number of
basis kernel functions. Compared with the results of (Ying
& Campbell, 2009), we extend the theory bounds of multiple
kernel learning to the deep case (i.e., deep multiple kernel
learning), and give the generalization bound corresponding
to the deep multiple kernel function class produced by mul-
tiple combinations and compositions of multiple kernels,
and show how to estimate the complexity of the deep mul-
tiple kernel function class. Although the bound has some
dependence on the parameter λ, our focus here is to show
that at least some compromise assumption leads to bounds
with square-root dependence (outside of log terms) on the
depth, and hope this dependence can be improved in further
work.

6. Estimating the Uniform Covering Number
and the Rademacher Chaos Complexity

In this section, for both DKMs and DMKMs, we further esti-
mate the uniform covering number which can be bounded by
the pseudo-dimension and the Rademacher chaos complex-
ity which can be bounded by the kernel pseudo-dimension
for some common classes, respectively.

6.1. Estimating the Uniform Covering Number

For l-layer DKMs, we will bound the pseudo-dimension for
each layer, then further bound the uniform covering number.
The pseudo-dimension of kernels is as follows:

Theorem 6.1. Let K : X × X → R be a kernel function
and let Φ : X → H be a feature mapping associated to K.
Let D ⊆

{
x : K(x,x) ≤ r2

}
be a dataset of size n, and

let

F = {x 7→ 〈w,Φ(x)〉 :

min
x
|w>Φ(x)| = 1

∧
‖w‖H ≤ Λ}

for some Λ ≥ 0. Then the pseudo-dimension dp of the
function class F satisfies

dp ≤ r2Λ2.

Proof Sketch. We first obtain the relationship between d
and Λ from the definition of the pseudo-dimension and
introduce the expectation of y = (y1, . . . , yd) ∈ {−1, 1}d.
Then, using Jensen’s inequality and the property of convex
functions, the desired bound is derived.

6.2. Estimating the Rademacher Chaos Complexity

The above theoretical results reveal that the Rademacher
chaos complexity of DMKMs is mainly affected by the
depth and the kernel pseudo-dimension which measures
the complexity of a kernel domain Kmul. Moreover, differ-
ent kernel domains correspond to different kernel pseudo-
dimensions. Here, for some common kernel domains, we
will bound the kernel pseudo-dimension and further esti-
mate the Rademacher chaos complexity corresponding to
these specific classes of DMKMs.

According to the definition of kernel domains, it is obvious
that the architecture of DMKMs is controlled by combina-
tions of multiple kernels in the (i− 1)-layer and composite
methods of the i-layer to the combined results of (i − 1)-
layer, i.e., hi−1 and gi. For a kernel set S with k basic
kernels, the common types of combination, i.e., common-
used hl−1 operations, are mainly span, linear, and convex:

Kspan (S)
def
=

{
Kλ =

k∑
i=1

λiKi | λi ∈ R

}
,

Kline (S)
def
=

{
Kλ =

k∑
i=1

λiKi | Kλ < 0,

k∑
i=1

λi = 1

}
,

Kconv (S)
def
=

{
Kλ =

k∑
i=1

λiKi | λi ≥ 0,

k∑
i=1

λi = 1

}
.

It can be known that Kconv (S) ⊆ Kline(S) ⊆ Kspan(S).

Then we consider the composite method produced by the
common-used kernel functions, such as Polynomial ker-
nel K(x,y) = (x>y)d, Gaussian kernel K(x,y) =
exp

(
−γ‖x− y‖2

)
, and Laplacian kernel K(x,y) =

exp (−µ‖x− y‖). The compositions of these kernels on
other kernels yield corresponding gi operations in the defi-
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nition of kernel domains as follows:

giPol(K) = (K)d, d > 1
giGau(K) = κe2γK , κ, γ > 0

giLap(K) = e
√

2µ2(K−1), µ > 0

. (4)

Obviously, these gi operations are monotonous (non-
decreasing) with respect to their input kernels.

