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Abstract—As a practical problem in open and dynamic
environments, class-incremental learning has attracted much
attention from many fields. Learning with augmented class
(LAC) problem formulates one of the core difficulties of
class-incremental learning: instances of augmented class need
to be predicted with the restriction that only examples from
seen classes are observed in training phase. LACU framework
advances the study of LAC problem by exploiting unlabeled
data, while it does not take into account an important practical
problem widely-existing in real-world applications of LAC
– imbalanced class distributions among seen classes, which
will further increase the learning difficulties of LAC problem.
We propose a novel approach Label Confidence Propagation
(LCP) to tackle the problem of imbalanced augmented class
learning with unlabeled data. LCP enlarges the labeled training
data set by estimating class labels for unlabeled data, to
meet the challenge of lacking supervision information of
augmented classes via identifying some of their instances,
and to alleviate the damage of class-imbalance via identifying
more instances for each seen class. LCP firstly initializes label
confidence, i.e., the posterior probability distributions of all
classes (including augmented classes) for unlabeled data, then
iteratively propagates label confidence to identify a valid label
for each unlabeled instance to enlarge the labeled training
data set. Finally, LCP predicts for unseen instances by linear
neighborhood reconstruction to be robust to potential noise.
Results on abundant experiments show that LCP is significantly
superior to many state-of-the-art methods, and robust to high
imbalance ratio and high open level. LCP can sufficiently unleash
its strength especially when there are abundant unlabeled data
available.

Keywords-augmented class learning; LACU framework; class-
imbalance; unlabeled data

I. INTRODUCTION

Traditional supervised learning methods often assume that
test data and training data share the same and fixed set
of class labels. While in many real-world applications, the
environments are open and dynamic, which may break such
assumption. Incremental Learning (IL) is one of the learn-
ing paradigms for open environments. According to which
type of things increases over time, IL is categorized into
three main branches [1], attribute-incremental learning (A-IL)
[2], example-incremental learning (E-IL) [3]–[5] and class-
incremental learning (C-IL) [6]–[8]. Therein, C-IL has at-
tracted increasing attention from various fields since it is
widespread in more and more real-world applications. For
example, a web text categorization system needs to predict
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Fig. 1: (a) Illustration of the impact of class-imbalance on LAC
problem. (b) Illustration of the motivation of LCP approach. Positive
and negative symbol represents minority and majority seen classes,
respectively. Question symbol represents augmented classes. A cir-
cled symbol represents an unlabeled instance is estimated as the
symbol. A solid curve represents a ground-truth decision boundary
and a dashed curve represents a possible decision boundary without
sufficient data for training.

the web texts from broad classes continuously emerging in
the future.

As augmented classes will emerge over time, C-IL needs
to predict instances of augmented classes with the restriction
that only examples from seen classes are observed in train-
ing phase. Lacking of supervision information of augmented
classes makes it hard to predict their instances correctly, which
poses great challenge. This core difficulty of C-IL is formu-
lated as LAC (Learning with Augmented Class) problem, and
LACU (Learning with Augmented Class with Unlabeled data)
framework advances the study of LAC problem by exploiting
unlabeled data containing instances from all classes [9].

In many real-world applications of LAC, such as text
categorization, image classification etc., class distributions
among seen classes are often imbalanced. The class-imbalance
problem [10], [11] will further increase learning difficulties,
including but may not limited to: (1) minority seen class
instances could be prone to be misclassified to majority seen
classes or augmented classes; (2) augmented class instances
could be more prone to be misclassified to majority seen
classes; (3) inaccurate decision boundaries among seen classes
caused by class-imbalance could probably hinder the learning
of decision boundaries between augmented classes and seen
classes. Fig. 1(a) illustrates the impact of class-imbalance



on LAC problem. Class-imbalance problem will degenerate
a classifier’s performance obviously without being properly
addressed. A reliable LAC method is expected to be adapt-
able to augmented classes as well as to be robust to class-
imbalance. Though some research work studied the class-
imbalance problem in IL with streaming data [12], there is
no work concerning class-imbalance in LAC problem yet, as
far as we know.

In this paper, we propose a novel approach Label Confi-
dence Propagation (LCP) to tackle the problem of lacking of
supervision information of augmented classes as well as the
problem of class-imbalance simultaneously in LACU frame-
work. The approach is inspired by the following idea: labeled
training data set can be enlarged by estimating class labels for
unlabeled data. Thus on one hand, the supervision information
of augmented classes can be estimated, which will greatly
reduce the difficulty of learning the concepts of augmented
classes. And on the other hand, as a popular strategy in class-
imbalance learning [11], when more training data is available
to represent class concepts more sufficiently, the classification
system is less sensitive to the level of imbalance among
classes. When unlabeled instances are used to enlarge the
labeled training data set according to their accurately predicted
class labels, the learning difficulties caused by class-imbalance
in LAC problem (please refer to the above paragraph) can all
be addressed, as illustrated in Fig. 1(b).

LCP firstly initializes label confidence, i.e. the posterior
probability distributions of all classes (including augmented
class) for unlabeled data, then iteratively propagates label
confidence to identify a valid label for each unlabeled instance
to enlarge the labeled training data set. Finally, LCP classifies
an unseen instance by linear neighborhood reconstruction to be
robust to the noise potentially introduced. Results on abundant
experiments show that LCP is significantly superior to many
state-of-the-art methods, and robust to high imbalance ratio
and high open level. LCP can sufficiently unleash its strength
especially when there are abundant unlabeled data available.

The rest of this paper is organized as follows. Section 2
briefly describes the related work, Section 3 presents the LCP
approach in detail, Section 4 reports the experimental results
and Section 5 concludes.

II. RELATED WORK

Incremental learning requires methods to be adaptable to
the changes of open and dynamic environments. As an impor-
tant branch, class-incremental learning (C-IL) focuses on the
emerging classes, and has attracted more and more attention.
According to whether and how the information of augmented
classes is available in training phase, there are several settings
in C-IL:

(1) A few of augmented class examples are observed in
training phase. Some methods are designed for this setting. For
example, in [7], base learners are trained from data containing
augmented classes examples and are incrementally integrated
as an ensemble. In [8], binary classifiers for each new class

are incrementally added, which share the hypothesis of seen
classes.

