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Abstract—In multi-label learning, each training example
is represented by a single instance while associated with
multiple labels, and the task is to predict a set of relevant
labels for the unseen instance. Existing approaches learn from
multi-label data by assuming equal labeling-importance, i.e.
all the associated labels are regarded to be relevant while
their relative importance for the training example are not
differentiated. Nonetheless, this assumption fails to reflect the
fact that the importance degree of each associated label is
generally different, though the importance information is not
explicitly accessible from the training examples. In this paper,
we show that effective multi-label learning can be achieved
by leveraging the implicit relative labeling-importance (RLI)
information. Specifically, RLI degrees are formalized as multi-
nomial distribution over the label space, which are estimated
by adapting an iterative label propagation procedure. After
that, the multi-label prediction model is learned by fitting the
estimated multinomial distribution as regularized with popular
multi-label empirical loss. Comprehensive experiments clearly
validate the usefulness of leveraging implicit RLI information
to learn from multi-label data.

Keywords-multi-label learning; relative labeling-importance;
label distribution

I. INTRODUCTION

Multi-label learning deals with training examples each
represented by a single instance while associated with mul-
tiple labels, and the task is to learn a multi-label predictor
which maps from unseen instance to relevant label set [14],
[22], [30]. During the past decade, multi-label learning
techniques have been widely employed to learn from data
with rich semantics, such as text [21], image [3], audio [16],
video [25], etc.

Formally speaking, let X = Rd be the d-dimensional
feature space and Y = {y1, y2, . . . , yq} be the label space
with q possible class labels. Given a multi-label training
set D = {(xi, Yi) | 1 ≤ i ≤ m}, where xi ∈ X is the
d-dimensional instance and Yi ⊆ Y is the set of labels
associated with xi, the task is to learn a multi-label predictor
h : X → 2Y from D which maps from the space of feature
vectors to the space of label sets. To learn from multi-label
data, existing approaches take the common assumption of
equal labeling-importance, i.e. each label associated with the
training example is regarded to be relevant while the relative
importance among them are not differentiated [30].
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Figure 1. An exemplar natural scene image which has been annotated with
multiple labels sky, water, building and cloud. The relative importance of
each label is illustrated in the figure, which has not been explicitly provided
by the annotator. In addition, the label pedestrian is not annotated for the
image due to its insignificant appearance.

However, for real-world multi-label learning problems
the importance degree of each associated label is generally
different, though the importance information is not explicitly
accessible from the training examples. As shown in Fig.
1, a natural scene image may be annotated with labels
sky, water, building and cloud simultaneously, while their
relative importance for characterizing this image are not
explicitly provided by the annotator. Similar situations also
hold for other types of multi-label data, e.g. the multiple
categories associated with a news document would have
different topical importance, the multiple functionalities as-
sociated with a gene would have different expression levels,
etc.

Based on the above observations, we naturally postulate
that effective multi-label learning can be achieved by lever-
aging the implicit relative labeling-importance (RLI) infor-
mation. Accordingly, a novel multi-label learning approach
named RELIAB, i.e. RElative Labeling-Importance Aware
multi-laBel learning, is proposed in this paper. Firstly, the
RLI degrees are formalized as multinomial distribution over
the label space, which are estimated by invoking an iterative
label propagation procedure over the training examples.



After that, a multi-label predictor is induced by fitting the
prediction model with the estimated multinomial distribution
along with multi-label empirical loss regularization. Exten-
sive experiments across 17 benchmark multi-label data sets
show that RELIAB performs favorably against state-of-the-
art multi-label learning approaches.

The rest of this paper is organized as follows. Section II
presents technical details of the proposed approach. Section
III discusses existing works related to RELIAB. Section IV
reports experimental results of comparative studies. Finally,
Section V concludes.

II. THE RELIAB APPROACH

As shown in Section I, the task of multi-label learning
is to induce a multi-label predictor h : X → 2Y from the
training set D = {(xi, Yi) | 1 ≤ i ≤ m}. Given any instance
x = [xi1, xi2, . . . , xid]

⊤ ∈ X and label yl ∈ Y , we use µyl
x

to denote the implicit RLI degree of yl for characterizing x.
Intuitively speaking, the higher the value of µyl

x , the more
semantics conveyed by yl in characterizing x.

Accordingly, the set of relevant labels Y for x can be
determined as: Y = {yl | µyl

x > t(x), 1 ≤ l ≤ q}, where
t(x) corresponds to the threshold value which separates rele-
vant labels from irrelevant ones for instance x. In this paper,
we enlarge the original label space Y into Ỹ = {y0}

∪
Y ,

where y0 is the complementary virtual label serving as an
artificial bipartition point between relevant and irrelevant
labels [8], [17], [22], [30]. In this case, t(x) can be viewed as
the thresholding-importance w.r.t. virtual label y0, i.e. µy0

x .
Therefore, we have the formal definition on RLI degree as
follows:

Definition. Relative Labeling-Importance (RLI) Degree
Given any instance x ∈ X , the RLI degree of label yl ∈ Ỹ

for x is denoted as µyl
x (0 ≤ l ≤ q), which satisfies the

following constraints:
(i) non-negativity: µyl

x ≥ 0
(ii) normalization:

∑q
l=0 µ

yl
x = 1

Furthermore, the set of relevant labels Y ⊆ Y for x can be
determined as: Y = {yl | µyl

x > µy0
x , 1 ≤ l ≤ q}.

There are three points which need to be noticed for the
RLI degree formulated as above. Firstly, the RLI degree is
not directly accessible from the multi-label training exam-
ples and thus implicit to the learning algorithm. Secondly,
the RLI degree is instance-dependant which corresponds to
the relative importance among all labels in characterizing
the semantics of one particular instance.1 Thirdly, the RLI
degree for each instance, i.e. µyl

x , can be viewed as a label
distribution over the label space Ỹ . For label distribution
learning (LDL) [10], [11], [12], the distribution information

1In other words, given two instances {x,z} and two labels {yl, ym},
based on RLI degree we are only modeling and interested in the relative
magnitude between µ

yl
x and µym

x (or µyl
z and µym

z ), instead of the relative
magnitude between µ

yl
x and µ

yl
z (or µym

x and µym
z ).

is assumed to be available while for multi-label learning the
RLI information needs to be further inferred.