With the above discussion on the methods of combination
and composition, we can bound the Rademacher chaos com-
plexity for DMKMs as follows:

Theorem 6.2. LetKmul be a domain of l-layer deep kernels.
Given the initial set of basis kernels K1 = {K1, . . . ,Km}.
For any i ∈ {2, . . . , l}, Kimul is the kernel domain of i-th
layer deep kernels. If the hi−1 operation is the type of span
combination and the gi operation is non-decreasing with
respect to its input kernels, the kernel pseudo-dimension of
the domain Kimul satisfies

dk(Kimul) ≤ m

and the Rademacher chaos complexity of Kmul is bounded
by

Un(Kmul) ≤ 220eA2l(ln l)m.

Proof Sketch. According to the definition of kernel do-
mains, combined with the monotonicity of the kernel
pseudo-dimension, the desired bounds can be derived.

Remark 6.3. If the given initial basic kernel set contains only
a single type of kernel, i.e.,m = 1, DMKMs degenerate into
DKMs. Then we can immediately bound the Rademacher
chaos complexity for DKMs:

Un(Ksin) ≤ 220eA2l ln l.

We can find that the Rademacher chaos complexity for
DKMs here will lead to the generalization bound with a
convergence rate O(

√
l ln l/n), which is tighter than Theo-

rem 4.3, The main reason is that they use different complex-
ity measures, the Rademacher chaos complexity takes into
account the data distribution to some extent.

7. A Lower Bound Based on the Rademacher
Complexity

In this section, we provide a lower bound based on the
Rademacher complexity for DKMs studied here. The formal
result is the following:

Theorem 7.1. Let F be a class of functions, which rep-
resents l-layer DKMs, taking values in {−1, 1}. Given a
dataset D of size n. Then, there exists a c > 0 such that for
any f ∈ F:

R̂D(F) ≥ cA√
n
.

Remark 7.2. We can see that the lower bound of R̂D(F) is
Ω( 1√

n
), which will result in a lower generalization bound of

order Ω( 1√
n

). Our derived upper bounds avoid exponential
dependence on the depth, although not depth-independent
but are square-root dependent on the depth. The depth-
independent lower bound in Theorem 7.1 demonstrates that
the capacity-based upper bounds on the uniform covering
number are nearly-tight.

8. Discussion
Our capacity-based generalization bounds provide general
worst-case theoretical guarantees for the generalization of
DKL. The reason our generalization bounds do not appear
to be ideally non-vacuous (i.e. less than 1) is that our bounds
characterize the complexity of the whole hypothesis space
rather than the effective hypothesis space learned by the
algorithm. The effective hypothesis space is significantly
smaller than the whole hypothesis space, so it is not surpris-
ing to expect much tighter generalization bounds. More-
over, such tight generalization bounds are algorithm-based,
which reflect the implicit regularization of the optimization
algorithm, and these generalization bounds cannot provide
general theoretical guarantees for deep learning.

A major challenge in obtaining non-trivial capacity-based
theoretical results is that when the deep model goes beyond
2 layers, the generalization bounds, which originally get
smaller with increasing width, become vacuous since the
introduction of the depth, so the heavy dependence on the
depth should be at least reduced to be weaker than linear
dependence. The common capacity-based generalization
analysis method is to use a “peeling” argument, i.e., the
complexity bound for l-layer networks is reduced to a com-
plexity bound for (l − 1)-layer networks. In this method,
a product factor of the constant related to the Lipschitz
property of the activation function and the upper bound of
the norm of the weight metrix will be introduced for each
reduction due to scaling. After applying the reduction l
times, the multiplication of product factors with exponential
dependence on the depth makes the bound vacuous. Only
strong mathematical skills and assumptions can obtain tight
bounds with weak dependence on the depth. The success of
the peeling argument is premised on having 1) the explicit
nonlinear mapping, and in addition, 2) some norm-based
assumptions, and 3) some assumptions on the properties of
activation functions are sufficient conditions for obtaining
non-vacuous generalization bounds. Obviously, the implicit
mapping of DKL directly isolates the peeling argument.
However, our generalization analysis based on the com-
posite relationship of hypothesis spaces provides a good
demonstration for overcoming this challenge.