(2) No augmented class example is available in training data
set. It is formulated as learning with augmented class (LAC)
problem [9], and is especially hard to solve. Though some
related learning paradigms could be of some help, such as the
classification with a reject option, the open set recognition,
the outlier detection and the rare class discovery, they are not
consistent with the aim and scope of LAC problem and follow
different principles1.

(3) The unlabeled data from all classes (including aug-
mented classes) are available in training phase. In [9], the
learning with augmented class with unlabeled data (LACU)
framework exploits unlabeled data to help LAC problem,
and LACU-SVM approach is designed to utilize the large
margin separators surrounding seen classes to help distinguish
augmented classes.

In addition, some recent advancements in C-IL include the
classification with streaming emerging new class [13]–[15] in
data stream context, and the learning with emerging new labels
in multi-label classification [16].

Though some research work studied the class-imbalance
problem in IL with streaming data [12], there is no work
concerning class-imbalance in LAC problem yet, as far as we
know. An intuitive solution towards imbalanced augmented
class learning with unlabeled data is to balance the skewness
among seen classes in training data set, thus the problem
can be converted to normal LAC problem to solve. Various
popular class-imbalance learning techniques can be utilized
for this purpose, such as random or synthetic undersampling
or oversampling [10]. We compare LCP approach with some
of these straightforward strategies in Section 4.

III. THE LCP APPROACH

Let Ds = {(xi, yi)}Li=1 denote the imbalanced labeled
training data set, where xi ∈ Rd is a training instance and its
label is yi ∈ Y = {1, 2, ...,K}. And the testing instances in
Dt = {(xi, yi)}Ti=1 are sampled from an open data set Do =
{(xi, yi)}∞i=1, where yi ∈ Yo = {1, 2, ...,K,K + 1, ...,M}
with M > K. As augmented classes are unobservable during
training phase, one can access an unlabeled data set Du =
{xi}L+U

i=L+1 sampled from Do during training phase to help
the problem of augmented class learning. In LACU framework
[9], the task is to learn a multi-class classifier f(x) : X → Y ,
where Y = {1, 2, ...,K, novel} and novel indicates that x
belongs to the augmented classes (we treat the novel class as
the (K + 1)-th class), in order to minimize the expected risk

f∗ = argmin
f∈H

E(x,y)∼Do
err(y, f(x)), (1)

where H is a hypothesis space and err is LAC error

err(y, f(x)) =

{
I(f(x) 6= y), y ∈ Y
I(f(x) 6= novel), y /∈ Y

. (2)

1Please refer to [9] for more description.



Here I(x) is 1 when x is true and 0 otherwise.
In LCP, the labeled training data set Ds is enlarged by

estimating class labels for the unlabeled data Du, such that
there are some estimated examples for novel class to meet
the challenge of lacking supervision information of aug-
mented classes, and there are more examples for seen classes
to alleviate the damage of class-imbalance. LCP has three
stages: (1) label confidence initialization stage initializes label
confidence, i.e., the posterior probability distributions of all
classes in Y; (2) label confidence propagation stage iteratively
propagates label confidence to identify a valid label for each
unlabeled instance in Du to enlarge the labeled training data
set Ds; (3) prediction stage classifies an unseen instance by
linear neighborhood reconstruction in the enlarged training
data set.

1) Label Confidence Initialization: Let P(L+U)×(K+1) be
the posterior probability distribution matrix, or the initial label
confidence matrix, for the instances in the whole training data
set D = Ds

⋃
Du. Also, denote pi as the i-th row of P

indicating the label confidence vector for instance xi, and
pij ∈ [0, 1] as the j-th element of pi indicating the probability
of xi belonging to class j.

For a labeled instance xi ∈ Ds, the probability pij is set to
1 for its ground-truth class and 0 for other classes, i.e.,

pij =

{
1, if j = yi

0, otherwise
(1 ≤ i ≤ L, 1 ≤ j ≤ K + 1). (3)

To meet the challenge of lacking supervision information of
augmented classes, the probability of each unlabeled instance
xi ∈ Du belonging to novel class is initialized by a default
value of 0.52. According to cluster assumption of semi-
supervised learning [17], similar instances have high probabil-
ity of sharing the same class, so the probability of an unlabeled
instance belonging to each seen class can be estimated via
its similarity to each seen class. However, instance similarity
estimation by direct distance measure can be problematic with
high dimensionality [18]. Therefore, we apply LDA [19] on D
to get data set D′ with reduced dimensionality, and initializes
the probability of xi belonging to each seen class based on
D′. In detail, the boundary radius γj of the seen class j ∈ Y
is defined as follows:

γj = maxxi∈Cj ‖ xi − µj ‖2 (1 ≤ i ≤ L, 1 ≤ j ≤ K), (4)

where Cj denotes the instance set of class j in data set Ds and
µj =

1
|Cj |

∑
xi∈Cj

xi. Generally speaking, an instance should
be closer to the instances of its own class and far away from
the instances of other classes. Therefore, xi is considered to
be uncorrelated to class j if ‖ xi − µj ‖2> γj . According to
cluster assumption, the probability of unlabeled instance xi ∈
Du belonging to class j depends on the similarity measure
hij :

hij =‖ xi − µj ‖2 −γj (L+ 1 ≤ i ≤ L+ U, 1 ≤ j ≤ K). (5)

The label confidence vector pi for an unlabeled instance xi ∈

2Without any prior information, it is reasonable to do so. If the prior
probability of novel class pN is given, it is reasonable to initialize the above
probability by pN .