In this paper, RELIAB learns from multi-label data in
two basic stages, i.e. implicit RLI degree estimation and
prediction model induction, which are scrutinized in the
following subsections respectively.

A. Implicit RLI Degree Estimation

In the first stage, RELIAB aims to estimate the implicit
RLI degree for all training examples, i.e. U = {µyl

xi
|

1 ≤ i ≤ m, 0 ≤ l ≤ q}. To fulfill this task, the widely-
used iterative label propagation techniques [31], [33] is
adapted for the estimation. Let G = (V,E) denote the
fully-connected graph constructed over the set of training
examples with V = {xi | 1 ≤ i ≤ m}. Furthermore,
an m × m symmetric similarity matrix W = [wij ]m×m

is specified for G as follows:

∀mi,j=1 : wij =

 exp
(
−∥xi−xj∥2

2

2σ2

)
, if i ̸= j

0 , if i = j
(1)

Here, σ > 0 is the width parameter for similarity calculation,
which is fixed to be 1 in this paper.

Correspondingly, a label propagation matrix P is con-
structed from the similarity matrix: P = D− 1

2WD− 1
2 .

Here, D = diag[d1, d2, . . . , dm] is a diagonal matrix with
its diagonal entry di equal to the sum of the i-th row
of W: di =

∑m
j=1 wij . Let F = [fil]m×(q+1) be an

m× (q+1) matrix with non-negative entries, where fil ≥ 0
is assumed to be proportional to the labeling-importance
µyl
xi

. Based on the multi-label training set, an initial matrix
F(0) = Φ = [ϕil]m×(q+1) is instantiated as follows:

∀mi=1 ∀ql=0 : ϕil =


τ, if yl = y0

1, if yl ∈ Yi

0, otherwise

(2)

Here, τ ∈ (0, 1) is the initial thresholding-importance
parameter for virtual label y0. As shown in Eq.(2), at the
initialization step, all the relevant (irrelevant) labels are
assumed to have unit (zero) labeling-importance. At the t-th
iteration, F is updated by propagating labeling-importance
information with the label propagation matrix P:

F(t) = αPF(t−1) + (1− α)Φ (3)

Here, α ∈ (0, 1) is the balancing parameter which controls
the fraction of information inherited from label propagation
(i.e. PF(t−1)) and initial labeling (i.e. Φ).

By applying Eq.(3) recursively with F(0) = Φ, it is not
difficult to show that:

F(t) = (αP)tΦ+ (1− α)
t−1∑
i=0

(αP)iΦ (4)



As a real symmetric matrix, the label propagation matrix
P can be diagonalized as P = C⊤ΛC, where C is an
orthonormal matrix and Λ = diag[λ1, λ2, . . . , λm] is a
diagonal matrix containing eigenvalues of P. Note that P is
similar to S = D− 1

2PD
1
2 = D−1W, and therefore P and

S share identical eigenvalues.
Since S is a stochastic matrix whose rows consist of non-

negative entries and sum to one, the absolute value of each
eigenvalue satisfies |λi| ≤ 1 (1 ≤ i ≤ q) as ensured by the
Perron-Frobenius theorem [18], [33]. Under the setting of
α ∈ (0, 1), the limit for the first term of Eq.(4) would be:

lim
t→∞

(αP)tΦ = lim
t→∞

αt ·
(
C⊤ΛC

)t
Φ

= lim
t→∞

αt ·C⊤ΛtC Φ

= 0 (5)

It also holds that lim
t→∞

t−1∑
i=0

(αP)i = (I− αP)−1 because:

(I− αP) lim
t→∞

t−1∑
i=0

(αP)i = lim
t→∞

(I− αP)
t−1∑
i=0

(αP)i

= lim
t→∞

(
I− (αP)t

)
= I

Thus, the limit for the second term of Eq.(4) would be:

lim
t→∞

(1− α)
t−1∑
i=0

(αP)iΦ = (1− α)(I− αP)−1Φ (6)

According to Eqs.(5) and (6), F(t) will converge to F∗ as
the number of iterations grow:

F∗ = (1− α)(I− αP)−1Φ (7)

Based on F∗, the implicit RLI degree for each training
example is estimated as:

∀mi=1 ∀ql=0 : µyl
xi

=
f∗
il∑q

k=0 f
∗
ik

(8)

In other words, the set of q+1 RLI degrees for each instance
xi, i.e. {µyl

xi
| 0 ≤ l ≤ q}, can be regarded as a multinomial

distribution over the (enlarged) label space Ỹ , which are
obtained by normalizing F∗ on each row.

B. Prediction Model Induction

In the second stage, RELIAB aims to induce the multi-
label prediction model by leveraging the implicit RLI in-
formation estimated in the first stage, i.e. U = {µyl

xi
| 1 ≤

i ≤ m, 0 ≤ l ≤ q}. To facilitate the exploitation of U ,
we employ the simple maximum entropy model [5], [12] to
parametrize the multi-label predictor:

∀ql=0 : f(yl | x,Θ) =
1

Z(x)
exp

(
θ⊤
l x
)

(9)

Here, Θ =
[
θ0,θ1, . . . ,θq

]
represents the set of model

parameters and θl = [θl1, θl2, . . . , θld]
⊤ is the d-dimensional

weighting parameter vector for the l-th label yl ∈ Ỹ . Further-
more, the partition function Z(x) =

∑q
l=0 exp(θ

⊤
l x) serves

as a normalization term to ensure distributional outputs over
Ỹ:
∑q

l=0 f(yl | x,Θ) = 1. In this case, the multi-label
predictor h can be derived from f by thresholding the
outputs against the virtual label y0:

h(x) = {yl | f(yl | x,Θ) > f(y0 | x,Θ), 1 ≤ l ≤ q} (10)

To induce the parametric model f , RELIAB chooses to
optimize the following objective function:

V (f,U ,D) = Vdis(f,U) + β · Vemp(f,D) (11)

The first term Vdis(f,U) considers how the parametric
model f fits the estimated RLI degrees U , while the second
term Vemp(f,D) is used as a regularizer which considers
how f classifies the multi-label training examples in D.

