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Abstract

In multi-instance learning, each example is represented by
a bag of instances while associated with a binary label. Un-
der standard multi-instance learning settings, one example
is labeled as a positive bag if at least one of its instances is
positive. Otherwise, it is labeled as a negative bag. Although
based on the above assumption, standard multi-instance
learning has achieved much success in solving diverse
learning tasks, there are still many real-world problems
where this assumption may not necessarily hold. Therefore,
researchers aimed to expand the underlying assumption of
standard multi-instance learning where two frameworks of
generalized multi-instance learning have been proposed. In
this paper, the problem definition, learning algorithms and
also experimental data sets related to either generalized
multi-instance learning framework are briefly reviewed.

1. Introduction

In their investigation of drug activity prediction problem,
Dietterich et al. [7] initialized the framework of multi-
instance learning. In this learning framework, each example
is represented by a bag comprising multiple instances and
associated with one binary label. The task of multi-instance
learning is trying to correctly predict the labels of unseen
bags through learning from training bags with known labels.
In standard settings of multi-instance learning, it is assumed
that one bag is labeled positively if and only if at least one
instance contained in the bag is positive. Otherwise, the bag
is labeled negatively.

Many real-world problems can be appropriately modeled
under multi-instance learning. For example, in drug activity
prediction [7], each molecule may exhibit a number of
low-energy (stable) conformations each can be represented
by an instance; In content-based image categorization [5],
[16] or retrieval [28], [32], each image usually contains
several naturally disjoint regions each can be regarded as
an instance; In text applications [2], [34], each document or
web page generally encompasses some paragraphs or links
each can be expressed as an instance.

Although multi-instance learning has achieved consider-
able success in solving a wide range of learning tasks,

the basic assumption that the qualification of a bag being
positive totally relies on the existence of one key (i.e. pos-
itive) instance may not hold in many real-world cases. For
instance, an image being labeled as Arctic is not attributed
to the sole existence of either a bear patch or an ice
patch, but actually attributed to joint effects of both image
patches. Therefore, researchers have proposed two different
generalized multi-instance learning frameworks [20], [26]
respectively to accommodate more sophisticated interactions
among instances in the bag. In this paper, related works on
generalized multi-instance learning are briefly reviewed.

The rest of this paper is organized as follows. In Section
2, the formal definition and the state-of-the-art of multi-
instance learning are given. In Sections 3 and 4, the formal
definition, learning algorithms and benchmark data sets of
either generalized multi-instance learning framework are
reviewed respectively. Finally in Section 5, the paper is
concluded and some future works are raised.

2. Multi-Instance Learning

Let X be the input space and ) = {0,1} be the
binary output space. In traditional supervised learning,
the task is to learn a function f : X — ) from a
set of training instances {(x1,y1), (X2,Y2), s (Tm, Ym) }»
where ©; € X is a single instance and y; € Y is
the label associated with ;. In multi-instance learning
[71 however, the training set is composed of m labeled
bags {(X1,v1), (X2,92), -, (Xm,ym)}, where X; =
{x;1,®i2,...,&in, } is a bag of n; instances and y; is the
binary label associated with X;. The task of multi-instance
learning is to learn a function fyr, : 2%Y — Y from the
given multi-instance training set.

Following the seminal work of Dietterich et al. [7],
multi-instance learning has been extensively studied by
the machine learning community. Theoretically, the PAC-
learnability of multi-instance learning algorithms, especially
the APR (Axis-Parallel Rectangles) approach proposed by
Dietterich et al. [7], are thoroughly investigated [3], [4], [14].
Researchers have also proposed numerous multi-instance
learning algorithms by adapting traditional supervised learn-
ing approaches, e.g. Diverse Density [15], Citation-kNN



[25], Relic [19], EM-DD [31], ID3-MI [6], RBF-MIP [29],
MI-SVM [2], and MIBoosting [27], etc.

Multi-instance learning techniques have been successfully
applied to a number of real-world problems such as CBIR
[10], [28], [32], scene analysis [5], [16], computer security
[19], and web mining [34], etc. Besides standard multi-
instance classification problems, multi-instance learning has
also been investigated under various learning scenarios, such
as multi-instance regression [8], [18], semi-supervised multi-
instance learning [17], multi-instance ensembles [27], [35],
multi-instance learning aided relational learning [1], and
multi-instance multi-label learning [36], etc. Comprehensive
reviews on multi-instance learning can be found in [33].