Algorithm 1 The LCP algorithm

Require:
Ds : Training data set {xi, yi}Li=1, yi ∈ {1, 2, . . . ,K}
Du : Unlabeled data set {xi}L+U

i=L+1

k : The number of nearest neighbors
α : The balancing parameter in (0,1)
Q : The number of iterations

Ensure:
f(x) : The predicted label for x in Dt = {xi}Ti=1

1: Stage 1. Label Confidence Initialization
2: Set D = Ds

⋃
Du and get D′ with reduced dimensional-

ity by applying LDA on D
3: Initialize label confidence matrix P = [pij ](L+U)×(K+1)

with pij = 0
4: Set the label confidence vector pi for each instance xi ∈
Ds according to Eq.(3)

5: Calculate the boundary radius γj for each class j (j ∈
{1, 2, . . . ,K}) according to Eq.(4)

6: for each xi ∈ Du (L+ 1 ≤ i ≤ L+ U) do
7: Calculate hij(1 ≤ j ≤ K) according to Eq.(5)
8: Set the label confidence vector pi for instance xi

according to Eq.(6) and perform normalization
9: end for

10: Stage 2. Label Confidence Propagation
11: Form the affinity matrix W according to Eq.(7)
12: Set S according to Eq.(8) and set F0 = P
13: for q = 1 . . . Q do
14: Set Fq according to Eq.(9)
15: Rescale Fq according to Eq.(10)
16: end for
17: Set the final label confidence matrix F̂ = FQ

18: Obtain the valid label ŷi of each xi ∈ D(1 ≤ i ≤ L+U)
according to Eq.(12)

19: Update D = {(xi, ŷi)}L+U
i=1

20: Stage 3. Prediction
21: for each xi ∈ Dt(1 ≤ i ≤ T ) do
22: Identify the k-nearest neighbors N(xi) in D for xi

23: Return the predicted class label f(xi) according to
Eq.(13)

24: end for

Du can then be initialized as follows:

pij =


0.5, j = K + 1

0, 1 ≤ j ≤ K, hij ≥ 0
0.5×|hij |∑K
j=1 |hij |

, 1 ≤ j ≤ K, hij < 0
(L+ 1 ≤ i ≤ L+U),

(6)
Then, normalization is conducted to ensure pi is an prob-
ability: pij = pij/

∑K+1
j=1 pij . If an unlabeled instance is

uncorrelated to any seen class, the normalization step rescales
its probability of belonging to novel class to 1. It is worth
mentioning that, D′ with reduced dimensionality is only used
in the first stage of LCP.

2) Label Confidence Propagation: After initializing the
label confidence matrix P , LCP refines the label confidence



by iterative propagation, and then identifies the valid label for
each unlabeled instance based on the refined label confidence
to enlarge the labeled training data set. Inspired by [20],
we design an Iterative Label Confidence Propagation (ICLP)
process to transfer the supervised information from the labeled
examples in Ds to help the learning task on data set D.

In detail, a weighted graph G = (V,E) is constructed on
data set D, where the vertex set V = {xi|1 ≤ i ≤ L+U}, and
the weights of edges in E are determined by affinity matrix
W(L+U)×(L+U) which incorporates the distance relationships
among instances. Note that label confidence initialization
stage may introduce potential noise. To alleviate the potential
accumulative damage caused by propagating noise, we restrict
W to be the 1-nearest neighbor affinity matrix, i.e.,

Wab =

{
exp(−‖xa−xb‖2

2σ2 ), if xb is xa’s nearest neighbor
0, otherwise

. (7)

To guarantee the convergence in subsequent ICLP process, W
need to be symmetrically normalized by row:

S = R−1/2WR−1/2, (8)

where R is a diagonal matrix with diagonal element Raa =∑L+U
b=1 Wab.
Denote F(L+U)×(K+1) as a matrix with non-negative en-

tries, whose element Fij corresponds to the probability of xi

in D belonging to class j (j ∈ {1, 2, ...,K + 1}). Initializing
F with the P obtained above, i.e. F0 = P , then F can be
updated as follows at the q-th iteration:

Fq = α · SFq−1 + (1− α) · P , (9)

where parameter α ∈ (0, 1) controls the relative amount
of information that instance inherited from its only nearest
neighbor and its initial label information. After that, Fq is
rescaled based on the initial label confidence matrix P , i.e.,

Fij =
Fij .δij∑K+1

k=1 Fik · δik
(1 ≤ i ≤ L+U, 1 ≤ j ≤ K+1), (10)

where δij = 1 if pij > 0 and 0 otherwise. This step not
only guarantees normalization, but also ensures the instances
in D being immune to noise propagation when they are
uncorrelated to particular classes, including that the Fij values
for the seen class examples in Ds are totally consistent with
their ground-truth class labels. Such procedure of ICLP will
continue until convergence and we have F̂ = FQ, where Q is
the maximum number of iterations. After that, the valid label
for each instance in D can be identified based on the final
label confidence matrix F̂ as follows:

ŷi = arg max
j∈{1,2,...,K+1}

F̂ij (1 ≤ i ≤ L+ U). (11)

However, the unlabeled data from novel class are prone to
be misclassified since there is no ground-truth novel class
examples in the training data set. To meet this challenge, LCP
initializes the probability of an unlabeled instance belonging
to novel class by 0.5 or 1. Hence, in order to inherit this
advantage, we use the class mass normalization mechanism

[21] to take the prior information of class distribution into
account, which is reflected by P :

ŷi = arg max
j∈{1,2,...,K+1}

vj
v̂j
· F̂ij (1 ≤ i ≤ L+ U), (12)

where vj =
∑L+U

i=1 pij and v̂j =
∑L+U

i=1 F̂ij . Note that,
the class labels of the seen class examples in Ds remain
unchanged via this step.

3) Prediction: During testing phase, the class label of x
in Dt is predicted based on the enhanced examples (xi, ŷi)
in D. Let N(x) be the set of x’s k-nearest neighbors in
D. However, not all pre-estimated labels of instances in D
are correct. In order be more robust to noise, LCP makes
prediction by reconstructing the unseen instance x with the
instances belonging to the same class in N(x). Specially, the
instance x will be predicted to the class with the minimum
linear reconstruction error, i.e.,

f(x) = arg min
j∈{1,2,...,K+1}

‖x−
∑
xn∈Ej

βj
n · xn‖2, (13)

where, Ej is the instance set of class j in N(x), and βj
n

is the corresponding reconstruction coefficient. The βj =
[βj

1, ..., β
j
|Ej |] is determined by solving the following optimiza-

tion problem:

min
βj
‖x−

∑
xn∈Ej

βj
n · xn‖2

s.t. βj
n ≥ 0

. (14)

The pseudo code of the proposed LCP approach is summarized
in Algorithm1.