On one hand, Vdis(f,U) can be measured by the com-
patibility between the importance-based distribution, i.e.
{µyl

x | 0 ≤ l ≤ q}, and the model-based distribution, i.e.
{f(yl | x,Θ) | 0 ≤ l ≤ q}. Here, the canonical Kullback-
Leibler (KL) divergence is employed to instantiate the first
term of Eq.(11):

Vdis(f,U)

=
m∑
i=1

KL
(
{µyl

xi
| 0 ≤ l ≤ q}, {f(yl | xi,Θ) | 0 ≤ l ≤ q}

)
=

m∑
i=1

q∑
l=0

(
µyl
xi

ln
µyl
xi

f(yl | xi,Θ)

)
(12)

On the other hand, Vemp(f,D) can be measured by the
empirical loss of the parametric model f on D. As shown in
Eq.(10), by taking the virtual label y0 as the bipartition point,
its modeling output f(y0 | xi,Θ) should be less than those
of relevant labels in Yi while larger than those of irrelevant
labels in Y i (i.e. Y \ Yi). Accordingly, the second term of
Eq.(11) is instantiated as:

Vemp(f,D)

= −
m∑
i=1

∑
yj∈Yi

(
f(yj | xi,Θ)− f(y0 | xi,Θ)

)

+ri ·
∑

yk∈Y i

(
f(y0 | xi,Θ)− f(yk | xi,Θ)

) (13)

Here, ri = |Yi|/|Y i| is used to account for potential imbal-
ance between the number of relevant and irrelevant labels
associated with each example [28]. Note that minimizing the
loss in Eq.(13) can be viewed as minimizing one of the most
popular multi-label metrics, namely the ranking loss [2], [9],
[22], [30], which considers pairwise ranking between each
relevant-irrelevant label pair. Nonetheless, by incorporating
the virtual label y0, the number of pairwise relationships



to be considered can be reduced from O(q2) for traditional
ranking loss to O(q) for the loss in Eq.(13).

By substituting Eqs.(12) and (13) into the objective
function and ignoring constant terms, Eq.(11) can then be
rewritten as:

V (f,U ,D) = −
m∑
i=1

q∑
l=0

(
µyl
xi

ln f(yl | xi,Θ)
)

−β ·
m∑
i=1

∑
yj∈Yi

(
f(yj | xi,Θ)− f(y0 | xi,Θ)

)

+ri ·
∑

yk∈Y i

(
f(y0 | xi,Θ)− f(yk | xi,Θ)

) (14)

The final prediction model f∗ is obtained by minimiz-
ing Eq.(14), i.e. f∗ = argminf V (f,U ,D). To solve the
corresponding unconstrained nonlinear optimization prob-
lem, RELIAB employs the Limited-memory Broyde-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm which is particularly
suited for problems with large number of variables [19]. As
a quasi-Newton algorithm, L-BFGS iteratively optimizes the
objective function with resort to gradient of the function:

∂V

∂Θ
=

[
∂V

∂θ0
, · · · , ∂V

∂θl
, · · · , ∂V

∂θq

]
, where

∂V

∂θl
= −

m∑
i=1

( (
µyl
xi

− f(yl | xi,Θ)
)
· xi

)
− β ·

m∑
i=1(

f(yl | xi,Θ)

( ∑
yj∈Yi\{yl}

(
f(y0 | xi,Θ)− f(yj | xi,Θ)

)
+ri ·

∑
yk∈Y i\{yl}

(
f(yk | xi,Θ)− f(y0 | xi,Θ)

)
+ζ(yl, Yi)

(
1− f(yl | xi,Θ) + f(y0 | xi,Θ)

))
· xi

)
(15)

Here, ζ(yl, Yi) returns 0 if yl corresponds to the virtual label
y0. Otherwise, ζ(yl, Yi) returns +1 if yl ∈ Yi and −ri if
yl ∈ Y i.

Table I summarizes the complete procedure of the pro-
posed RELIAB approach. After incorporating the virtual
label y0 into the original label space (Step 1), a similarity
matrix as well as an initial labeling-importance matrix are
constructed based on the training examples (Steps 2-3). After
that, the implicit degrees of RLI are estimated via a label
propagation procedure (Steps 4-5), and then the multi-label
prediction model is learned by leveraging the estimated
labeling-importance information (Steps 6-14). Finally, the
predicted label set for unseen instance is determined by
thresholding the model outputs against the virtual label (Step
15).2

2Code package for RELIAB is publicly available at http://cse.seu.edu.cn/
PersonalPage/zhangml/files/RELIAB.zip

Table I
THE PSEUDO-CODE OF RELIAB.

Inputs:
D: the multi-label training set {(xi, Yi) | 1 ≤ i ≤ m}

(xi ∈ X , Yi ⊆ Y,X = Rd,Y = {y1, y2, . . . , yq})
τ : the initial thresholding-importance parameter in (0, 1)

α: the balancing parameter in (0, 1)

β: the regularization parameter
x: the unseen instance (x ∈ X )

Outputs:
Y : the predicted label set for x

Process:
1: Enlarge the original label space by introducing the virtual label

y0: Ỹ = {y0}
∪

Y;
2: Construct the similarity matrix W = [wij ]m×m according to

Eq.(1);
3: Construct the initial labeling-importance matrix Φ =

[ϕil]m×(q+1) according to Eq.(2);
4: Conduct label propagation to yield the converged solution F∗

according to Eq.(7);
5: Estimate the implicit RLI degrees U = {µyl

xi | 1 ≤ i ≤ m, 0 ≤
l ≤ q} according to Eq.(8);

6: Initialize model parameters Θ(0) = 1
d(q+1)

· 1d×(q+1);
7: Set t = 0;
8: repeat
9: Evaluate f(yl | xi,Θ

(t)) (1 ≤ i ≤ m, 0 ≤ l ≤ q)
according to Eq.(9);

10: Evaluate gradient ∂V
∂Θ |

Θ(t)
according to Eq.(15);

11: Update Θ(t+1) by running one L-BFGS iteration [19] with
current parameters Θ(t) and gradient ∂V

∂Θ |
Θ(t)

;
12: t = t+ 1;
13: until convergence
14: Set the final prediction model f∗ with Θ∗ = Θ(t);
15: Return Y = h(x) according to Eq.(10).