Since existing training algorithms for DKMs are difficult to
generalize, how to train DKMs/DMKMs automatically and

8
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efficiently is still an urgent issue to be studied. However,
there is a very coincidental example of DMKMs that can
be used to illustrate the difficulty of generalization anal-
ysis. Xue et al. (2019) and Li et al. (2020) proposed the
(deep) spectral kernel network (DSKN) which use the in-
verse Fourier transform to make the implicit mapping ex-
plicit, the proposed method makes it possible to use the
gradient descent algorithm to train DKMs easily. Li et al.
(2020) gave the bound of spectral kernel models based on
the Rademacher complexity. Li et al. (2022) extended the
bound to deep (convolutional) spectral kernel models, which
is depth-independent, with certain assumptions on the ker-
nels. When these assumptions are not satisfied, or even if
we can use some methods to make kernel mappings explicit,
but the kernels involved in DKMs are not spectral kernels,
the theoretical results in (Li et al., 2022) will no longer ap-
ply. Although DSKN satisfies the premise of the peeling
argument, this explicit mapping is relatively fixed, and it is
still difficult to constrain 2) and 3). At this time, in order to
upper bound the Rademacher complexity of the deep kernel
classes, we need to use an analysis method similar to that in
deep learning, i.e., the “peeling” argument, which will still
result in the bound that is exponentially dependent on the
depth. Fortunately, our generalization analysis based on the
composite relationship of hypothesis spaces provides a good
demonstration for overcoming this challenge, which reduces
such exponential depth dependency to the square-root one.
We provide general and efficient theoretical guarantees with
square-root dependence on the depth for DKL/DMKL.

9. Conclusion
In this paper, we propose novel and nearly-tight capacity-
based bounds on the uniform covering number and the
Rademacher chaos complexity for DKL. We then bound
pseudo-dimensions and kernel pseudo-dimensions for some
common classes and further estimate their uniform covering
numbers and Rademacher chaos complexities, respectively.

In future work, we will extend our bounds to more gen-
eral settings (especially for more types of combinations
and composite methods of multiple kernels), and derive
tighter capacity-based generalization bounds for DKL with
weaker dependence on the depth (i.e., log-dependent or
even depth-independent), and further design general and
efficient deep kernel training algorithms to construct end-to-
end DKMs/DMKMs with good generalization performance.
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A. Appendix Outline
In the appendix, we give the detailed proofs of those theoretical results which we only provide proof sketches in the main
paper. Our main proofs include:

• The relationship between uniform covering numbers of composite function classes (Lemma 4.1).

• The bound of the uniform covering number for DKMs (Lemma 4.2).

• The generalization bound based on the uniform covering number for DKMs (Theorem 4.3).

• Bounds of uniform covering numbers for DMKMs (Lemma 5.1).

• The generalization bound based on the Rademacher chaos complexity for kernels (Lemma 5.2).

• The bound of the Rademacher chaos complexity for DMKMs (Lemma 5.3).

• The pseudo-dimension of kernels (Theorem 6.1).

• The kernel pseudo-dimension of multiple deep kernels (Theorem 6.2).

• The lower bound of the Rademacher complexity for DKMs (Theorem 7.1).

B. Generalization Bounds Based on the Uniform Covering Number
B.1. Proof of Lemma 4.1

Proof. Given a dataset D with n training samples drawn independently from a probability distribution P on X × R.
According to the definition of F , we have

F|D

=
{

(f2 (f1 (x1)) , . . . , f2 (f1 (xn))) | f1 ∈ F (1), f2 ∈ F (2)
}

=
⋃

zi∈F(1)

|D

{
(f2 (z1) , . . . , f2 (zn)) | f2 ∈ F (2)

}
.

Hence, we have F|D ⊆ F
(1)
|D ◦ F

(2)
|D . Let CF(1)

|D
⊂ F (1)

|D be a smallest ε-cover of F (1)
|D , i.e. card(CF(1)

|D
) = N

(
ε,F (1)

|D , dH1

)
.

For any element c1 ∈ CF(1)

|D
, let CF(2)

|D
(c1) ⊂ F (2)

|D be a smallest ε-cover of F (2)
|D , i.e., card(CF(2)

|D
(c1)) = N

(
ε,F (2)

|D , dH2

)
.