IV. EXPERIMENTS

A. Experimental Settings

Data sets 4 controlled imbalanced data sets and 8 real-world
imbalanced data sets are collected to assess the performance
of comparison methods. The controlled data sets are MNIST3,
Letter4, CIFAR-10 and CIFAR-1005. They are pre-processed
to have different levels of class-imbalance. The real-world
imbalanced data sets are Font, Vicon Physical Action, UJI-
IndoorLoc, Sat and Turkiye6, Caltech1017, Caltech2568 and
Forest Cover9. All of them are pre-processed to have different
configurations of open environments in order to thoroughly
investigate the comparison methods for imbalanced augmented
class learning with unlabeled data. TABLE I and TABLE II
shows the data set information.

For the controlled data sets, we take MNIST as an example
to explain how to obtain the imbalanced data sets with different
configurations for investigation. We consider 3 different imbal-
ance levels, i.e. the maximum imbalance ratio ImR = 3, 9, 15.

3http : //yann.lecun.com/exdb/mnist/
4http : //archive.ics.uci.edu/ml/datasets.html
5both are at https : //www.cs.toronto.edu/ kriz/cifar.html
6they are all at http : //archive.ics.uci.edu/ml/datasets.html
7http : //www.vision.caltech.edu/ImageDatasets/Caltech101
8http : //www.vision.caltech.edu/ImageDatasets/Caltech256
9http : //kdd.ics.uci.edu/databases/covertype/covertype.html



TABLE I: Controlled data set information. M : the number of classes in original data sets, dim: dimensionality, ImR: imbalance ratio (the
level of class-imbalance on controlled data sets is characterized by |majC|/|minC|), minC: a minority seen class with |minC| being
its size, #minC: the number of minority seen classes, majC: a majority seen class with |majC| being its size, #majC: the number of
majority seen classes, AugC: an augmented class with |AugC| being its size, #AugC: the number of augmented classes, size: data set
size.

controlled data sets9 M dim ImR (#minC, #majC, #AugC) |minC| |majC| |AugC| size

MNIST 10 784
3 (1,4,5)

50
150 150 3450

9 (1,4,5),(3,2,5),(5,2,3) 450 450 10050,7650,6150
15 (1,4,5) 750 750 16650

Letter 26 16 5
(1,4,5)

40 200 200
4520

(2,3,5) 4040
(3,2,5) 3560

CIFAR-10 10 3072 5 (1,4,5) 100 500 500 11300
10 1000 1000 22300

CIFAR-100 100 3072 3 (1,4,5) 50 150 150 3450
5 250 250 5650

TABLE II: Real-world data set information. M : the number of classes in original data sets, dim: dimensionality, ImR: imbalance ratio (the
level of class-imbalance on real-world data sets is characterized by minimum, maximum and average imbalance ratio [22]), #seenC:
the number of all seen classes, #AugC: the number of augmented classes, |C|: class size in real-world imbalanced data sets, which is
characterized by minimum, maximum and average class sizes.

real-world data sets10 M dim (#seenC, #AugC) ImR |C|
min max avg min max avg

Font 153 409 (5,5) 1.0 113.7 6.4 824 93688 5443
Vicon Physical Action 20 27 (5, 15) 1.0 1.4 1.1 26334 35251 30270
UJIIndoorLoc 13 527 (5, 8) 1.0 2.8 1.4 995 2749 1620
Sat 6 36 (3, 3) 1.0 2.5 1.7 626 1553 1073
Forest Cover 7 54 (3, 4) 1.2 103.2 16.4 2747 283301 83002
Turkiye 13 32 (5, 8) 1.0 22.1 3.8 41 904 448
Caltech101 101 1984 (5, 5) 1.0 23.5 2.4 31 800 86
Caltech256 256 1764 (5, 5) 1.0 10.4 1.5 80 827 120

For ImR = 3, 5 from 10 classes are randomly selected as
seen classes, with the remaining 5 classes being treated as
augmented classes. Then, 1 from 5 seen classes is randomly
selected as a minority seen class, with the remaining 4 being
majority seen classes. To obtain the desired imbalance level
ImR = 3, we perform undersampling so that each minority
and majority seen class has 50 and 150 examples, respectively.
For the sake of simplicity, the size of an augmented class
is kept the same as that of a majority seen class. Thus, we
have an imbalanced data set where the size of the labeled
training data set, the unlabeled data set and the test data set
is 1 × 50 + 4 × 150 = 650, 1 × 50 + 9 × 150 = 1400,
1 × 50 + 9 × 150 = 1400, respectively. Under the same set
of constrains described above, 10 imbalanced data sets are
obtained from 10 configurations with different seen classes
and augmented classes randomly selected. For ImR = 9
and 15, we have 3 and 1 configurations of (#minC, #majC,
#AugC), respectively, with each configuration further deriving
10 imbalanced data sets. Therefore, we have 50 imbalanced
data sets derived from MNIST.

Since the 8 real-world imbalanced data sets have naturally
imbalanced class distributions, they only need to be pre-
processed to have different configurations of open environ-
ments. Taking Font as an example, we randomly select 5

9We use the normalized features of MNIST data set. And for the rest three
data sets, we use the given features of the data sets downloaded from their
websites without further processing.

10We extract the features of Caltech256 data set by HOG [23]. And for the
rest six data sets, we use the given features of the data sets downloaded from
their websites without further processing.

classes from all 153 classes as seen classes and 5 classes from
the remaining 148 classes as augmented classes. In order to
maintain i.i.d. distributions, the instances of each seen class
are evenly allocated to training data set, unlabeled data set and
test data set, and the instances of each augmented class are
evenly allocated to unlabeled data set and test data set. Similar
to the controlled data sets, each real-world imbalanced data set
randomly generates 10 different configurations with different
seen classes and augmented classes for a fixed configuration
of (#seenC, #AugC). That means there are 10 imbalanced
data sets derived for each real-world imbalanced data set.

There are 18 configurations altogether deriving 180 imbal-
anced data sets in total. For each imbalanced data set, 10 times
repeated experiments are carried out and the average results
are recorded. Pairwise t-tests at 0.05 significance level are
also conducted. Macro-F1, a common performance measure
for class-imbalanced learning tasks, is used in the experiments.
Comparison methods To compare with LCP, we investigate
the classic method LACU-SVM for LACU framework, and 5
other methods from related learning paradigms (such as outlier
detection), LOF, MOC-SVM, OVR-SVM, iForest and 1-vs-
Set, since they can also be helpful to LAC problem and served
as comparison methods for LACU-SVM [9]. As introduced in
Section 2, a general straightforward strategy for imbalanced
LACU problem is to convert it to normal LAC problem
to solve by utilizing an appropriate class-imbalance learning
technique to balance seen classes. Here, we adopt random
undersampling and a very popular synthetic oversampling
technique SMOTE [24] and combine each of them with each



TABLE III: Performance (mean ± std. deviation) of each comparison method on MNIST data set. In addition, •/◦ indicates whether LCP
is significantly superior/inferior to the comparison methods (pairwise t-test at 0.05 significance level).

