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Abstract Multi-label learning deals with the problem
where each example is represented by a single instance while
associated with multiple class labels simultaneously. Bina-
ry relevance is arguably the most intuitive solution to learn
from multi-label examples, which works by decomposing the
multi-label learning task into a number of independent bina-
ry learning tasks (one per class label). In view of its poten-
tial weakness of ignoring correlations among labels, many
correlation-enabling extensions to binary relevance have been
proposed in the past decade or so. In this paper, we aim to
review the state-of-the-art of binary relevance from three as-
pects. Firstly, basic settings of multi-label learning and the
binary relevance solution are briefly summarized. Secondly,
representative strategies to endow binary relevance with the
ability of label correlation exploitation are discussed. Third-
ly, some of our recent studies on binary relevance towards
issues other than label correlation exploitation are also in-
troduced. As a conclusion, suggestions on future research
directions are outlined.

Keywords Machine learning, multi-label learning, bina-
ry relevance, label correlation, class-imbalance, relative
labeling-importance

1 Introduction

Multi-label learning is one of the popular learning frame-
works to model real-world objects with multiple semantic
meanings [1, 2]. For instance, in text categorization, a news
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document on government reform can cover multiple topics
such as politics, economics, and society [3]; in image classi-
fication, a natural scene image can depict multiple sceneries
such as sky, sand, sea and yacht [4]. Generally, multi-label
objects widely exist in real-world applications including in-
formation retrieval [5], bioinformatics [6], multimedia con-
tent annotation [7], web mining [8], etc.

The goal of multi-label learning is to induce a multi-label
predictor which can assign a set of relevant labels for the un-
seen instance. To achieve this, the most intuitive solution is
to learn one binary classifier for each class label, where the
relevancy of each class label for the unseen instance is deter-
mined by the prediction yielded by the corresponding binary
classifier [9]. Specifically, this binary relevance procedure
works in an independent manner where the binary classifier
for each class label is learned by ignoring the co-existence
of other class labels. Due to its conceptual simplicity, binary
relevance has attracted considerable attentions in multi-label
learning researches.1)

Nonetheless, a consensus assumption on multi-label learn-
ing lies in that the correlations among labels should be well
exploited in order to build multi-label prediction models with
strong generalization performance [1, 2, 10, 11]. The decom-
position nature of binary relevance leads to its incapability in
exploiting label correlations, and therefore many correlation-
enabling extensions to binary relevance have been proposed
in the past decade or so [12–29]. Generally, representative
strategies to endow binary relevance with the ability of label
correlation exploitation include the chaining structure assum-
ing random label correlations, the stacking structure assum-

1) According to Google Scholar (by June 2017), the seminal work on bi-
nary relevance [9] has received more than 1100 citations.
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ing full-order label correlations, and the controlling structure
assuming pruned label correlations.

Although label correlation plays an essential role to induce
effective multi-label learning models, recent studies show
that some inherent properties of multi-label learning should
be investigated as well in order to achieve strong general-
ization performance. On one hand, class labels in the label
space usually have imbalanced distributions, i.e. the number
of positive instances w.r.t. each class label is far less than its
negative counterparts [30–39]. On the other hand, class labels
in the label space usually have different labeling-importance,
i.e. the importance degree of each class label in characteriz-
ing the semantics of multi-label example is relative to each
other [40–45]. Therefore, to enhance the generalization per-
formance of binary relevance models, it is also beneficial to
take those inherent properties into account along with label
correlation exploitation in the learning procedure.

In this paper, we aim to give an overview on the state-of-
the-art of binary relevance for multi-label learning. In Section
2, formal definitions on multi-label learning as well as the
canonical binary relevance solution are briefly summarized.
In Section 3, representative strategies to enable label correla-
tion exploitation for binary relevance are discussed. In Sec-
tion 4, some of our recent studies on related issues of binary
relevance are also introduced. Finally, Section 5 concludes by
suggesting several future research directions on binary rele-
vance.

2 Binary Relevance

Let X = Rd denote the d-dimensional instance space, and
Y = {λ1, λ2, . . . , λq} denote the label space consisting of q
class labels. Then, the goal of multi-label learning is to in-
duce a multi-label predictor f : X 7→ 2Y from the multi-label
training set D = {(xi, yi) | 1 ≤ i ≤ m}. Here, for each multi-
label training example (xi, yi), xi ∈ X is a d-dimensional
feature vector [xi

1, x
i
2, . . . , xi

d]⊤ and yi ∈ {−1,+1}q is a q-
bits binary vector [yi

1, y
i
2, . . . , y

i
q]⊤ with yi

j = +1 (−1) in-
dicating yi

j is a relevant (irrelevant) label for xi.2) Equiva-
lently, the set of relevant labels Y i ⊆ Y for xi corresponds
to Y i = {λ j | yi

j = +1, 1 ≤ j ≤ q}. Given an unseen
instance x∗ ∈ X, its relevant label set Y∗ is predicted as
Y∗ = f (x∗) ⊆ Y.