III. RELATED WORK

Existing works related to RELIAB are briefly discussed in
this section, while more comprehensive reviews on multi-
label learning can be found in [14], [22], [30].

Existing approaches to multi-label learning can be rough-
ly grouped into three categories based on the order of
label correlations being considered [22], [30], i.e. first-
order approaches assuming independence among class labels
[1], [29], second-order approaches considering correlations
between a pair of class labels [7], [8], and high-order
approaches considering correlations among label subsets or
all the class labels [15], [20], [23]. For whichever order
of correlations, the common modeling strategy is to treat
each label in a crisp manner, i.e. being either relevant or
irrelevant for an instance without differentiating its relative
importance. In contrast, RELIAB models high-order label
correlations by differentiating degrees of RLI over the label



space.
There have been some works which learn from multi-label

data with auxiliary labeling-importance information. In [4],
an ordinal scale is assumed to characterize the membership
degree and an ordinal grade is assigned for each label of
the training example. In [27], a full ordering is assumed to
be known to rank relevant labels of the training example. In
both cases, those auxiliary labeling-importance information
are explicitly given and accessible to the learning algorithm.
Obviously, RELIAB differs from them without assuming the
availability of such explicit information.

The principle of maximum entropy (MaxEnt) has been
employed to design multi-label learning algorithms, which
works by modeling p(y | x), i.e. the joint probabilities of
all labels y = (y1, y2, . . . , yq) ∈ {0, 1}q conditioned on the
instance x [13], [30], [32]. Due to the combinatorial nature
of y, existing MaxEnt-based multi-label learning approaches
can not scale well to data set with large number of labels.
Actually, the data sets employed in the experiments of [13]
and [32] only contain up to 10 labels. In contrast, the
MaxEnt model employed by RELIAB (Eq.(9)) corresponds to
a multinomial distribution instead of a joint distribution over
the label space. This property makes RELIAB scalable for
data sets with large number of labels, whose experimental
results are reported in the next section.

IV. EXPERIMENTS

A. Preliminary Analysis

As shown in Table I, the implicit RLI degrees estimated
from the label propagation (LP) procedure (Steps 1-5) will
be employed as the basis for subsequent prediction model
induction (Steps 6-14). Therefore, quality of the estimated
RLI information will have significant influence on the per-
formance of RELIAB.

Due to the lack of multi-label data sets with known RLI
information, several two-dimensional synthetic data sets are
generated in this subsection to investigate how well the RLI
degrees estimated by RELIAB’s LP procedure can recover
the ground-truth RLI information. Specifically, to generate
one multi-label synthetic data set D = {(xi, Yi) | 1 ≤
i ≤ m} with q possible class labels, any two-dimensional
instance is drawn randomly according to the following
Gaussian Mixture Model (GMM): p(x) =

∑q
l=1 πl · N (x |

µl,Σl).
For each Gaussian mixture component, the mixture co-

efficient πl is set to be 1
q . In addition, elements of

the mean vector µl are chosen randomly from the pool
{0, 0.5, 1.0, 1.5, 2.0}, and diagonal values of the diagonal
covariance matrix Σl are chosen randomly from the pool
{0.5, 1.0, 1.5, 2.0}.

For each instance xi drawn according to the GMM
distribution, the posteriori probability of xi belonging to the
j-th mixture component will be regarded as the ground-truth

Table II
THE KL-DIVERGENCE BETWEEN THE ESTIMATED AND THE

GROUND-TRUTH RLI DEGREES (DENOTED AS “LP”), AS WELL AS THAT
BETWEEN THE PRIOR AND THE GROUND-TRUTH RLI DEGREES

(DENOTED AS “NONLP”). RESULTS ARE REPORTED FOR DIFFERENT
SETTINGS OF m (# SYNTHETIC INSTANCES) AND q (# CLASS LABELS).

m = 1000
q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

LP 0.073 0.098 0.095 0.106 0.110 0.100
nonLP 1.587 1.583 1.638 1.584 1.680 1.622

m = 5000
q = 5 q = 6 q = 7 q = 8 q = 9 q = 10

LP 0.088 0.079 0.094 0.111 0.104 0.115
nonLP 1.409 1.584 1.636 1.604 1.584 1.621

RLI degree of label yj for xi, i.e.:

p(yj | xi) =
πj · N (x | µj ,Σj)∑q
l=1 πl · N (x | µl,Σl)

(1 ≤ j ≤ q) (16)

The set of relevant labels Yi for xi is determined by thresh-
olding the RLI degree against the actual mixture component
responsible for generating xi.

To evaluate the quality of the RLI degrees estimated by
RELIAB’s LP procedure, Table II reports the average KL-
divergence between the estimated and the ground-truth RLI
degrees over each example in the data set. Furthermore,
to illustrate the helpfulness of the LP procedure, the KL-
divergence between the prior (i.e. setting the RLI degree to
each relevant label as 1

|Yi| ) and the ground-truth RLI degrees
is also reported.

As shown in Table II, it is intriguing to see that the LP
procedure has good capability in recovering the ground-
truth RLI degrees, where the KL-divergence has been much
improved compared to the prior RLI degrees and is shown to
take small values (around 0.1). Next, extensive experiments
are conducted to validate the effectiveness of the proposed
RELIAB approach.