Macro-F1 ImR = 3 ImR = 9 ImR = 9 ImR = 9 ImR = 15
(#minC = 1) (#minC = 1) (#minC = 3) (#minC = 5) (#minC = 1)

LCP 0.908±0.017 0.915±0.017 0.872±0.022 0.870±0.019 0.913±0.022
LCP-SMOTE 0.907±0.013 0.922±0.001 0.890±0.014 0.885±0.015 0.927±0.013
LACU-SVM 0.631±0.064• 0.620±0.038• 0.424±0.066• 0.298±0.023• 0.641±0.067•

LACU-SVM+SMOTE 0.689±0.051• 0.705±0.048• 0.564±0.033• 0.637±0.072• 0.688±0.042•
LACU-SVM+USAM 0.488±0.114• 0.486±0.112• 0.460±0.087• 0.281±0.053• 0.541±0.122•

MOC-SVM 0.581±0.052• 0.584±0.054• 0.542±0.066• 0.511±0.056• 0.567±0.054•
MOC-SVM+SMOTE 0.539±0.050• 0.543±0.050• 0.417±0.043• 0.329±0.033• 0.540±0.039•
MOC-SVM+USAM 0.567±0.044• 0.555±0.045• 0.528±0.056• 0.499±0.052• 0.546±0.046•

OVR-SVM 0.663±0.040• 0.635±0.029• 0.502±0.034• 0.625±0.052• 0.619±0.036•
OVR-SVM+SMOTE 0.662±0.039• 0.635±0.029• 0.495±0.033• 0.620±0.052• 0.620±0.032•
OVR-SVM+USAM 0.653±0.042• 0.612±0.036• 0.479±0.022• 0.586±0.054• 0.615±0.024•

LOF 0.669±0.046• 0.675±0.045• 0.517±0.048• 0.499±0.074• 0.680±0.059•
LOF-SMOTE 0.584±0.036• 0.616±0.034• 0.396±0.039• 0.305±0.022• 0.646±0.028•
LOF-USAM 0.614±0.046• 0.600±0.056• 0.503±0.054• 0.493±0.063• 0.584±0.060•

iForest 0.507±0.044• 0.490±0.044• 0.382±0.051• 0.389±0.062• 0.482±0.050•
iForest-SMOTE 0.506±0.001• 0.482±0.029• 0.378±0.057• 0.361±0.052• 0.473±0.030•
iForest-USAM 0.497±0.042• 0.478±0.036• 0.374±0.022• 0.351±0.054• 0.477±0.032•

1-vs-Set 0.487±0.046• 0.475±0.025• 0.414±0.046• 0.399±0.044• 0.480±0.051•
1-vs-Set+SMOTE 0.504±0.032• 0.516±0.014• 0.426±0.014• 0.405±0.062• 0.546±0.048•
1-vs-Set+USAM 0.463±0.026• 0.450±0.036• 0.363±0.057• 0.349±0.023• 0.414±0.060•

TABLE IV: Performance (mean ± std. deviation) of each comparison
method on Letter data set. In addition, •/◦ indicates whether LCP
is significantly superior/inferior to the comparison methods (pairwise
t-test at 0.05 significance level).

Macro-F1 ImR = 5 ImR = 5 ImR = 5
(#minC = 1) (#minC = 2) (#minC = 3)

LCP 0.911±0.019 0.879±0.012 0.866±0.023
LCP-SMOTE 0.913±0.018 0.890±0.009 0.878±0.011
LACU-SVM 0.850±0.041• 0.801±0.038• 0.768±0.034•

LACU-SVM+SMOTE 0.876±0.029 0.831±0.027 0.800±0.042•
LACU-SVM+USAM 0.778±0.041• 0.755±0.033• 0.749±0.042•

MOC-SVM 0.554±0.023• 0.498±0.015• 0.456±0.023•
MOC-SVM+SMOTE 0.546±0.019• 0.492±0.010• 0.443±0.019•
MOC-SVM+USAM 0.322±0.026• 0.324±0.019• 0.332±0.021•

OVR-SVM 0.644±0.048• 0.583±0.032• 0.535±0.044•
OVR-SVM+SMOTE 0.646±0.042• 0.574±0.030• 0.530±0.040•
OVR-SVM+USAM 0.622±0.051• 0.558±0.039• 0.523±0.051•

LOF 0.712±0.024• 0.615±0.037• 0.568±0.047•
LOF-SMOTE 0.709±0.022• 0.641±0.014• 0.584±0.012•
LOF-USAM 0.577±0.040• 0.531±0.035• 0.516±0.043•

iForest 0.597±0.030• 0.555±0.048• 0.524±0.059•
iForest-SMOTE 0.592±0.002• 0.544±0.010• 0.510±0.053•
iForest-USAM 0.572±0.011• 0.534±0.009• 0.466±0.045•

1-vs-Set 0.852±0.021• 0.808±0.039• 0.767±0.042•
1-vs-Set+SMOTE 0.868±0.025• 0.838±0.014• 0.816±0.012•
1-vs-Set+USAM 0.827±0.031• 0.781±0.025• 0.736±0.063•

of the above 6 comparison methods in turn. In addition, we
also combine LCP with SMOTE in order to further investigate
the proposed approach. We have 20 methods in comparison in
total.
• LACU-SVM [9]: LACU-SVM trains an binary SVM

classifier fj(·) for the j-th seen class, j ∈ {1, 2, ...,K}.
It predicts the seen class if maxj=1,...,K fj(x) > 0, and
novel class otherwise.

• MOC-SVM: As introduced in [9], MOC-SVM trains an
one-class SVM for each seen class to detect novel class.