Binary relevance is arguably the most intuitive solution to
learn from multi-label training examples [1, 2], which de-

2) Without loss of generality, binary assignment of each class label is rep-
resented by +1 and -1 (other than 1 and 0) in this paper.

composes the multi-label learning problem into q indepen-
dent binary learning problems. Here, each binary classifica-
tion problem corresponds to one class label in the label space
Y [9]. Specifically, for each class label λ j, binary relevance
derives a binary training set D j from the original multi-label
training setD in the following way:

D j = {(xi, yi
j) | 1 ≤ i ≤ m} (1)

In other words, each multi-label training example (xi, yi) is
transformed into a binary training example based on its rele-
vancy to λ j.

After that, a binary classifier g j : X 7→ R can be induced
from D j by applying some binary learning algorithm B, i.e.
g j ←[ B(D j). Therefore, the multi-label training example
(xi, yi) will contribute to the learning process of all binary
classifiers g j (1 ≤ j ≤ q), where xi is utilized as positive
(negative) training example in inducing g j based on its rele-
vancy (irrelevancy) to λ j.3)

Given an unseen instance x∗, its relevant label set Y∗ is
determined by querying the outputs of each binary classifier:

Y∗ = {λ j | g j(x∗) > 0, 1 ≤ j ≤ q} (2)

As shown in Eq.(2), the predicted label set Y∗ would be empty
when all binary classifiers yield negative outputs on x∗. In
this case, one might choose the so-called T-Criterion [9] to
predict the class label with greatest (least negative) output.
Other criteria to aggregate the outputs of binary classifiers
can be found in [9].

Table 1 summarizes the pseudo-code of binary relevance.
As shown in Table 1, there are several properties which are
noteworthy for binary relevance:

• Firstly, the prominent property of binary relevance lies
in its conceptual simplicity. Specifically, binary rele-
vance is a first-order approach which builds the classi-
fication model in a label-by-label manner and thus ig-
nores the co-existence of other class labels. The model-
ing complexity of binary relevance is linear to the num-
ber of class labels (i.e. q) in the label space;

• Secondly, binary relevance falls into the category of
problem transformation approaches, which solve multi-
label learning problem by transforming it into other
well-established learning scenarios (binary classifica-
tion in this case) [1,2]. Accordingly, binary relevance is
not restricted to particular learning techniques and can
be instantiated with any binary learning algorithm with
diverse characteristics;

3) In the seminal literature on binary relevance [9], this training procedure
is also termed as cross-training.
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Table 1 The pseudo-code of binary relevance [9].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
B: the binary learning algorithm
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: for j = 1 to q do
2: Derive the binary training setD j according to Eq.(1);
3: Induce the binary classifier g j :←[ B(D j);
4: end for
5: return Y∗ = {λ j | g j(x∗) > 0, 1 ≤ j ≤ q}

• Thirdly, binary relevance optimizes the macro-averaged
label-based multi-label evaluation metrics, which eval-
uate the learning system’s performance on each class la-
bel separately and then return the mean value across all
class labels. Therefore, the actual multi-label metric be-
ing optimized depends on the binary loss which is mini-
mized by the binary learning algorithm B [46, 47];

• Fourthly, binary relevance can be easily adapted to learn
from multi-label examples with missing labels, where
the labeling information for training examples are in-
complete due to factors such as high labeling cost, care-
lessness of human labelers, etc. [48–50]. To accommo-
date this situation, binary relevance can derive the binary
training set in Eq.(1) by simply excluding those exam-
ples whose labeling information yi

j is not available.

3 Correlation-Enabling Extensions

As discussed in Section 2, binary relevance has been widely-
used for multi-label modeling due to its simplicity and other
attractive properties. Nonetheless, one potential weakness of
binary relevance lies in its ignorance of exploiting label cor-
relations to improve the learning system’s generalization per-
formance [1, 2]. Therefore, a natural consideration is trying
to endow binary relevance with the ability of label correla-
tion exploitation while at the same time still retain its linear
modeling complexity w.r.t. the number of class labels.

In light of the above consideration, significant number of
correlation-enabling extensions have been proposed follow-

ing the seminal work on binary relevance. In the following,
three representative extension strategies are discussed respec-
tively, including the chaining structure assuming random la-
bel correlations [12–18], the stacking structure assuming full-
order label correlations [19–23], and the controlling structure
assuming pruned label correlations [24–29].

3.1 Binary Relevance with Chaining Structure

In the chaining structure, a total of q binary classifiers are
induced according to a chaining order specified over the class
labels. Specifically, one binary classifier is built for each class
label based on the predictions of preceding classifiers in the
chain [12, 14].