According to the reproducing property of RKHS, combined with the Cauchy-Schwartz inequality, we have |f(x)− f (x′)| =
|〈f,Φ(x)− Φ(x′)〉H| ≤ ‖f‖HdH (x,x′). This means that functions in the RKHS fulfill a Lipschitz-like condition, with
Lipschitz constant given by the norm ‖f‖H. Since ‖f‖2H =

∑
i,j αiαjK (·, ·) ≤ 1, without loss of generality, we can obtain

that the function f2 ∈ F (2)
|D is 1-Lipschitz.

Let c2 ∈ CF(2)

|D
(c1), according to the definition, for any f1 ∈ F (1)

|D and any f2 ∈ F (2)
|D , we have ‖f1 − c1‖H1 ≤ ε and

‖f2 − c2‖H2 ≤ ε. Since

‖f2 ◦ f1 − c2 ◦ c1‖H1

= ‖(f2 ◦ f1 − f2 ◦ c1) + (f2 ◦ c1 − c2 ◦ c1)‖H1

≤‖f2 ◦ f1 − f2 ◦ c1‖H1 + ‖f2 ◦ c1 − c2 ◦ c1‖H1

≤‖f1 − c1‖H1 + ‖f2 − c2‖H2

≤ 2ε,

than we have that CF|D = {c2 ◦ c1 : c1 ∈ CF(1)

|D
, c2 ∈ CF(2)

|D
(c1)} ⊂ F|D is a 2ε-cover of F|D. Hence,
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N
(
2ε,F|D, dH1

)
≤ card

(
CF|D

)
=

∑
c1∈CF(1)

|D

card

(
CF(2)

|D
(c1)

)

= card

(
CF(2)

|D
(c1)

)
card

(
CF(1)

|D

)
≤ card

(
CF(2)

|D
(f1)

)
card

(
CF(1)

|D

)
≤N

(
ε,F (2)

|D , dH2

)
N
(
ε,F (1)

|D , dH1

)
≤ max
|D|=n

{
N (ε,F (1)

|D , dH1)
}
· max
|D|=n

{
N (ε,F (2)

|D , dH2)
}

=Np(ε,F (1), n) · Np(ε,F (2), n).

Since D is arbitrary, which completes the proof.

B.2. Proof of Lemma 4.2

Proof. We start with the following lemma that bounds the d∞-covering numbers by a quantity involving the pseudo-
dimension.

Lemma B.1 (Theorem 12.2 of (Anthony & Bartlett, 1999)). Let F be a set of real functions from a domain X to the
bounded interval [0, r]. Let ε > 0 and suppose that the pseudo-dimension of F is dp. Then the following holds for n ≥ dp

N∞(ε,F , n) ≤
(enr
εdp

)dp
.

Since Np(2ε,F , n) ≤ Np(ε,F (1), n) · Np(ε,F (2), n) holds for F = F (2) ◦ F (1), let F (i)
↓ = F (i−1) ◦ · · · ◦ F (2) ◦ F (1),

we denote the pseudo-dimension of the i-th layer function class F (i) as dp
i ≥ 1, i ∈ [l], let dp

max = maxi{dp
i }, then for the

function class of l-layer DKMs, we have

N∞(lε,F , n) =N∞(lε,F (l) ◦ F (l)
↓ , n)

≤N∞(ε,F (l), n) · N∞((l − 1)ε,F (l)
↓ , n)

≤N∞(ε,F (l), n) · N∞(ε,F (l−1), n) · N∞(ε,F (l−1)
↓ , n)

≤ · · ·

≤
l∏
i=1

N∞(ε,F (i), n) ≤
l∏
i=1

(
enri
εdp
i

)dpi
≤

l∏
i=1

(enri
ε

)dpi
.

Therefore, N∞(ε,F , n) ≤
∏l
i=1

(
lenri
ε

)dpi . Taking the logarithm of the above inequality on both sides,

lnN∞(ε,F , n) ≤ l ln
(
lenA

ε

)dpmax
= ln

(
lenA

ε

)ldpmax
,

so

N∞(ε,F , n) ≤
(
lenA

ε

)ldpmax
.
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B.3. Proof of Theorem 4.3

Proof. We start with the following lemma that proves a uniform convergence result for a class of real-valued functions.