In the above-mentioned standard multi-instance learning,
the basic assumption is that one example, i.e. a bag of in-
stances, is regarded to be positive if and only if it contains ar
least one positive instance. In other words, there is always an
instance-level target concept ¢ : X — {0,1} governing any
standard multi-instance learning problem. Firstly, the multi-
instance learner usually attempts to induce c by learning a
classifier ¢’ from {(X1,y1), (X2,92), -, (X, ym)}. After
that, the label for unseen bag X is predicted as fyn(X) =
arg maxgzex ¢ (). As shown in Section 1, the basic multi-
instance notion based on the existence of key instance may
not necessarily hold in some real-world learning problems.
In the next section, we will briefly review related works
on generalized multi-instance learning frameworks where
more complex and sophisticated underlying assumptions are
adopted for multi-instance learning.

3. Generalized Multi-Instance Learning: the
First Scenario

3.1. Problem Definition

The first type of generalized multi-instance learning was
proposed by Weidmann et al. [26]. Specifically, they defined
three different kinds of generalized multi-instance concepts,
i.e. presence-based multi-instance learning, threshold-based
multi-instance learning, and count-based multi-instance
learning. In any of the generalized multi-instance problems,
it is assumed that a set of r instance-level concepts C' =
{c1,¢2,...,¢0} (¢;: X — {0,1}) will govern the labeling
process of multi-instance bags. The essential differences
among those generalized multi-instance problems arise in
how the set of underlying concepts in C' are combined to
determine the label of each example.

Let A(X, ¢) be the number of instances in bag X which
correspond to concept c. For presence-based multi-instance
learning, the learned multi-instance classifier fpp_wmirL
2% — {0,1} predicts the label of unseen bag X as follows:

fep_wmin(X) = argmini<i<,[A(X,¢;) > 1] (1)

Here, [r] returns 1 if predicate 7 holds, and O otherwise.
In presence-based multi-instance learning, X is labeled to
be positive if it contains at least one instance for each
concept. For instance, an image labeled as Africa rather than
Australia may be attributed to the co-existence of image
patches describing grassland, lions and hutch.

For threshold-based multi-instance learning, the learned
multi-instance classifier frg_ wir, : 2% {0,1} predicts
the label of unseen bag X as follows:

fre_MmiL(X) = argmini<;<,[A(X, ;) > t;] (2

Here t; € N represents the lower bound for concept ¢;. In
threshold-based multi-instance learning, X is labeled to be
positive if it contains at least a certain number of instances
for each concept. For instance, a video snapshot labeled as
sporting match rather than training session may be attributed
to the existence of some athletes, several referees and also
a group of spectators.

For count-based multi-instance learning, the learned
multi-instance classifier fcp_wmir, : 2% {0,1} predicts
the label of unseen bag X as follows:

fep miL(X) = argmini<i<, [t; < A(X,¢) <z] (3)

Here z; € N represents the upper bound for concept c;.
In count-based multi-instance learning, X is labeled to be
positive if it contains at least a minimum number of instances
as well as at most a maximum number of instances for
each concept. For instance, a molecule labeled as ethanol
rather than carbinol may be attributed to the existence of
two carbon atoms, one oxygen atom and also six hydrogen
atoms (assuming that ¢; = z; for all ¢; € C).

3.2. Learning Algorithms

Weidmann et al. [26] proposed the two-level classification
approach (named as TLC in this paper) to deal with their
proposed generalized multi-instance learning problems. The
basic idea of TLC is trying to identify the underlying
instance-level concepts in the first level, where each bag
of instances is re-represented by a meta-instance whose
features encode the relationships between instances in the
bag and the identified underlying concepts. After that, those
newly created meta-instances (along with labels of the
generating bags) are fed to a second-level classifier in hope
of inducing a function capturing the interactions between
meta-instance and bag’s label.