Given the label space Y = {λ1, λ2, . . . , λq}, let π :
{1, 2, . . . , q} 7→ {1, 2, . . . , q} be the permutation used to speci-
fy a chaining order over all the class labels, i.e. λπ(1) ≻ λπ(2) ≻
· · · ≻ λπ(q). Thereafter, for the j-th class label λπ( j) in the
ordered list, the classifier chain approach [12, 14] works by
deriving a corresponding binary training set Dπ( j) from D in
the following way:

Dπ( j) =
{([

xi, yi
π(1), . . . , y

i
π( j−1)

]
, yi
π( j)

) ∣∣∣∣ 1 ≤ i ≤ m
}

(3)

Here, the binary assignments of preceding class labels in the
chain, i.e.

[
yi
π(1), . . . , y

i
π( j−1)

]
, are treated as extra features to

append the original instance xi.
After that, a binary classifier gπ( j) : X × {−1,+1} j−1 7→ R

can be induced from Dπ( j) by applying some binary learn-
ing algorithm B, i.e. gπ( j) ← [ B(Dπ( j)). In other words, gπ( j)

determines the relevancy of λπ( j) through exploiting its corre-
lations with preceding labels λπ(1), . . . , λπ( j−1) in the chain.

Given an unseen instance x∗, its relevant label set Y∗ is
determined by iteratively querying the outputs of each binary
classifier along the chaining order. Let ηx∗

π( j) ∈ {−1,+1} de-
note the predicted binary assignment of λπ( j) on x∗, which are
recursively determined as follows:

ηx∗
π(1) = sign

[
gπ(1)(x∗)

]
ηx∗
π( j) = sign

[
gπ( j)

([
x∗, ηx∗

π(1), . . . , η
x∗
π( j−1)

])]
(4)

Here, sign[·] represents the signed function. Accordingly, the
relevant label set Y∗ turns out to be:

Y∗ =
{
λπ( j) | ηx∗

π( j) = +1, 1 ≤ j ≤ q
}

(5)

Table 2 summarizes the pseudo-code of classifier chain.
As shown in Table 2, classifier chain is a high-order ap-
proach which considers correlations among labels in a ran-
dom manner specified by the permutation π. To account for
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Table 2 The pseudo-code of classifier chain [12, 14].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
π: the permutation used to specify chaining order
B: the binary learning algorithm
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: for j = 1 to q do
2: Derive the binary training set Dπ( j) according to

Eq.(3);
3: Induce the binary classifier gπ( j) :← [ B(Dπ( j));
4: end for
5: Determine the binary assignments ηx∗

π( j) (1 ≤ j ≤ q) ac-
cording to Eq.(4);

6: return Y∗ =
{
λπ( j) | ηx∗

π( j) = +1, 1 ≤ j ≤ q
}

w.r.t. Eq.(4)

the randomness introduced by permutation ordering, an ef-
fective choice is to build an ensemble of classifier chains with
n random permutations {πr | 1 ≤ r ≤ n}. One classifier chain
can be learned according to each random permutation and the
outputs from all classifier chains are aggregated to yield the
final prediction [12, 14, 16].

It is also worth noting that predictive errors incurred in
preceding classifiers would be propagated to subsequent clas-
sifiers along the chain, and these undesirable influences be-
come more pronounced if error-prone class labels happen to
be placed at the starting chaining positions [12, 14, 28, 51].
Furthermore, in training phase the extra features used to ap-
pend input space X correspond to the ground-truth labeling
assignments (i.e. Eq.(3)), while in testing phase the extra
features used to append X correspond to predicted labeling
assignments (i.e. Eq.(4)). One way to rectify this discrepan-
cy is to replace the extra features

[
yi
π(1), . . . , y

i
π( j−1)

]
in Eq.(3)

with
[
ηxi

π(1), . . . , η
xi

π( j−1)

]
, so that the predicted labeling assign-

ments are used to append X in both the training and testing
phases [17, 51].

From statistical point of view, the task of multi-label learn-
ing is equivalent to learn the conditional distribution p(y | x)
with x ∈ X and y ∈ {−1,+1}q. Accordingly, p(y | x) can be
factorized w.r.t. the chaining order specified by π as follows:

p(y | x) =
q∏

j=1

p
(
yπ( j) | x, yπ(1), . . . , yπ( j−1)

)
(6)

Here, each term in the RHS of Eq.(6) represents the condi-
tional probability of observing yπ( j) given x and its preceding
labels in the chain. Specifically, this term can be estimated
by utilizing binary learning algorithm B which is capable of
yielding probabilistic outputs (e.g. Naive Bayes). Thereafter,
relevant label set for the unseen instance is predicted by per-
forming exact inference [13] or approximate inference (when
q is large) over the probabilistic classifier chain [15, 18].