Lemma B.2 (Theorem 10.1 of (Anthony & Bartlett, 1999)). Suppose that F is a set of real-valued functions defined on the
domain X . Let P be any probability distribution on X × {−1, 1}. Given a dataset D of size n. Let ε be any real number
between 0 and 1, the loss function be the γ-margin cost function. Then for f ∈ F

P
{
E(f) ≥ ÊD(f) + ε

}
≤ 2N∞(γ/2,F , 2n) exp

(
−ε

2n

8

)
.

For the function class of l-layer DKMs, since N∞(ε,F , n) ≤
(
lenA
ε

)ldpmax , we have

2N∞(γ/2,F , 2n) exp

(
−ε

2n

8

)
≤ 2

(
4lenA

γ

)ldpmax
exp

(
−ε

2n

8

)
,

Let 2
(

4lenA
γ

)ldpmax
exp

(
− ε

2n
8

)
= δ, then

ε =

√
8 ln 2

δ + 8ldp
max ln( 4leAn

γ )

n
. (5)

Substituting equation (5) into the above lemma, we complete the proof.

C. Generalization Bounds Based on the Rademacher Chaos Complexity
C.1. Proof of Lemma 5.1

Proof. For any 0 < ε ≤ r2
i , we have dk

i ≥ 1, r
4
i

ε2 ≥ 1 and en2r2i
ε ≥ 1, where dk

i represents the kernel pseudo-dimension of
the domain (class) K(i)

mul of the i-th layer kernels and i ∈ [l]. Let dk
max = maxi{dk

i }. Then, with the following lemmas,

Lemma C.1 (Theorem 3 in (Ying & Campbell, 2010)). If the kernel pseudo-dimension dk
K of the set of basis kernels is

finite, then we have that

N (ε,K, d2) ≤ 2

(
4er4

ε2

)dkK
.

Lemma C.2 (Lemma 3 in (Srebro & Ben-David, 2006)). For any kernel family K with kernel pseudo-dimension dk
K:

N∞(ε,K, n) ≤
(
en2r2

εdk
K

)dkK
.

we have that

N2(ε,K(i)
mul, n) ≤ 2

(
4er4

i

ε2

)dki
≤
(

8er4
i

ε2

)dki
,

N∞(ε,K(i)
mul, n) ≤

(
en2r2

i

ε

)dki
.

Since Np(2ε,F , n) ≤ Np(ε,F (1), n) · Np(ε,F (2), n) holds for F = F (1) ◦ F (2), then for a domain Kmul of l-layer deep
kernels, we have

N2(lε,Kmul, n) ≤
l∏
i=1

N2(ε,K(i)
mul, n) ≤

l∏
i=1

(
8er4

i

ε2

)dki
,

N∞(lε,Kmul, n) ≤
l∏
i=1

N∞(ε,K(i)
mul, n) ≤

l∏
i=1

(
en2r2

i

ε

)dki
.

14
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Taking the logarithm of the above inequality on both sides,

lnN2(ε,Kmul, n) ≤ l ln
(

8l2eA4

ε2

)dkmax
= ln

(
8l2eA4

ε2

)ldkmax
,

so

N2(ε,Kmul, n) ≤
(

8l2eA4

ε2

)ldkmax
.

Similarly, one can bound

N∞(ε,Kmul, n) ≤
(
len2A2

ε

)ldkmax
.

C.2. Proof of Lemma 5.2

Proof. We denote the union of the unit balls of RKHSs as

BKmul := {f : f ∈ HK and ‖f‖HK ≤ 1,K ∈ Kmul} .

For some RKHSHK , we have

1

n

n∑
i=1

ψ (yif
∗(xi)) + λ ‖f∗‖HK ≤

1

n

n∑
i=1

ψ(0) + λ‖0‖HK = 1,

where

f∗ = arg min
K∈Kmul,f∈HK

1

n

n∑
i=1

ψ (yif (xi)) + λ‖f‖HK .