B. Experimental Setup

1) Data Sets: For comprehensive performance evalua-
tion, a total of seventeen benchmark multi-label data sets
have been collected for experimental studies.3 For each
multi-label data set S, we use |S|, dim(S), L(S) and F (S)
to represent its number of examples, number of features,
number of class labels and feature type respectively. In
addition, several multi-label statistics [20] are further used to
characterize properties of the data set, including label car-
dinality LCard(S), label density LDen(S), distinct label
sets DL(S) and proportion of distinct label sets PDL(S).
Detailed definitions on these properties can be found in [20].

Table III summarizes detailed characteristics of the bench-
mark data sets, which are roughly organized in ascending

3Publicly available at http://mulan.sourceforge.net/datasets.html and http:
//meka.sourceforge.net/#datasets



Table III
CHARACTERISTICS OF THE BENCHMARK MULTI-LABEL DATA SETS.

Data set |S| dim(S) L(S) F (S) LCard(S) LDen(S) DL(S) PDL(S) Domain
cal500 502 68 174 numeric 26.044 0.150 502 1.000 audio

emotions 593 72 6 numeric 1.868 0.311 27 0.046 audio
medical 978 1,449 45 nominal 1.245 0.028 94 0.096 text

llog 1,460 1,004 75 nominal 1.180 0.016 304 0.208 text
msra 1,868 898 19 numeric 6.315 0.332 947 0.507 image
image 2,000 294 5 numeric 1.236 0.247 20 0.010 image
scene 2.407 294 5 numeric 1.074 0.179 15 0.006 image
yeast 2.417 103 14 numeric 4.237 0.303 198 0.082 biology

slashdot 3,782 1,079 22 nominal 1.181 0.054 156 0.041 text
corel5k 5,000 499 374 nominal 3.522 0.009 3,175 0.635 image
rcv1-s1 6,000 500 101 nominal 2.880 0.029 1,028 0.171 text
rcv1-s2 6,000 500 101 nominal 2.634 0.026 954 0.159 text
rcv1-s3 6,000 500 101 nominal 2.614 0.026 939 0.156 text
rcv1-s4 6,000 500 101 nominal 2.484 0.025 816 0.136 text
rcv1-s5 6,000 500 101 nominal 2.642 0.026 946 0.158 text
bibtex 7,395 1836 159 nominal 2.402 0.015 2,856 0.386 text

mediamill 43,907 120 101 numeric 4.376 0.043 6,555 0.149 video

order of |S|, with nine of them being regular-scale (first part,
|S| < 5, 000) and eight of them being large-scale (second
part, |S| ≥ 5, 000). As shown in Table III, the seventeen
data sets cover a broad range of cases with diversified multi-
label properties and thus serve as a solid basis for thorough
comparative studies.

2) Comparing Algorithms: In this paper, we choose to
compare the performance of RELIAB against four well-
established multi-label learning algorithms [30], including
first-order approach binary relevance (BR) [1], second-order
approach calibrated label ranking (CLR) [8], and high-order
approaches ensemble of classifier chains (ECC) [20] and
random k-labelsets (RAKEL) [23].

As shown in Eq.(9), the parametric predictor employed by
RELIAB can be viewed equivalently as multinomial logistic
regression models. Accordingly, each of the four comparing
algorithms are implemented under the MULAN multi-label
learning package [24] by instantiating their base learners
with logistic regression models. Furthermore, parameters
suggested in the literatures are used for ECC and RAKEL
(ECC: ensemble size 30; RAKEL: ensemble size 2q with
k = 3). For RELIAB, the balancing parameter α is fixed to be
0.5 which yields stable performance across the experimental
data sets. In addition, the initial threshold-importance param-
eter τ and the regularization parameter β are chosen among
{0.1, 0.15, . . . , 0.5} and {10−3, 10−2, . . . , 10} respectively
by conducting cross-validation on training set.

3) Evaluation Protocol: A number of evaluation metrics
specific to multi-label learning have been proposed, which
can be generally categorized into two groups [22], [30], i.e.
example-based metrics and label-based metrics. Example-
based metrics work by evaluating the predictor’s perfor-
mance on each test example separately and then returning
the mean value across all test examples. On the other

hand, label-based metrics work by evaluating the predictor’s
performance on each label separately and then returning the
macro/micro-averaged value across all class labels.

In this paper, six widely-used multi-label metrics are em-
ployed for performance evaluation, including four example-
based metrics: one-error, coverage, ranking loss, average
precision, and two label-based metrics: macro-averaging F1,
micro-averaging F1. These evaluation metrics consider the
performance of multi-label predictor from various aspects,
whose values all vary between [0,1].4 For one-error, cov-
erage and ranking loss, the smaller the values the better
the performance. For the other three metrics, the larger the
values the better the performance.

For each comparing algorithm, ten-fold cross-validation is
performed on regular-scale data sets (first part of Table III)
while five-fold cross-validation is performed on large-scale
data sets (second part of Table III). Accordingly, the mean
metric value as well as the standard deviation are recorded
for comparative studies.

C. Experimental Results

Tables IV and V report the detailed experimental results
of all comparing algorithms on the regular-scale and large-
scale data sets respectively. For each evaluation metric, “↓”
indicates “the smaller the better” while “↑” indicates “the
larger the better”. Furthermore, the best performance among
the five comparing algorithms is shown in boldface.

To analyze the relative performance among the compar-
ing algorithms systematically, Friedman test [6] is used
here which is regarded as the favorable statistical test for
comparisons among multiple algorithms over a number of
data sets. Table VI summarizes the Friedman statistics FF

4Concrete metric definitions can be found in [30]. In addition, the
coverage metric is normalized by the number of class labels (i.e. q).



Table IV
PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE NINE REGULAR-SCALE DATA SETS.