3.2 Binary Relevance with Stacking Structure

In the stacking structure, a total of 2q binary classifiers are in-
duced by stacking a set of q meta-level binary relevance mod-
els over another set of q base-level binary relevance models.
Specifically, each meta-level binary classifier is built upon the
predictions of all base-level binary classifiers [19].

Following the notations in Section 2, let g j (1 ≤ j ≤ q)
denote the set of base-level classifiers learned by invoking
the standard binary relevance procedure on the multi-label
training set, i.e. g j ← [ B(D j). Thereafter, for each class label
λ j, the stacking aggregation approach [1, 19] derives a meta-
level binary training setDM

j in the following way:

DM
j ={([

xi, sign[g1(xi)], . . . , sign[gq(xi)]
]
, yi

j

)∣∣∣∣ 1 ≤ i ≤ m
}

(7)

Here, the signed prediction of base-level classifiers, i.e.[
sign[g1(xi)], . . . , sign[gq(xi)]

]
, are treated as extra features

to append the original instance xi in the meta-level.
After that, a meta-level classifier gM

j : X × {−1,+1}q 7→ R
can be induced from DM

j by applying some binary learning
algorithm B, i.e. gM

j ← [ B(DM
j ). In other words, gM

j deter-
mines the relevancy of λ j through exploiting its correlations
with all the class labels.

Given an unseen instance x∗, its relevant label set Y∗ is
determined by feeding the outputs of base-level classifiers as
extra inputs to the meta-level classifiers:

Y∗ =
{
λ j | gM

j (τx∗ ) > 0, 1 ≤ j ≤ q
}

where τx∗ =
[
x∗, sign[g1(x∗)], . . . , sign[gq(x∗)]

]
(8)

Table 3 summarizes the pseudo-code of stacking aggrega-
tion. As shown in Table 3, stacking aggregation is a full-order
approach which assumes that each class label has correlations
with all the other class labels. It is worth noting that stack-
ing aggregation employs ensemble learning [52] to combine
two sets of binary relevance models with deterministic label
correlation exploitation, while ensemble learning can also be
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Table 3 The pseudo-code of stacking aggregation [19].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
B: the binary learning algorithm
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: for j = 1 to q do
2: Derive the binary training setD j according to Eq.(1);
3: Induce the base-level binary classifier g j :←[ B(D j);
4: end for
5: for j = 1 to q do
6: Derive the binary training setDM

j according to Eq.(7);

7: Induce the meta-level binary classifier gM
j :← [ B(DM

j );
8: end for
9: return Y∗ =

{
λ j | gM

j (τx∗) > 0, 1 ≤ j ≤ q
}

w.r.t Eq.(8)

applied to classifier chain to account for its randomness of
label correlation exploitation.

Other than employing the outputs of base-level classifiers[
sign[g1(xi)], . . . , sign[gq(xi)]

]
to append the inputs of meta-

level classifiers, it is also feasible to employ the ground-truth
labeling assignments

[
yi

1, . . . , y
i
q

]
to instantiate the meta-level

binary training set (i.e. Eq.(7)) [21]. Nonetheless, similar
to the standard classifier chain approach, this practice would
also lead to the discrepancy issue regarding the extra features
used to append the input space X in the training and testing
phases.

There are also other ways to make use of the stacking strat-
egy to induce multi-label prediction model. Given the base-
level classifiers g j (1 ≤ j ≤ q) and the meta-level classifiers
gM

j (1 ≤ j ≤ q), other than only relying on meta-level classi-
fiers to yield final predictions (i.e. Eq(8)), one can also aggre-
gate the outputs of both base-level and meta-level classifiers
to accomplish the task [20]. Furthermore, other than using
the binary labeling assignments as extra features for stack-
ing, one can also adapt specific techniques to generate tai-
lored features for stacking such as discriminant analysis [22]
or rule learning [23].

3.3 Binary Relevance with Controlling Structure

In the controlling structure, a total of 2q binary classifiers are
induced based on some dependency structure specified over

(a) Examplar DAG structure I (b) Examplar DAG structure II

Fig. 1 Examples of two Bayesian network (DAG) structures with x serv-
ing as the common parent. The conditional distribution p(y | x) factorizes ac-
cording to either structure as: (a) p(y | x) = p(y1 | x)·p(y2 | y1, x)·p(y3 | y2, x)·
p(y4 | y3, x); (b) p(y | x) = p(y1 | x) · p(y2 | y1, x) · p(y3 | x) · p(y4 | y2, y3, x).

the class labels. Specifically, one binary classifier is built for
each class label by exploiting pruned predictions of q binary
relevance models [25].