Hence, ‖f∗‖HK ≤ 1/λ. This implies, for any samples in D, that

f∗ ∈ Bλ :=
1

λ
BKmul :=

{
f

λ
: f ∈ BKmul

}
.

For any training set D = {(xi, yi) : i ∈ [n]}, let D′ = {(xi, yi) : i ∈ [n]} be the training set with only one sample different
from D, where the k-th sample is replaced by (x′k, y

′
k). Let Φ(D) = supf∈Bλ

∣∣∣E(f)− ÊD(f)
∣∣∣, then

|Φ (D′)− Φ(D)|

=

∣∣∣∣∣ sup
f∈Bλ

∣∣∣E(f)− ÊD′(f)
∣∣∣− sup

f∈Bλ

∣∣∣E(f)− ÊD(f)
∣∣∣∣∣∣∣∣

≤ sup
f∈Bλ

∣∣∣ÊD(f)− ÊD′(f)
∣∣∣

= sup
f∈Bλ

|ψ (ykf (xk))− ψ (y′kf (x′k))|
n

≤ 1

n
.

According to McDiarmid’s inequality, for any 0 < δ < 1, with probability at least 1− δ over the training dataset D, the
following holds:

Φ(D) ≤ ED[Φ(D)] +

√
ln(1/δ)

2n
. (6)
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Then, we will estimate the upper bound of ED[Φ(D)].

ED[Φ(D)]

=ED

[
sup
f∈Bλ

∣∣∣ED′

[
ÊD′(f)− ÊD(f)

]∣∣∣]

≤ED,D′

[
sup
f∈Bλ

∣∣∣ÊD′(f)− ÊD(f)
∣∣∣]

=ED,D′

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

ψ (y′if (x′i))− ψ (yif (xi))

∣∣∣∣∣
]

=Eε,D,D′

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εi (ψ (y′if (x′i))− ψ (yif (xi)))

∣∣∣∣∣
]

≤Eε,D′

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εiψ (y′if (x′i))

∣∣∣∣∣
]

+Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

−εiψ (yif (xi))

∣∣∣∣∣
]

=2Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εiψ (yif (xi))

∣∣∣∣∣
]
. (7)

To this end, we introduce the decomposition of γ-margin cost function that ψ̄(x) = ψ(x)− ψ(0) : R→ R, which has the
Lipschitz constant 1

γ and ψ̄(0) = 0 (ψ(0) = 1). Then, applying the contraction property of Rademacher complexities, with
probability at least 1− δ, the following holds:

Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εiψ (yif (xi))

∣∣∣∣∣
]

≤Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εiψ̄ (yif (xi))

∣∣∣∣∣
]

+ Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εiψ(0)

∣∣∣∣∣
]

≤ 2

γ
Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εif (xi)

∣∣∣∣∣
]

+

(
Eε,D

1

n

[
n∑
i=1

εiεj

])1/2

≤ 2

γ
Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εif (xi)

∣∣∣∣∣
]

+
1√
n
. (8)

Hence, we will bound Eε,D
[
supf∈Bλ

1
n |
∑n
i=1 εif (xi)|

]
.

Eε,D

[
sup
f∈Bλ

1

n

∣∣∣∣∣
n∑
i=1

εif (xi)

∣∣∣∣∣
]

=Eε,D

[
1

λ
sup

K∈Kmul
sup
‖f‖K≤1

1

n

∣∣∣∣∣
〈

n∑
i=1

εiK(·,xi), f

〉
K

∣∣∣∣∣
]

=
1

λ
Eε,D

 sup
K∈Kmul

1

n

∣∣∣∣∣∣
n∑

i,j=1

εiεjK (xi,xj)

∣∣∣∣∣∣
1
2


≤ 1

λ

√
2Un(Kmul)

n
+

1

λ
sup

K∈Kmul

√
trace(K)

n

≤ 1

λ

√
2Un(Kmul)

n
+

A

λ
√
n
. (9)

16



Nearly-tight Bounds for Deep Kernel Learning

Substituting inequalities (8) (9) into (7), we have

ED[Φ(D)] ≤ 4

γλ

√
2Un(Kmul)

n
+

4A

γλ
√
n

+
2√
n
. (10)

Combining with (6) and (10), then

E(f) ≤ ÊD(f) +
4

γλ

√
2Un(Kmul)

n
+

4A

γλ
√
n

+
2√
n

+

√
ln(1/δ)

2n
.