Concretely, given the multi-instance training set
{(leyl); (X27y2)7 Ty (vaym)}a let N = 27;1 ‘X1|
denote the total number of instances contained in all
bags. In the first level of TLC, each instance in X; is
assigned with label y; and weight ﬁ . % such that bags of
different size share the same weight of % Then a decision
tree is built on all the labeled (weighted) instances using



splitting criterion of information gain. Each leaf node of
the induced decision tree is supposed to be related to a
certain underlying concept. Therefore, the bag of instances
X can be re-represented by a meta-instance each of its
features encodes how many instances in X have fallen into
a specific leaf node. In the second level, TLC employs
the Logit-boosted decision stump [9] to learn from those
meta-instances to discover the mappings from feature values
to bag’s class label, i.e. how the bag’s label can be inferred
from all the underlying concepts (presence-, threshold-, or
count-based).

3.3. Data Sets

Weidmann et al. [26] have generated artificial data sets for
each kind of their proposed generalized multi-instance learn-
ing problems to test the effectiveness of TLC. For any of
the three different problems, |C| underlying concepts were
considered. The input space X = {0, 1} corresponds to bit-
strings of length [. Each underlying concept corresponds to
a matching template with first [, bits fixed, i.e. an instance is
a member of some concept c* if and only if its first [, binary
attributes are identical to the specified matching template for
c*.

For presence-based multi-instance learning, a positive bag
is formed by generating a number of instances (varying from
1 to 10) of each concept ¢; and also a number of random
instances (varying from 10|C| to 10|C| + 10). The negative
bag is formed by replacing all instances of some concept
c* by random instances. The minimal and maximal bag size
in presence-based data set are |C| 4+ 10|C| and 20|C| + 10
respectively. For threshold-based multi-instance learning, a
positive bag is formed by generating a number of instances
(varying from ¢; to 10) of each concept ¢;. The negative bag
is formed by replacing at least A(X, c¢*) — ¢* + 1 instances
of some concept c* by random instances. The minimal and
maximal bag size in threshold-based data set are ), ¢; +
10|C| and 20|C| + 10 respectively. For count-based multi-
instance learning, the lower bound ¢; and upper bound z; are
set to be equal and a positive bag is formed by generating a
specific number of instances (i.e. z;) of each concept ¢;. The
negative bag is formed by either increasing or decreasing the
required number z* of some concept ¢* (10—z* increment or
z; decrement at most). The minimal and maximal bag size in
count-based data set are ) . 2,4+10|C| and ) _, z;+10|C|+10
respectively.

4. Generalized Multi-Instance Learning: the
Second Scenario

4.1. Problem Definition

In addition to the work of Weidmann et al. [26], Scott et
al. [20] also studied the problem of generalizing standard

multi-instance learning scenario. They defined another type
of generalized multi-instance learning framework where
the underlying concepts are related to two sets of points.
Concretely, there are a set of k attraction points P =
{p1,p2,---,pk} as well as a set of k' repulsion points
Q ={q1,42,-.-,q} in the input space.

They assume that for a bag X to be labeled positively it
is equivalent to find a subset of r points Cx C P|JQ with
the following properties: each attraction point p € Cx is
near some instance in X and each repulsion point ¢ € Cx
is far from any instance of X. Therefore, the attraction
and repulsion points actually act as the underlying concepts
which are desirable or undesirable to be present'. For
instance, an image labeled as forests rather than desert may
be attributed to the existence of trees, flowers or birds as
well as the non-existence of rocks, sands and camel.

4.2. Learning Algorithms

A series of learning algorithms have been proposed to
handling the above generalized multi-instance learning prob-
lem, such as GMIL-1 [20], GMIL-2 [21], kr [22] and
kmin [23]. GMIL-1 [20] assumes a discretized d-dimensional
input space X = {0,1,...,s}% All the possible axis-
parallel boxes in X (including degenerated ones) are enu-
merated (denoted as By with |By| = (SQZ)d), each of
which characterizes a possible underlying concept which
is required to be present or not. Based on those boxes, a
bag X can be mapped into a 2|Bx|-dimensional boolean
vector ¢(X). Specifically, for each box b € By, two
boolean features a, and @, are created for ¢(X) with
ap = arg maxgcx b covers x| and @, = 1 — ap.