Bayesian network (or directed acyclic graph, DAG) is a
convenient tool to explicity characterize correlations among
class labels in a compact way [25–27]. As mentioned in Sub-
section 3.1, a statistical equivalence to multi-label learning
corresponds to model the conditional distribution p(y | x)
with x ∈ X and y = {−1,+1}q. Given the Bayesian network
structure G specified over (x, y), the conditional distribution
p(y | x) can be factorized according to G as follows:

p(y | x) =
q∏

j=1

p(y j | pa j, x) (9)

Here, x serves as the common parent for each y j (1 ≤ j ≤ q)
as all class labels inherently depend on the feature space X.
In addition, pa j represents the set of parent class labels of y j

implied by G. Figure 1 illustrates two examples of how the
conditional distribution p(y | x) can be factorized according
to the given Bayesian network structure.

To learn the Bayesian network structure G from multi-
label training set D = {(xi, yi) | 1 ≤ i ≤ m} is difficult,
where existing Bayesian network learning techniques [53] are
not directly applicable due to two major reasons. On one
hand, variables in the Bayesian network have mixed types
with y (class labels) being discrete and x (feature vector) be-
ing continuous. On the other hand, computational complexi-
ty would be prohibitively high when the input dimensionality
(i.e. number of features) is too large.

Obviously, the above two issues are brought by the in-
volvement of feature vector x in learning the Bayesian net-
work structure. In light of this, the LEAD approach [25]
chooses to eliminate the effect of features to simplify the
Bayesian network generation procedure. Following the no-
tations in Section 2, let g j (1 ≤ j ≤ q) denote the binary
classifiers induced by standard binary relevance procedure,
i.e. g j ←[ B(D j). Accordingly, a set of error random vari-
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ables are derived so as to decouple the influences of x from
all class labels:

e j = y j − sign(g j(x)) (1 ≤ j ≤ q) (10)

Thereafter, the Bayesian network structure G among all
class labels (conditioned on x) can be learned from e j (1 ≤
j ≤ q) with off-the-shelf packages [54–56].

Based on the DAG structure implied by G, for each class
label λ j, the LEAD approach derives a binary training setDGj
fromD in the following way:

DGj =
{([

xi,pai
j

]
, yi

j

) ∣∣∣∣ 1 ≤ i ≤ m
}

(11)

Here, the binary assignments of parent class labels, i.e. pai
j,

are treated as extra features to append the original instance
xi.

After that, a binary classifier gGj : X × {−1,+1}|pa j | 7→ R
can be induced from DGj by applying some binary learning

algorithm B, i.e. gGj ←[ B(DGj ). In other words, gGj deter-
mines the relevancy of λ j through exploiting its correlations
with the parent class labels pa j implied by G.

Given an unseen instance x∗, its relevant label set Y∗ is
determined by iteratively querying the outputs of each bi-
nary classifier w.r.t. the Bayesian network structure. Let
πG : {1, 2, . . . , q} 7→ {1, 2, . . . , q} be the causal order implied
by G over all class labels, i.e. λπG(1) ≻ λπG(2) ≻ · · · λπG(q).
Furthermore, let ηx∗

πG( j) ∈ {−1,+1} denote the predicted binary
assignment of λπG( j) on x∗, which are recursively determined
as follows:

ηx∗
πG(1) = sign

[
gG
πG(1)(x∗)

]
ηx∗
πG( j) = sign

[
gG
πG( j)

([
x∗, ⟨ηx∗

a ⟩ya∈paπG( j)

])]
(12)

Accordingly, the relevant label set Y∗ turns out to be:

Y∗ =
{
λπG( j) | ηx∗

πG( j) = +1, 1 ≤ j ≤ q
}

(13)

Table 4 summarizes the pseudo-code of LEAD. As shown
in Table 4, LEAD is a high-order approach which controls
the order of correlations by the number of parents of each
class label implied by G. Similar to stacking aggregation,
LEAD also employs ensemble learning to combine two sets
of binary classifiers g j (1 ≤ j ≤ q) and gGj (1 ≤ j ≤ q) to yield
the multi-label prediction model. Specifically, predictions of
the q binary classifiers g j are pruned w.r.t. the parents for
label correlation exploitation.

There are also other ways to consider pruned label corre-
lations with specific controlling structure. Firstly, tree-based

Table 4 The pseudo-code of LEAD [25].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
B: the binary learning algorithm
L: the Bayesian network structure learning algorithm
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: for j = 1 to q do
2: Derive the binary training setD j according to Eq.(1);
3: Induce the binary classifier g j :← [ B(D j);
4: end for
5: Derive the error random variables e j (1 ≤ j ≤ q) accord-

ing to Eq.(10);
6: Learn the Bayesian network structureG ← [ L(e1, . . . , eq);
7: for j = 1 to q do
8: Derive the binary training set DGj according to

Eq.(11);
9: Induce the binary classifier gGj :←[ B(DGj );

10: end for
11: Specify the causal order πG over all class labels w.r.t. G;

12: return Y∗ =
{
λπG( j) | ηx∗

πG( j) = +1, 1 ≤ j ≤ q
}

w.r.t.
Eq.(12)

Bayesian network can be utilized as a simplified DAG struc-
ture where second-order label correlations are considered by
pruning each class label with (up to) one parent [26,27]. Sec-
ondly, the stacking structure can be adapted to fulfill con-
trolled label correlation exploitation by pruning uncorrelated
outputs of base-level classifiers for stacking meta-level clas-
sifiers [24, 29]. Thirdly, class labels with error-prone predic-
tions can even be filtered out from the pool of class labels for
correlation exploitation [28].