C.3. Proof of Lemma 5.3

Proof. Let Kmul be a domain of l-layer deep kernels. The empirical Rademacher chaos complexity ÛD(Kmul) can be
bounded by the metric entropy integral as follows:

Lemma C.3 (Theorem 2 in (Ying & Campbell, 2010)). For any D = {x1, . . . ,xn}, there holds

ÛD(K) ≤ r2 + 24e

∫ r2

0

log [1 +N (ε,K, d2)] dε.

We assume that 0 ∈ K, then we have that

ÛD(K) ≤ 24e

∫ r2

0

log [N2(ε,K, n) + 1] dε.

Since N2(ε,Kmul, n) ≤
(

8l2eA4

ε2

)ldkmax
, we have that

Un(Kmul) = ED
[
ÛD(Kmul)

]
≤ 24e ED

[∫ r2

0

log [N2(ε,Kmul, n) + 1] dε

]

≤ 24e ED

[∫ A2

0

log

[(
8l2eA4

ε2

)ldkmax
+ 1

]
dε

]

≤ 24e

∫ A2

0

ln

(
8.4l2eA4

ε2

)ldkmax
dε

= 24eldk
max

[
A2 ln(8.4l2e) +

∫ A2

0

ln

(
A4

ε2

)
dε

]
= 24eldk

max

[
A2 ln(8.4l2e) + 4A2

]
≤ 172eA2ldk

max + 48eA2ldk
max ln l

≤ 220eA2ldk
max ln l (l ≥ 3).

D. Estimating the Uniform Covering Number and the Rademacher Chaos Complexity
D.1. Proof of Theorem 6.1

Proof. Let {x1, . . . ,xdp} be the set that can be pseudo-shattered by F , then according to the definition of pseudo-
dimension, there are real numbers {ri ∈ R : i ∈ [dp]} such that for any y ∈ {−1, 1}dp there is a function f ∈ F with
property sgn (f(xi)− ri) = yi for any i ∈ [dp].
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For any y = (y1, . . . , ydp) ∈ {−1, 1}dp , we can take the real number ri as ri = w′
>

Φ(xi) for any i ∈ [dp], then ∃ w, w′

such that

yi
(
w>Φ(xi)− ri

)
≥ 1 (∀i ∈ [dp]),

i.e.,

yi

(
w>Φ(xi)−w′

>
Φ(xi)

)
≥ 1 (∀i ∈ [dp]),

let w̃ = w −w′, then we have

yi
(
w̃>Φ(xi)

)
≥ 1 (∀i ∈ [dp]).

Summing these dp inequalities, we have

dp ≤ w̃>
dp∑
i=1

yiΦ(xi)

≤ ‖w̃‖

∥∥∥∥∥
dp∑
i=1

yiΦ(xi)

∥∥∥∥∥ ≤ Λ

∥∥∥∥∥
dp∑
i=1

yiΦ(xi)

∥∥∥∥∥ .
Since the above inequality holds for any y ∈ {−1, 1}dp , taking the expectation of y1, . . . , ydp on both sides, where
y1, . . . , ydp obey independent and uniform distribution. From the independence assumption, we have E [yiyj ] =
E [yi]E [yj ] , i 6= j. From the uniform distribution, we have E [yiyj ] = 0 (i 6= j), E [yiyj ] = 1 (i = j). Then,

dp ≤ ΛEy

[∥∥∥∥∥
dp∑
i=1

yiΦ(xi)

∥∥∥∥∥
]

≤ Λ

Ey
∥∥∥∥∥

dp∑
i=1

yiΦ(xi)

∥∥∥∥∥
2
1/2

= Λ

 dp∑
i,j=1

Ey [yiyj ]
(
Φ(xi)

>Φ(xj)
)1/2

= Λ

[
dp∑
i=1

(
Φ(xi)

>Φ(xi)
)]1/2

= Λ

[
dp∑
i=1

(K(xi,xi))

]1/2

≤ Λr
√
dp,

where the second inequality uses the Jensen’s inequality and the property of convex functions. Hence, we have dp ≤
r2Λ2.