With regard to the definition given in Subsection 4.1,
the target function of Scott et al. [20]’s generalized multi-
instance learning can therefore be expressed as an 7-of-
(k + k') threshold function over features a; (with box b
characterizing certain concept in P) together with features
@y (with box b characterizing certain concept in Q). For-
tunately, the task of finding such an r-of-(k + k') threshold
function in 2|By|-dimensional boolean space can be easily
fulfilled by the online-style algorithm Winnow [13]. After-
wards, Tao and Scott [21] proposed GMIL-2 which utilized
some heuristics to ameliorate the computational complexity
of GMIL-1 which is exponential in both log s and d.

To cope with the rather demanding computational require-
ments of both GMIL-1 and GMIL-2, Tao et al. [22] proposed
a kernel reformulation of previous algorithms. Firstly, given
two bags X and Z, they observed that calculating the dot-
product between their mapped vectors ¢(X) and ¢(Z) is
equivalent to count the number of boxes in B(X AZ), where

1. Note that although neither type of the generalized multi-instance
learning frameworks proposed in [26] and [20] is more expressive than
the other one, they do overlap under certain circumstances [22], [30].



each box in B(X A Z) covers at least one point from both
X and Z. They further proved that the above box counting
problem is #P-complete and thus can’t be precisely solved
in polynomial time. Therefore, they instead approximately
solved the box counting problem based on techniques from
Karp et al. [11], which aims to estimate (at arbitrarily
specified precision) the size of set B from the sizes of u
sets {B1,Ba,...,B,} with B = [J;_, B;. In their case,
B(XAZ) = Uzex ez B{z}A{z}). With the dot-product
(p(X), (7)) approximated by the above techniques, Tao
et al. [22] then implemented a kernel reformulation named
kx for the generalized multi-instance problem proposed by
Scott et al. [20]. Later, this kernel is further revised to ki,
in light of Weidmann et al. [26]’s count-based generalized
multi-instance problems.

4.3. Data Sets

Scott et al. [20] and Tao et al. [21], [22], [23] tested
their algorithms on three different data sets, i.e. the im-
age data, the protein superfamily identification data®> and
the multi-site drug binding affinity data. The image data
corresponds to two CBIR tasks: one is a single concept
task of distinguishing images containing sunsets from those
not containing sunsets, another is a conjunctive concept
task of distinguishing images containing a field with no
sky from those containing both field and sky or containing
no field. Images are represented as bags of 5-dimensional
instances based on Zhang et al. [32]’s image bag generator.
For single concept task, 30 different data sets are created
each containing 120 positive bags and 600 negative bags;
For conjunctive concept task, around 25 positive bags as well
as 30 negative bags comprise the training set and around 50
positive bags as well as 670 negative bags comprise the test
set.

The protein superfamily identification data was initially
used by Wang et al. [24] in their investigation of identifying
new Trx-fold (Thioredoxin-fold) proteins based on each
protein’s primary sequence. Given the primary sequence
of each protein, all the motifs in the sequence (typically
of the from CxxC known to exist in Trx-fold protein) are
identified. Eight numeric properties [12] extracted from the
enclosing window of size 204 around each motif (20 residues
upstream, 180 downstream) are served as instances in the
bag. The resultant data set contains 180 bags with 20 labeled
as positive and 160 labeled as negative.

The multi-site drug binding affinity data is an extension of
the synthetic standard multi-instance data studied by Dooly
et al. [8]. Here, a molecule is regarded to be positive if it
could bind to multiple sub-target receptors simultaneously.
Artificially, a set of sub-target points 1" are generated and a
bag X is labeled positively if for each sub-target point ¢ € T,

2. http://cse.unl.edu/"qtao/datasets/mil_dataset__Trx_protein.html.

there is at least one instance z; in X whose normalized
binding energy [8], [30] with ¢ is greater than 1/2. Scott et
al. [20] generated ten 5-dimensional data sets each with 4
sub-targets and 200 bags in either training or test set. Tao
et al. [22] further generated ten 10 and 20-dimensional data
sets each with 5 sub-targets and 200 bags in both training
and test sets.

5. Conclusion

This paper aims to succinctly while informatively review
one of the important progress in multi-instance learning, i.e.
two formalizations of generalized multi-instance learning.
The problem definition, learning algorithms as well as exper-
imental data sets of either framework are briefly introduced.
Designing algorithms able to deal with both generalized
multi-instance learning problems and applying them to more
real-world tasks would be interesting future works.
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