• OVR-SVM [25]: According to [9], the original one-vs-
rest SVM, which trains a single binary SVM classifier
fj(·) for each class, can be adapted to predict novel class
by returning the class novel only if maxjfj(x) < 0,
otherwise returning the class argmaxj=1,...,K fj(x).

• LOF [26]: LOF is proposed for finding anomalous data

points by measuring the local deviation between the
given data point and its neighbours. We use LOF for
detecting novel class, and use the one-vs-rest SVM for
seen classes. This strategy is also employed for iForest
and 1-vs-Set.

• iForest [27]: iForest is a state-of-the-art outlier detection
algorithm and it makes the most of two outliers quanti-
tative properties, i.e., few and different, by exploring the
concept of isolation of samples.

• 1-vs-Set [28]: 1-vs-Set Machine takes the risk over open
space into consideration by introducing extra decision
boundaries to minimize the regions for seen classes.

• LACU-SVM/MOC-SVM/OVR-SVM/LOF/iForest/1-
vs-Set + SMOTE/Undersampling (abbreviated as
USAM): In this series of comparison methods, SMOTE
or undersampling is used to fully balance the data
distribution of the training data set Ds. Then LACU-
SVM/ MOC-SVM/ OVR-SVM/ LOF/ iForest/ 1-vs-Set
is applied on the balanced training data set respectively.

• LCP
• LCP-SMOTE: SMOTE is used to fully balance the data

distribution of Ds. Then LCP is applied.

For MOC-SVM, OVR-SVM and their variants, we use the
implementations in LIBSVM software [29]. For LACU-SVM,
iForest, 1-vs-Set and their variants, we use the code released
by the corresponding authors. The coefficient C in SVM is
selected via cross validation on training data, and the width
for Gaussian kernel ν is set to 1/dim. In LACU-SVM, other
parameters are set according to the paper: ramps = −0.3,
η = 1.3, λ = 0.1, max iter = 10, C1 is set to C, C2 is
set to C1L/U . For LOF and its variants, the minimum and
maximum number of neighbors are 3 and 5, respectively. And
the Euclid distance de is replaced with 1 − exp(−νde) for
Gaussian kernel since the original LOF does not have a kernel
version. For iForest, 1-vs-Set and their variants, we use the
default parameters introduced in the corresponding papers. The



TABLE V: Performance (mean ± std. deviation) of each comparison
method on CIFAR-10 data set. In addition, •/◦ indicates whether
LCP is significantly superior/inferior to the comparison methods
(pairwise t-test at 0.05 significance level).

Macro-F1 ImR = 5 ImR = 10

LCP 0.271±0.027 0.272±0.016
LCP-SMOTE 0.271±0.027 0.341±0.016◦
LACU-SVM 0.117±0.000• 0.118±0.000•

LACU-SVM+SMOTE 0.117±0.000• 0.118±0.000•
LACU-SVM+USAM 0.117±0.000• 0.118±0.000•

MOC-SVM 0.117±0.000• 0.118±0.000•
MOC-SVM+SMOTE 0.117±0.000• 0.118±0.000•
MOC-SVM+USAM 0.117±0.000• 0.118±0.000•

OVR-SVM 0.117±0.000• 0.118±0.000•
OVR-SVM+SMOTE 0.117±0.000• 0.118±0.000•
OVR-SVM+USAM 0.117±0.000• 0.118±0.000•

LOF 0.157±0.026• 0.146±0.014•
LOF-SMOTE 0.152±0.018• 0.147±0.007•
LOF-USAM 0.181±0.029• 0.170±0.017•

iForest 0.117±0.000• 0.118±0.000•
iForest-SMOTE 0.117±0.000• 0.118±0.000•
iForest-USAM 0.117±0.000• 0.118±0.000•

1-vs-Set 0.117±0.000• 0.118±0.000•
1-vs-Set+SMOTE 0.117±0.000• 0.118±0.000•
1-vs-Set+USAM 0.117±0.000• 0.118±0.000•

TABLE VI: Performance (mean ± std. deviation) of each comparison
method on CIFAR-100 data set. In addition, •/◦ indicates whether
LCP is significantly superior/inferior to the comparison methods
(pairwise t-test at 0.05 significance level).

Macro-F1 ImR = 3 ImR = 5

LCP 0.358±0.034 0.360±0.026
LCP-SMOTE 0.368±0.043 0.371±0.013
LACU-SVM 0.116±0.000• 0.117±0.000•

LACU-SVM+SMOTE 0.116±0.000• 0.117±0.000•
LACU-SVM+USAM 0.116±0.000• 0.117±0.000•

MOC-SVM 0.116±0.000• 0.117±0.000•
MOC-SVM+SMOTE 0.116±0.000• 0.117±0.000•
MOC-SVM+USAM 0.116±0.000• 0.117±0.000•

OVR-SVM 0.116±0.000• 0.117±0.000•
OVR-SVM+SMOTE 0.116±0.000• 0.117±0.000•
OVR-SVM+USAM 0.116±0.000• 0.117±0.000•

LOF 0.226±0.037• 0.204±0.021•
LOF-SMOTE 0.215±0.027• 0.197±0.034•
LOF-USAM 0.244±0.022• 0.230±0.037•

iForest 0.116±0.000• 0.117±0.000•
iForest-SMOTE 0.116±0.000• 0.117±0.000•
iForest-USAM 0.116±0.000• 0.117±0.000•

1-vs-Set 0.116±0.000• 0.117±0.000•
1-vs-Set+SMOTE 0.116±0.000• 0.117±0.000•
1-vs-Set+USAM 0.116±0.000• 0.117±0.000•

number of neighbors k in SMOTE is set to 5. For LCP, k = 20,
α = 0.9 and Q = 100 for all the experiments. We implement
LCP and LCP-SMOTE models via Matlab, and the data and
source code can be downloaded at the following address10.

B. Results and Analysis

We first discuss the results of LCP and the 18 comparison
methods excluding LCP-SMOTE on controlled data sets and
real-world data sets respectively. The impact analysis of open
level (the number of augmented classes), further analysis
of LCP via comparison with LCP-SMOTE, and parameter
analysis deserve separate threads of discussion later in this
part.