D.2. Proof of Theorem 6.2

Proof. It can be known thatKconv (S) ⊆ Kline(S) ⊆ Kspan(S), andKspan(S) is a vector space with dimension d(Kspan(S)) ≤
k. Since the fact that the pseudo-dimension of a k-dimensional vector space of real-valued functions is k, the following
relationship of the kernel pseudo-dimension holds:

dk (Kconv(S)) ≤ dk (Kline(S)) ≤ dk (Kspan(S)) = d (Kspan(S)) ≤ k. (11)

We then have the following lemma for the pseudo-dimension and compositions with non-decreasing functions:
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Lemma D.1 (Theorem 11.3 in (Anthony & Bartlett, 1999)). Suppose F is a class of real-valued functions and σ : R→ R
is a non-decreasing function. Let σ(F) denote the class {σ ◦ f : f ∈ F}. Then dk(σ(F)) ≤ dk(F).

Since the gi operations produced by the compositions of common-used kernels are monotonous (non-decreasing) with
respect to their input kernels, therefore, if the kernel domain of their input kernels is denoted by K1

mul, then dk(K1
mul) =

d(K1
mul) = m. For any i ∈ {2, . . . , l}, we have

dk(Kimul) ≤ dk(gi ◦ hi−1(Ki−1
mul)) ≤ d

k(hi−1(Ki−1
mul)) ≤ d

k(Ki−1
mul). (12)

Hence, dk(Kimul) ≤ m, and the bound of the Rademacher chaos complexity can be derived immediately.

E. A Lower Bound Based on the Rademacher Complexity
E.1. Proof of Theorem 7.1

Proof. We first define a function class of DKMs as follows:

G = {x 7→
n∑
i=1

αiK
l (x,xi) :

∑
i,j

αiαjK
p (xi,xj) ≤ 1,Kp(xi,xi) ≤ A2,Kp(·, ·) ∈ Kp∗,xi ∈ X ,∀p ∈ [l]},

where the class of q-th layer deep kernels for some q ∈ {2, · · · , l} is defined as follows:

Kq∗ =
{
Kq(·, ·) = gq

([
Kq−1(·, ·)

])}
,

where Kq−1(·, ·) ∈ Kq−1
∗ , gq is the nonlinear function produced by Kq(·, ·) which composites Kq−1(·, ·), and the classes

of all other layers deep kernels are linear kernel classes for any p ∈ [l] and p 6= q, i.e., the gp operation is the identity
transformation. Therefore, the l-layer deep kernel can be denoted as Kl(x,x′) = Kq(x,x′). Note that the linear kernel
does not produce nonlinear mapping, and Kq(·, ·) represents a single-layer nonlinear kernel. It can be shown that G ⊆ F .

R̂D(G)

=Eε

[
sup
f∈G

∣∣∣∣∣ 1n
n∑
i=1

εif (xi)

∣∣∣∣∣
]

=Eε

[
sup

W l:‖W l‖≤1

sup
Φl:‖Φl‖≤A

∣∣∣∣∣ 1n
n∑
i=1

εiW
l>Φl(xi)

∣∣∣∣∣
]

=Eε

[
sup

W q :‖W q‖≤1

sup
φq :‖φq‖≤A

∣∣∣∣∣ 1n
n∑
i=1

εiW
q>φq(xi)

∣∣∣∣∣
]

= sup
φq :‖φq‖≤A

1

n
Eε

∥∥∥∥∥
n∑
i=1

εiφ
q(xi)

∥∥∥∥∥
≥ sup
φq :‖φq‖≤A

1

n
c

√√√√ n∑
i=1

‖φq(xi)‖2 (Use Khintchine-Kahane inequality, c > 0)

= sup
φq :‖φq‖≤A

1

n
c

√√√√ n∑
i=1

Kq(xi,xi)

=
cA√
n
.

Since G is a subset of F , so R̂D(F) ≥ R̂D(G) ≥ cA√
n

.
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