Comparing One-error ↓
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.129±0.019 0.273±0.019 0.160±0.012 0.745±0.007 0.066±0.014 0.348±0.016 0.248±0.007 0.223±0.011 0.509±0.014

BR 0.906±0.025 0.375±0.027 0.306±0.031 0.885±0.013 0.362±0.013 0.527±0.011 0.472±0.016 0.284±0.010 0.731±0.014
CLR 0.375±0.118 0.356±0.030 0.706±0.149 0.883±0.023 0.152±0.009 0.502±0.016 0.367±0.017 0.272±0.012 0.978±0.003
ECC 0.255±0.028 0.353±0.040 0.187±0.016 0.794±0.011 0.211±0.011 0.475±0.011 0.378±0.015 0.261±0.010 0.476±0.015

RAKEL 0.672±0.029 0.394±0.027 0.252±0.025 0.876±0.015 0.288±0.014 0.498±0.013 0.440±0.016 0.297±0.012 0.596±0.011

Comparing Coverage ↓
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.744±0.008 0.304±0.014 0.045±0.007 0.156±0.005 0.545±0.012 0.204±0.005 0.099±0.003 0.453±0.007 0.138±0.002

BR 0.877±0.009 0.364±0.015 0.117±0.018 0.380±0.006 0.716±0.004 0.297±0.009 0.209±0.010 0.479±0.007 0.261±0.009
CLR 0.792±0.014 0.351±0.016 0.134±0.026 0.234±0.019 0.636±0.004 0.285±0.009 0.119±0.004 0.496±0.006 0.271±0.004
ECC 0.796±0.008 0.356±0.013 0.052±0.007 0.195±0.006 0.665±0.004 0.271±0.008 0.144±0.008 0.479±0.006 0.138±0.006

RAKEL 0.958±0.003 0.386±0.016 0.113±0.012 0.360±0.007 0.698±0.006 0.293±0.008 0.190±0.009 0.573±0.008 0.219±0.005

Comparing Ranking loss ↓
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.179±0.003 0.165±0.011 0.030±0.006 0.121±0.004 0.134±0.008 0.185±0.006 0.081±0.002 0.171±0.006 0.122±0.002

BR 0.266±0.005 0.233±0.016 0.089±0.013 0.329±0.005 0.287±0.004 0.309±0.010 0.230±0.012 0.191±0.005 0.242±0.009
CLR 0.248±0.029 0.222±0.014 0.114±0.024 0.197±0.017 0.207±0.003 0.291±0.010 0.125±0.005 0.200±0.005 0.258±0.005
ECC 0.218±0.004 0.227±0.017 0.036±0.006 0.156±0.005 0.238±0.004 0.273±0.010 0.154±0.008 0.193±0.005 0.121±0.006

RAKEL 0.342±0.003 0.260±0.016 0.087±0.009 0.309±0.006 0.260±0.004 0.303±0.009 0.209±0.010 0.254±0.006 0.198±0.005

Comparing Average precision ↑
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.503±0.007 0.796±0.011 0.876±0.010 0.394±0.009 0.816±0.012 0.774±0.008 0.853±0.004 0.760±0.007 0.613±0.010

BR 0.301±0.006 0.730±0.015 0.756±0.025 0.214±0.014 0.626±0.005 0.656±0.007 0.692±0.012 0.733±0.007 0.427±0.013
CLR 0.383±0.048 0.742±0.016 0.403±0.051 0.209±0.019 0.722±0.003 0.672±0.010 0.781±0.008 0.729±0.008 0.251±0.007
ECC 0.431±0.005 0.740±0.021 0.856±0.011 0.335±0.009 0.684±0.004 0.690±0.008 0.763±0.010 0.738±0.007 0.631±0.012

RAKEL 0.323±0.006 0.713±0.017 0.782±0.017 0.228±0.012 0.661±0.005 0.670±0.008 0.713±0.011 0.697±0.006 0.529±0.009

Comparing Macro-averaging F1 ↑
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.171±0.007 0.642±0.009 0.419±0.049 0.128±0.032 0.565±0.015 0.586±0.014 0.664±0.031 0.409±0.013 0.324±0.047

BR 0.172±0.003 0.564±0.022 0.422±0.032 0.110±0.022 0.454±0.005 0.473±0.006 0.541±0.011 0.392±0.006 0.290±0.011
CLR 0.108±0.037 0.575±0.018 0.175±0.048 0.105±0.032 0.481±0.007 0.472±0.007 0.581±0.008 0.398±0.008 0.104±0.003
ECC 0.116±0.005 0.557±0.022 0.464±0.039 0.121±0.026 0.455±0.007 0.473±0.012 0.575±0.015 0.393±0.006 0.399±0.012

RAKEL 0.174±0.004 0.569±0.021 0.443±0.040 0.119±0.020 0.435±0.010 0.486±0.011 0.556±0.014 0.420±0.006 0.346±0.009

Comparing Micro-averaging F1 ↑
algorithm cal500 emotions medical llog msra image scene yeast slashdot
RELIAB 0.468±0.006 0.642±0.008 0.695±0.013 0.182±0.014 0.683±0.012 0.577±0.016 0.644±0.029 0.637±0.004 0.430±0.010

BR 0.331±0.004 0.574±0.023 0.643±0.028 0.130±0.007 0.546±0.005 0.474±0.006 0.536±0.010 0.613±0.006 0.281±0.012
CLR 0.286±0.084 0.581±0.018 0.270±0.136 0.101±0.043 0.604±0.006 0.472±0.007 0.568±0.007 0.610±0.006 0.011±0.002
ECC 0.353±0.005 0.566±0.024 0.751±0.017 0.149±0.015 0.575±0.003 0.472±0.012 0.568±0.014 0.617±0.006 0.480±0.015

RAKEL 0.353±0.007 0.576±0.020 0.689±0.022 0.148±0.010 0.576±0.006 0.486±0.012 0.546±0.012 0.613±0.007 0.378±0.012

and the corresponding critical values on each evaluation
metric. As shown in Table VI, at 0.05 significance level, the
null hypothesis of indistinguishable performance among the
comparing algorithms is clearly rejected on each evaluation
metric. Consequently, Bonferroni-Dunn test [6] is employed
as the post-hoc test to show the relative performance among
the comparing algorithms, where RELIAB is treated as the
control algorithm. Here, the average rank difference between
RELIAB and one comparing algorithm is calibrated with
the critical difference (CD). Accordingly, the performance
between RELIAB and one comparing algorithm is deemed
to be significantly different if their average ranks differ by
at least one CD (CD=1.3547 in this paper: # comparing
algorithms k = 5, # data sets N = 17).