4 Related Issues

As discussed in Section 3, to enhance binary relevance it
is necessary to enable label correlation exploitation in the
learning process. Nevertheless, it is also noteworthy that
some inherent properties of multi-label learning should be in-
vestigated as well to further enhance the generalization per-
formance of binary relevance. Specifically, recent studies
on the issue of class-imbalance, i.e. the number of posi-
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tive instances and negative instances w.r.t. each class label
are imbalanced distributed [30–39], and the issue of rela-
tive labeling-importance, i.e. each class label has different
labeling-importance [40–45], are introduced respectively.

4.1 Class-Imbalance

The issue of class-imbalance widely exist in multi-label
learning tasks, especially when the label space consists of
significant number of class labels. For each class label
λ j ∈ Y, let D+j = {(xi,+1) | yi

j = +1, 1 ≤ i ≤ m} and
D−j = {(xi,−1) | yi

j = −1, 1 ≤ i ≤ m} denote the set of positive
and negative training examples w.r.t. λ j. Correspondingly,
the level of class-imbalance can be characterized by the im-
balance ratio:

ImR j =
max
(
|D+j |, |D−j |

)
min
(
|D+j |, |D−j |

) (14)

Here, | · | returns the cardinality of a set and in most cases
|D+j | < |D−j | holds. Generally, the imbalance ratio is high for
most benchmark multi-label data sets [1, 57]. For instance,
among the 42 class labels of the rcv1 benchmark data set,
the average imbalance ratio (i.e. 1

q
∑q

j=1 ImR j) is greater than
15 and the maximum imbalance ratio (i.e. max1≤ j≤qImR j) is
greater than 50 [38].

To deal with the issue of class-imbalance in multi-label
learning, existing approaches employ binary relevance as an
intermediate step in the learning procedure. Specifically, by
decomposing the multi-label learning task into q indepen-
dent binary learning tasks, each of them will be addressed
by prevalent binary imbalance learning techniques such as
over-/under-sampling [32, 36, 37], thresholding the decision
boundary [31, 33, 34], or optimizing imbalance-specific met-
ric [30, 35, 39]. Obviously, as standard binary relevance
has been applied prior to subsequent modeling, existing ap-
proaches deal with class-imbalance multi-label learning at the
expense of ignoring exploitation of label correlations.

Therefore, a favorable solution to class-imbalance multi-
label learning is to consider the exploitation of label correla-
tions and the exploration of class-imbalance simultaneously.
In light of this, the COCOA approach is proposed based on a
specific strategy named cross-coupling aggregation [38]. For
each class label λ j, a binary classifier gI

j is induced from D j

(i.e. Eq.(1)) by applying some binary imbalance learning al-
gorithm BI [58], i.e. gI

j ←[ BI(D j). In addition, a random
subset of K class labels JK ⊂ Y \ {λ j} are drawn for pairwise
cross-coupling with λ j. For each coupling label λk ∈ JK , CO-
COA derives a tri-class training setDtri

jk for label pair (λ j, λk)

Table 5 The pseudo-code of COCOA [38].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
BI : the binary imbalance learning algorithm
MI : the multi-class imbalance learning algorithm
K: the number of coupling class labels
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: for j = 1 to q do
2: Derive the binary training setD j according to Eq.(1);
3: Induce the binary classifier gI

j :← [ BI(D j);
4: Draw a random subset JK ⊂ Y \ {λ j} with K coupling

class labels;
5: for each λk ∈ JK do
6: Derive the tri-class training set Dtri

jk according to
Eq.(15);

7: Induce the tri-class classifier gI
jk :← [MI(Dtri

jk );
8: end for
9: end for

10: Return Y∗ = {λ j | f j(x∗) > t j, 1 ≤ j ≤ q} w.r.t. Eq.(16)

fromD in the following way:

Dtri
jk = {(xi, ψtri(yi, λ j, λk)) | 1 ≤ i ≤ m}

where ψtri(yi, λ j, λk) =


0, if yi

j = −1 and yi
k = −1

+1, if yi
j = −1 and yi

k = +1
+2, if yi

j = +1
(15)

Among the three derived class labels, first two of them (i.e.
0 and +1) exploit label correlations by considering the joint
labeling assignments of λ j and λk w.r.t. yi, and the third class
label (i.e. +2) corresponds to the interested case of λ j being
a relevant label.