10http : //cse.seu.edu.cn/PersonalPage/xyliu/codes/LCP.htm

1) Controlled Data Sets: MNIST and Letter MNIST
and Letter The learning tasks on the MNIST handwritten
digit data set and the Letter data set are much easier than
those on CIFAR-10 and CIFAR-100. The mean and the
standard variance of performance are reported in TABLE III
and TABLE IV respectively. The results show that LCP is
significantly superior to all of the 18 comparison methods,
followed by the second best method LACU-SVM+SMOTE.
It is also obvious that LCP is insensitive to the change of
imbalance ratio, and is only slightly affected by the change
of the number of minority seen classes. While other methods
generally have obvious performance degeneration in the latter
case. This shows the strong robustness of LCP. SMOTE boosts
performance obviously for LACU-SVM and 1-vs-Set, but the
opposite phenomenon is generally observed in MOC-SVM,
OVR-SVM, LOF and iForest, which may because SMOTE
introduces potential noise. While undersampling is almost
surely damaging to all the methods since it reduces large
amount of useful information.
CIFAR-10 and CIFAR-100 Both CIFAR-10 and CIFAR-100
are complex data sets usually used in the experiments for deep
learning. The results are reported in TABLE V and TABLE VI
respectively. It shows that, LCP still significantly outperforms
all the 18 comparison methods on these very difficult learn-
ing tasks, followed by the second best method LOF-USAM.
LAUC-SVM-based methods no longer have the advantage
observed on MINST and Letter, which is took over by LOF-
based methods. LACU-SVM, MOC-SVM, OVR-SVM, iForest
and 1-vs-Set all fail on these two data set, because they always
predict novel class. Besides, SMOTE and undersampling can
neither boost nor damage their performance.

2) Real-World Data Sets: Font, Vicon Physical Action,
UJIIndoorLoc, Sat and Forest Cover As shown in TABLE
I and TABLE II, each class in these 5 real-world imbalanced
data sets has abundant instances. The results are reported
in TABLE VII. It shows that, LCP is significantly superior
to all the comparison methods and is very robust to high
imbalance levels. The absolute advantages of LCP over other
methods lie in its ability of fully utilizing the unlabeled data.
These 5 data sets have abundant instances in each class,
therefore LCP can greatly enlarge the labeled training set,
leading to sufficient representation of class concepts, which
will meet the challenge of lacking supervision information
of augmented classes as well as alleviating the impact of
class-imbalance simultaneously. It is important to note that,
LCP can sufficiently unleash its strength especially when there
are abundant unlabeled data. The runner up is LOF. The
performance of LACU-SVM-based methods is not as well as
that on the previous controlled data sets. It performs especially
poor on data set Font and Forest Cover, both of which have
high imbalance levels. One possible reason is that the real-
world data sets are naturally imbalanced and are more complex
than the controlled data sets. Besides, LACU-SVM is not
designed for imbalanced LACU problem, and balancing class
distributions by applying SMOTE only can marginally help
since each seen class already has sufficient instances.



TABLE VII: Performance (mean ± std. deviation) of each comparison method on Font, Vicon Physical Action, UJIIndoorLoc, Sat and Forest
Cover data sets. In addition, •/◦ indicates whether LCP is significantly superior/inferior to the comparison methods (pairwise t-test at 0.05
significance level).

Macro-F1 Font V iconPhysicalAction UJIIndoorLoc Sat ForestCover
LCP 0.570±0.043 0.936±0.005 0.894±0.025 0.752±0.041 0.608±0.029

LCP-SMOTE 0.571±0.044 0.937±0.005 0.897±0.009 0.749±0.042 0.583±0.035
LACU-SVM 0.233±0.082• 0.297±0.076• 0.631±0.064• 0.540±0.064• 0.194±0.047•

LACU-SVM+SMOTE 0.234±0.082• 0.298±0.078• 0.676±0.068• 0.577±0.020• 0.194±0.047•
LACU-SVM+USAM 0.214±0.061• 0.286±0.075• 0.345±0.065• 0.189±0.021• 0.194±0.047•

MOC-SVM 0.191±0.051• 0.219±0.045• 0.217±0.045• 0.189±0.021• 0.194±0.047•
MOC-SVM+SMOTE 0.190±0.052• 0.219±0.046• 0.232±0.048• 0.189±0.021• 0.194±0.047•
MOC-SVM+USAM 0.177±0.038• 0.214±0.044• 0.208±0.042• 0.189±0.021• 0.194±0.047•

OVR-SVM 0.239±0.080• 0.400±0.096• 0.410±0.066• 0.126±0.058• 0.123±0.055•
OVR-SVM+SMOTE 0.239±0.081• 0.400±0.096• 0.411±0.066• 0.189±0.021• 0.194±0.047•
OVR-SVM+USAM 0.220±0.061• 0.389±0.095• 0.378±0.064• 0.189±0.021• 0.194±0.047•

LOF 0.291±0.029• 0.572±0.010• 0.572±0.028• 0.525±0.020• 0.471±0.031•
LOF-SMOTE 0.284±0.024• 0.542±0.012• 0.447±0.027• 0.423±0.047• 0.392±0.047•
LOF-USAM 0.283±0.029• 0.570±0.012• 0.592±0.020• 0.522±0.019• 0.424±0.039•

iForest 0.149±0.067• 0.331±0.085• 0.284±0.043• 0.308±0.049• 0.165±0.049•
iForest-SMOTE 0.165±0.077• 0.348±0.075• 0.295±0.041• 0.451±0.057• 0.166±0.041•
iForest-USAM 0.146±0.057• 0.342±0.079• 0.271±0.043• 0.257±0.069• 0.161±0.042•

1-vs-Set 0.234±0.082• 0.319±0.082• 0.207±0.052• 0.526±0.087• 0.123±0.055•
1-vs-Set+SMOTE 0.234±0.082• 0.320±0.082• 0.203±0.049• 0.530±0.041• 0.194±0.047•
1-vs-Set+USAM 0.214±0.061• 0.310±0.080• 0.204±0.050• 0.189±0.021• 0.194±0.047•

TABLE VIII: Performance (mean ± std. deviation) of each compar-
ison method on Turkiye, Caltech101 and Caltech256 data sets. In
addition, •/◦ indicates whether LCP is significantly superior/inferior
to the comparison methods (pairwise t-test at 0.05 significance level).