Fig. 2 illustrates the CD diagrams [6] on each evaluation
metric, where the average rank of each comparing algorithm
is marked along the axis (lower ranks to the right). In each
subfigure, any comparing algorithm whose average rank is
within one CD to that of RELIAB is interconnected to each

Table VI
SUMMARY OF THE FRIEDMAN STATISTICS FF IN TERMS OF EACH

EVALUATION METRIC AND THE CRITICAL VALUE AT 0.05 SIGNIFICANCE
LEVEL (# COMPARING ALGORITHMS k = 5, # DATA SETS N = 17).

Evaluation metric FF critical value
One-error 25.3600

2.5153

Coverage 21.1110
Ranking loss 22.0890
Average precision 18.8190
Macro-averaging F1 6.9365
Micro-averaging F1 11.1360

other with a thick line. Otherwise, it is considered to have
significantly different performance against RELIAB.

Based on the above experimental results, the following
observations can be apparently made:

1) On regular-scale data sets (Table IV), across all the
evaluation metrics, RELIAB ranks 1st in 83.3% cases
and ranks 2nd in 11.1% cases; On large-scale data sets



Table V
PREDICTIVE PERFORMANCE OF EACH COMPARING ALGORITHM (MEAN±STD. DEVIATION) ON THE EIGHT LARGE-SCALE DATA SETS.

Comparing One-error ↓
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.795±0.009 0.510±0.005 0.479±0.006 0.487±0.007 0.466±0.008 0.467±0.012 0.418±0.007 0.192±0.007

BR 0.921±0.004 0.736±0.006 0.758±0.008 0.755±0.003 0.737±0.010 0.763±0.008 0.880±0.004 0.185±0.004
CLR 0.748±0.011 0.503±0.006 0.549±0.006 0.549±0.025 0.584±0.076 0.678±0.092 0.514±0.003 0.147±0.002
ECC 0.911±0.004 0.490±0.005 0.515±0.007 0.512±0.006 0.485±0.004 0.495±0.005 0.907±0.003 0.158±0.002

RAKEL 0.867±0.004 0.626±0.008 0.622±0.008 0.637±0.008 0.618±0.010 0.614±0.013 0.779±0.015 0.200±0.003

Comparing Coverage ↓
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.342±0.008 0.158±0.002 0.128±0.004 0.130±0.004 0.118±0.005 0.123±0.004 0.113±0.003 0.198±0.002

BR 0.757±0.007 0.411±0.004 0.377±0.006 0.366±0.003 0.314±0.005 0.366±0.004 0.434±0.007 0.136±0.001
CLR 0.311±0.011 0.123±0.002 0.122±0.004 0.130±0.018 0.152±0.044 0.204±0.041 0.136±0.002 0.127±0.001
ECC 0.889±0.004 0.176±0.002 0.168±0.006 0.166±0.003 0.148±0.003 0.160±0.004 0.460±0.006 0.132±0.001

RAKEL 0.855±0.005 0.457±0.011 0.387±0.009 0.370±0.005 0.354±0.009 0.380±0.010 0.401±0.008 0.503±0.001

Comparing Ranking loss ↓
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.152±0.005 0.069±0.001 0.054±0.002 0.055±0.002 0.050±0.002 0.051±0.001 0.063±0.002 0.058±0.001

BR 0.416±0.006 0.214±0.002 0.213±0.004 0.207±0.002 0.169±0.004 0.204±0.004 0.280±0.002 0.036±0.001
CLR 0.147±0.007 0.052±0.001 0.055±0.002 0.063±0.015 0.083±0.037 0.125±0.035 0.080±0.002 0.033±0.001
ECC 0.600±0.005 0.079±0.00 0.079±0.003 0.078±0.002 0.070±0.001 0.074±0.002 0.307±0.006 0.036±0.001

RAKEL 0.547±0.004 0.245±0.008 0.225±0.007 0.216±0.003 0.204±0.007 0.220±0.005 0.250±0.006 0.190±0.001

Comparing Average precision ↑
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.221±0.007 0.532±0.003 0.583±0.006 0.583±0.005 0.607±0.002 0.589±0.007 0.562±0.003 0.676±0.003

BR 0.122±0.003 0.334±0.003 0.340±0.008 0.340±0.002 0.372±0.007 0.342±0.007 0.186±0.005 0.738±0.001
CLR 0.222±0.007 0.555±0.004 0.542±0.004 0.527±0.040 0.459±0.013 0.312±0.014 0.469±0.002 0.758±0.001
ECC 0.093±0.004 0.528±0.004 0.536±0.004 0.538±0.005 0.565±0.001 0.547±0.004 0.151±0.004 0.750±0.001

RAKEL 0.125±0.002 0.371±0.005 0.401±0.006 0.398±0.004 0.425±0.006 0.405±0.003 0.249±0.007 0.573±0.001

Comparing Macro-averaging F1 ↑
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.089±0.008 0.253±0.003 0.260±0.009 0.266±0.021 0.258±0.015 0.271±0.006 0.300±0.009 0.053±0.001

BR 0.073±0.006 0.187±0.004 0.167±0.006 0.171±0.008 0.170±0.006 0.167±0.004 0.127±0.003 0.197±0.003
CLR 0.074±0.012 0.233±0.008 0.221±0.006 0.213±0.032 0.157±0.073 0.088±0.079 0.247±0.003 0.171±0.002
ECC 0.062±0.009 0.198±0.009 0.174±0.004 0.174±0.015 0.185±0.013 0.184±0.009 0.101±0.002 0.163±0.002