After that, a tri-class classifier gI
jk : X × {0,+1,+2} 7→ R

can be induced from Dtri
jk by applying some multi-class im-

balance learning algorithmMI [59–61], i.e. gI
jk ←[MI(Dtri

jk ).
In other words, a total of K + 1 classifiers including gI

j and
gI

jk (λk ∈ JK) have been induced for class label λ j.

Given an unseen instance x∗, its relevant label set Y∗ is
determined by aggregating the predictions of the above clas-
sifiers induced by binary and multi-class imbalanced learning



8
Min-Ling ZHANG, Yu-Kun LI, Xu-Ying LIU, Xin GENG

algorithms:

Y∗ = {λ j | f j(x∗) > t j, 1 ≤ j ≤ q}
where f j(x∗) = gI

j(x∗) +
∑

λk∈JK
gI

jk(x∗,+2) (16)

Here, t j is the bipartition threshold which is set by optimizing
certain empirical metric (e.g. F-measure) overD j.

Table 5 summarizes the pseudo-code of COCOA. As
shown in Table 5, COCOA is a high-order approach which
considers correlations among labels in a random manner vi-
a the K coupling class labels in JK . Specifically, during the
training phase, label correlation exploitation is enabled vi-
a an ensemble of pairwise cross-coupling between class la-
bels. During the testing phase, class-imbalance exploration
is enabled via aggregating classifiers induced from class-
imbalance learning algorithms.

4.2 Relative Labeling-Importance

Existing approaches to multi-label learning, including binary
relevance, take the common assumption of equal labeling-
importance. Here, class labels associated with the training
example are regarded to be relevant while their relative im-
portance in characterizing the example’s semantics are not
differentiated [1, 2]. Nevertheless, the degree of labeling im-
portance for each associated class label is generally different
while not directly accessible from multi-label training exam-
ples. Figure 2 shows an exemplar multi-label natural scene
image with descending relative labeling-importance: sky ≻
water ≻ cloud ≻ building ≻ pedestrian. Similar situation-
s hold for other types of multi-label objects such as multi-
category documents with different topical importance, multi-
functionality gene with different expression levels, etc.

It is worth noting that there have been works on multi-
label learning which aim to make use of auxiliary labeling-
importance information. Different forms of auxiliary infor-
mation exist such as ordinal scale over each class label [40],
full ranking over relevant class labels [41], importance dis-
tribution over all class labels [43, 44], and oracle feedbacks
over queried labels of unlabeled examples [45]. However, in
standard multi-label learning, those auxiliary information are
not assumed to be available and the only accessible labeling
information are the relevancy/irrelevancy of each class label.

Intuitively, by leveraging the implicit relative labeling-
importance information, further improvement on generaliza-
tion performance of the multi-label learning system can be
expected. In light of this, the RELIAB approach is pro-
posed to incorporating relative labeling-importance informa-
tion in the learning process [42]. Formally, for each instance

Fig. 2 An exemplar natural scene image annotated with multiple class la-
bels. The relative labeling-importance of each annotation is also illustrated
in this figure, which however is not explicitly provided by the annotator [42].

x and class label λ j, the relative labeling-importance of λ j in
characterizing x is denoted as µλ j

x . Specifically, these terms
µ
λ j
x (1 ≤ j ≤ q) satisfy the non-negativity constraint µλ j

x ≥ 0
and the normalization constraint

∑q
j=1 µ

λ j
x = 1.

In the first stage, RELIAB estimates the implicit relative
labeling-importance information U = {µλ j

xi | 1 ≤ i ≤ m, 1 ≤
j ≤ q} via iterative label propagation. Let G = (V, E) be the
fully-connected graph constructed over all the training exam-
ples with V = {xi | 1 ≤ i ≤ m}. Furthermore, a similarity
matrix W = [wik]m×m is specified for G as follows:

∀m
i,k=1 : wik =

 exp
(
− ||x

i−xk ||22
2σ2

)
, if i , k

0, if i = k
(17)

Here, σ > 0 is the width constant for similarity calculation.
Correspondingly, the label propagation matrix P is set as:

P = D−
1
2 WD−

1
2

where D = diag[d1, d2, . . . , dm] with di =
∑m

k=1
wik (18)

In addition, the labeling-importance matrix R = [ri j]m×q is
initialized with R(0) = Φ = [ϕi j]m×q as follows:

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ q : ϕi j =

1, if yi
j = +1

0, if yi
j = −1

(19)

Then, the label propagation procedure works by iteratively
updating R as: R(t) = αPR(t−1) + (1−α)Φ. Actually, R(t) will
converge to R∗ as t grows to infinity [42, 62, 63]:

R∗ = (1 − α)(I − αP)−1Φ (20)

Here, α ∈ (0, 1) is the trade-off parameter balancing the infor-
mation flow from label propagation and initial labeling. After
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that, the implicit relative labeling-importance informationU
is obtained by normalizing R∗ by each row:

∀1 ≤ i ≤ m, ∀1 ≤ j ≤ q : µ
λ j
xi =

r∗i j∑q
j=1 r∗i j

(21)

In the second stage, in order to make use of the informa-
tion conveyed byU, RELIAB chooses the maximum entropy
model [64] to parametrize the multi-label predictor:

f j(x) =
1

Z(x)
exp
(
θ⊤j x
)

(1 ≤ j ≤ q)

where Z(x) =
∑q

j=1
exp
(
θ⊤j x
)

(22)

To induce the prediction modelΘ = [θ1, θ2, . . . , θq], RELIAB
chooses to minimize the following objective function:

V(Θ,U,D) = Vdis(Θ,U) + β · Vemp(Θ,D) (23)

Here, the first term Vdis(Θ,U) evaluates how well the pre-
diction model Θ fits with the estimated relative labeling-
importance information U (e.g. by Kullback-Leibler diver-
gence), the second term evaluates how well the prediction
model Θ classifies the training examples in D (e.g. by em-
pirical ranking loss). Furthermore, β is the regularization pa-
rameter balancing the two terms of objective function.

Given an unseen instance x∗, its relevant label set Y∗ is de-
termined by thresholding the parametrized prediction model:

Y∗ = {λ j | f j(x∗) > t(x∗), 1 ≤ j ≤ q} (24)

Here, t(x∗) is the thresholding function which can be learned
from the training examples as well [1, 34, 42].

Table 6 summarizes the pseudo-code of RELIAB. As
shown in Table 6, RELIAB employs a two-stage procedure to
learn from multi-label examples, where the relative labeling-
importance information estimated in the first stage contribute
to model induction in the second stage. Furthermore, the or-
der of label correlations considered by RELIAB depends on
the empirical loss chosen to instantiate Vemp(Θ,D).

5 Conclusion

In this paper, the state-of-the-art of binary relevance, which
is one of the most important solutions to multi-label learn-
ing, is reviewed. Particularly, the basic setting of binary rel-
evance, some representative correlation-enabling extensions,
and related issues on class-imbalance and relative labeling-
importance have been discussed. Code packages for the

Table 6 The pseudo-code of RELIAB [42].

Inputs:
D: the multi-label training set {(xi, yi) | 1 ≤ i ≤ m}

(xi ∈ X, yi ∈ {−1,+1}q,X = Rd,Y = {λ1, λ2, . . . , λq})
α: the trade-off parameter in (0,1)
β: the regularization parameter
x∗: the unseen instance (x∗ ∈ X)

Outputs:
Y∗: the predicted label set for x∗ (Y∗ ⊆ Y)

Process:

1: Construct the fully-connected graph G = (V, E) with V =
{xi | 1 ≤ i ≤ m};

2: Specify the weight matrix W according to Eq.(17);
3: Set the label propagation matrix P according to Eq.(18);
4: Initialize the labeling-importance matrix R according to

Eq.(19), and then yield the converged solution R∗ accord-
ing to Eq.(20);

5: Obtain the relative labeling-importance information U
according to Eq.(21);

6: Learn the parametrized prediction model Θ by minimiz-
ing the objective function specified in Eq.(23);

7: Return Y∗ = {λ j | f j(x∗) > t(x∗), 1 ≤ j ≤ q}w.r.t. Eq.(24)

learning algorithms introduced in this paper are also publicly-
available.4)

For binary relevance, there are several research issues
which are worth further investigation. Firstly, performance
evaluation in multi-label learning is more complicated than
single-label learning where a number of popular multi-label
evaluation metrics have been proposed [1, 2, 10, 11]. It is
desirable to design correlation-enabling extensions to bina-
ry relevance which are tailored to optimize designated multi-
label metric suitable for the multi-label learning task at hand.
Secondly, in binary relevance the same set of features are
used to induce the classification models for all class label-
s. It is appropriate to develop binary relevance style learn-
ing algorithms which are capable of utilizing label-specific
features to characterize distinct properties of each class la-
bel [65–67]. Thirdly, the modeling complexities of binary
relevance as well as its extensions are linear to the number
of class labels in the label space. It is necessary to adap-
t binary relevance to accommodate the extreme multi-label
learning scenario with huge (e.g. millions) number of class

4) http://mulan.sourceforge.net/ (binary relevance [9],
classifier chain [12, 14], stacking aggregation [19])

http://cse.seu.edu.cn/PersonalPage/zhangml/
Resources.htm (LEAD [25], COCOA [38], RELIAB [42])
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labels [68–72].
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