Macro-F1 Turkiye Caltech101 Caltech256
LCP 0.317±0.044 0.506±0.101 0.411±0.065

LCP-SMOTE 0.316±0.044 0.508±0.084 0.408±0.070
LACU-SVM 0.226±0.050• 0.478±0.091 0.312±0.127•

LACU-SVM+SMOTE 0.276±0.068 0.447±0.084• 0.323±0.120•
LACU-SVM+USAM 0.198±0.042• 0.438±0.090• 0.314±0.123•

MOC-SVM 0.235±0.034• 0.312±0.070• 0.181±0.053•
MOC-SVM+SMOTE 0.247±0.033• 0.261±0.039• 0.170±0.048•
MOC-SVM+USAM 0.226±0.022• 0.219±0.075• 0.182±0.058•

OVR-SVM 0.280±0.073 0.250±0.085• 0.154±0.034•
OVR-SVM+SMOTE 0.287±0.072 0.297±0.114• 0.167±0.036•
OVR-SVM+USAM 0.266±0.071• 0.145±0.053• 0.143±0.026•

LOF 0.188±0.017• 0.270±0.087• 0.198±0.057•
LOF-SMOTE 0.194±0.007• 0.233±0.063• 0.171±0.044•
LOF-USAM 0.186±0.027• 0.287±0.072• 0.198±0.055•

iForest 0.244±0.041• 0.333±0.110• 0.297±0.070•
iForest-SMOTE 0.274±0.051 0.412±0.074• 0.304±0.073•
iForest-USAM 0.228±0.050• 0.407±0.077• 0.302±0.073•

1-vs-Set 0.244±0.055• 0.248±0.057• 0.334±0.083•
1-vs-Set+SMOTE 0.289±0.068 0.275±0.071• 0.377±0.091
1-vs-Set+USAM 0.222±0.049• 0.167±0.057• 0.310±0.078•

Turkiye, Caltech101 and Caltech256 Different from the
above data sets, in each of these 3 data sets, the minority
seen class has rare instances, and other classes generally have
non-sufficient instances. The results are shown in TABLE VIII.
By no surprise, LCP has the best performance. It is followed
by 1-vs-Set+SMOTE and LACU-SVM+SMTOE. While the
advantages of LCP over other methods are not as much are
those on the 5 previous real-world data sets. LCP’s ability is
relatively restricted because there are no sufficient instances in
each class, so that the labeled training set can only be limitedly
enlarged leading to restricted improvements to represent class
concepts.

3) The impact analysis of open level: More augmented
classes means higher open level and greater learning difficulty.
In order to illustrate the impact of open level on methods’
performance, we conduct the experiments on data set CIFAR-

100 and Caltech256. Specifically, the number of seen classes
is fixed to 5 on both of them, and the number of augmented
classes varies from 5 to 30 with step 5 on CIFAR-100 data set
(ImR = 3), and from 5 to 65 with step 10 on Caltech256 data
set. The results are plotted in Fig. 2. As shown in Fig. 2(a),
the performance of valid methods LCP-based and LOF-based
methods declines with the increasing number of augmented
classes. However, it is still noteworthy that LCP is relatively
robust across a wild range of the number of augmented classes,
i.e., from 5 to 20, until it encounters a abrupt decline when the
environment is overly open. And as shown in Fig. 2(b), the
performance of valid methods LCP-based and LACU-SVM-
based methods generally declines with the increasing number
of augmented classes. Different from the previous case, LCP
encounters an immediate abrupt decline while subsequently
keeps relatively robust performance across a wild range of the
number of augmented classes, i.e., from 15 to 65. Generally
speaking, there are wide ranges of open level for LCP to have
relatively robust performance.

4) Further analysis of LCP: Generally speaking, LCP-
SMOTE is comparable to LCP. Though the former has
marginal advantage over the latter on few data sets, the advan-
tage tends to vanish when the number of augmented classes is
large, as shown in Fig. 2(a). Besides, LCP-SMOTE is inferior
to LCP on few data sets, such as Forest Cover (TABLE VII).
The results verify that the effectiveness of LCP mainly relies
upon the substantial method designed for enlarging the training
data set by sufficiently precise supervision information for
unlabeled data, especially the sufficiently precise supervision
information for augmented class. And on the other hand,
SMOTE might provide further assistance in some cases, while
it is not recommended when there are sufficient instances in
each class or the learning task is complex.

5) Parameter analysis: We further study the influence of
different parameters in LCP, i.e., the number of neighbors k,
balancing parameter α and the number of iterations Q in Fig.



3. We let k vary from 16 to 24, α vary from 0.55 to 0.95
and Q vary from 1 to 100. For clarity of illustration, MNIST
and Letter are employed here for sensitivity analysis while
similar observations can be made on other data sets. It is
obvious that the performance of LCP is stable across a broad
range of the parameter k (Fig. 3(a)). While for parameter α.
there is an obvious increasing tendency in performance until α
approaches 0.9 (Fig. 3(b)). It indicates that we can choose an
α value in [0.9, 1] to achieve effective and stable performance.
In Fig. 3(c), ||FQ−FQ−1||2 is used to quantify the difference
between label confidence matrices FQ and FQ−1 obtained in
the Q- and (Q−1)-th iterations. Its changing tendency shows
the convergence rate.

V. CONCLUSION

We propose LCP approach to tackle the problem of im-
balanced augmented class learning with unlabeled data. The
labeled training data set is enlarged by estimating class labels
for unlabeled data, to meet the challenge of lacking the
supervision information of augmented classes, and to alleviate
the damage of class-imbalance by identifying more examples
to each seen class. LCP firstly estimates label confidence, i.e.,
the posterior probability distributions of all classes (includ-
ing augmented classes) for unlabeled data, then iteratively
propagates label confidence to identify a valid label for each
unlabeled instance to enlarge the labeled training data set.
Finally, LCP predicts for unseen instances by linear neighbor-
hood reconstruction to be robust to potential noise. The results
on abundant experiments verified the significant superiority of
LCP over many state-of-the-art comparison methods, showed
its robustness to high imbalance ratio and high open level.
LCP can sufficiently unleash it strength especially when there
are abundant unlabeled data available.

There are several issues worth considering in the future,
including conducting additional experiments with more seen
classes and augmented classes, exploring other ways to obtain
the label confidence vector of unlabeled data, and adapting
LCP approach to streaming data, etc.
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