RAKEL 0.079±0.007 0.194±0.007 0.174±0.005 0.174±0.005 0.180±0.009 0.188±0.003 0.177±0.007 0.206±0.002
Comparing Micro-averaging F1 ↑
algorithm corel5k rcv1-s1 rcv1-s2 rcv1-s3 rcv1-s4 rcv1-s5 bibtex mediamill
RELIAB 0.178±0.008 0.428±0.012 0.459±0.007 0.449±0.010 0.472±0.005 0.462±0.007 0.378±0.015 0.502±0.005

BR 0.120±0.002 0.291±0.002 0.282±0.005 0.279±0.002 0.298±0.002 0.289±0.005 0.128±0.003 0.576±0.001
CLR 0.113±0.023 0.392±0.005 0.365±0.004 0.358±0.027 0.305±0.010 0.182±0.121 0.260±0.003 0.585±0.001
ECC 0.102±0.005 0.359±0.005 0.338±0.006 0.337±0.006 0.368±0.002 0.364±0.009 0.102±0.003 0.568±0.001

RAKEL 0.134±0.003 0.311±0.002 0.309±0.003 0.306±0.005 0.326±0.004 0.320±0.005 0.174±0.007 0.576±0.001

(Table V), across all the evaluation metrics, RELIAB
ranks 1st in 68.7% cases and ranks 2nd in 16.7%
cases.

2) RELIAB achieves optimal (lowest) average rank in
terms of each evaluation metric (Fig. 2(a)-(f)). Fur-
thermore, RELIAB significantly outperforms BR on all
the evaluation metrics.

3) RELIAB is comparable to RAKEL in terms of macro-
averaging F1 (Fig. 2(e)), comparable to CLR in terms
of coverage (Fig. 2(b)) and ranking loss (Fig, 2(c)),
and significantly outperforms RAKEL and CLR on all
the other cases. The comparable performance between
RELIAB and CLR on ranking loss is also noticeable,
as CLR is designed to learn from multi-label data by
optimizing this particular evaluation metric [8], [30].

4) RELIAB is comparable to ECC in terms of example-
based evaluation metrics (Fig. 2(a)-(d)), and signif-
icantly outperforms ECC in terms of label-based e-
valuation metrics (Fig. 2(e)-(f)). It is worth noting

that ensemble learning techniques has been utilized
by ECC to improve generalization, and the number of
base learners employed by ECC is M -times larger than
those employed by RELIAB (as specified in Subsection
IV-B2, ensemble size M for ECC is set to be 30 in
this paper).

To summarize, RELIAB achieves rather competitive per-
formance against the well-established multi-label learning
algorithms across extensive benchmark data sets and diverse
evaluation metrics, which validate the effectiveness of lever-
aging implicit RLI information to learn from multi-label
data.

D. Further Analysis

In this subsection, one variant of RELIAB is implemented
to further analyze certain properties of the proposed ap-
proach. As shown in Subsection II-B, the parametric model
is learned by fitting the estimated labeling-importance as
regularized with multi-label empirical loss. To show the
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Figure 2. Comparison of RELIAB (control algorithm) against other comparing algorithms with the Bonferroni-Dunn test. Algorithms not connected with
RELIAB in the CD diagram are considered to have significantly different performance from the control algorithm (CD=1.3547 at 0.05 significance level).

Table VII
WILCOXON SIGNED-RANKS TEST FOR RELIAB AGAINST ITS VARIANT
RELIAB-NONREG IN TERMS OF EACH EVALUATION METRIC (AT 0.05

SIGNIFICANCE LEVEL; p-VALUES SHOWN IN THE BRACKETS).

Evaluation metric RELIAB against RELIAB-nonReg
One-error win [p=1.00e-3]
Coverage tie [p=2.10e-1]
Ranking loss win [p=9.13e-3]
Average precision win [p=1.91e-2]
Macro-averaging F1 tie [p=6.19e-1]
Micro-averaging F1 tie [p=6.87e-1]

helpfulness of regularization, another variant of RELIAB is
designed by dropping the regularization term Vemp(f,D)
(Eq.(11)) from the objective function of RELIAB. Thereafter,
the resulting variant is denoted as RELIAB-nonREG.

Accordingly, the performance of RELIAB-nonREG is e-
valuated following the same protocol of Subsection IV-B3.
Due to space limit, detailed experimental results of the
variant are not reported here. Nonetheless, to show whether
RELIAB performs significantly better than its variant, the
Wilcoxon signed-ranks test [6], [26] is used here which
is a desirable statistical test for comparisons between two
algorithms over a number of data sets. Table VII summarizes
the statistical test results at 0.05 significance level, where the
p-values for the corresponding tests are also shown in the
brackets.

As shown in Table VII, RELIAB achieves comparable
performance against RELIAB-nREG on Coverage, Macro-
averaging F1 and Micro-averaging F1, while significant-
ly outperforms RELIAB-nREG on all the other evaluation
metrics. These results indicate that the regularization term
based on multi-label empirical loss does help induce robust
parametric models. Actually, the implicit RLI information
exploited in the first objective term Vdis(f,U) (Eq.(11)) are
only estimations instead of being ground-truth values. In this
case, optimizing objective function without necessary regu-
larization is prone to produce unstable prediction models.

V. CONCLUSION

In this paper, the problem of multi-label learning is
addressed by taking into account the fact that the relative
labeling-importance is different for each label associated
with the multi-label data. Accordingly, a novel multi-label
learning approach named RELIAB is proposed, which works
by leveraging the implicit RLI information derived from
the training examples for model induction. Extensive com-
parative studies clearly validate the superiority of RELIAB
against state-of-the-art multi-label learning approaches. In
the future, we will explore if there exist better ways to
estimate and make use of the implicit RLI information.
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