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Exploiting Unlabeled Data to Enhance Ensemble

Diversity

Min-Ling Zhang · Zhi-Hua Zhou

Abstract Ensemble learning learns from the training data by generating an
ensemble of multiple base learners. It is well-known that to construct a good
ensemble with strong generalization ability, the base learners are deemed to
be accurate as well as diverse. In this paper, unlabeled data is exploited to
facilitate ensemble learning by helping augment the diversity among the base
learners. Specifically, a semi-supervised ensemble method named Udeed, i.e.
Unlabeled Data to Enhance Ensemble Diversity, is proposed. In contrast to
existing semi-supervised ensemble methods which utilize unlabeled data by
estimating error-prone pseudo-labels on them to enlarge the labeled data to
improve base learners’ accuracies, Udeed works by maximizing accuracies
of base learners on labeled data while maximizing diversity among them on
unlabeled data. Extensive experiments on twenty regular-scale and five large-
scale data sets are conducted under the setting of either few or abundant

labeled data. Experimental results show that Udeed can effectively utilize
unlabeled data for ensemble learning via diversity augmentation, and is highly
competitive to well-established semi-supervised ensemble methods.
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1 Introduction

In ensemble learning, a number of base learners are trained and then combined
for prediction to achieve strong generalization ability (Dietterich 2000; Zhou
2009a). During the past two decades, a number of popular ensemble learning
methods have been proposed, such as Boosting (Freund and Schapire 1995),
Bagging (Breiman 1996), Stacking (Wolpert 1992), etc. Most of these meth-
ods work under the supervised setting where the labels of training examples are
assumed to be known. In many real-world tasks, however, unlabeled training
examples are readily available while obtaining their labels would be fairly ex-
pensive due to the involved time, human and economic costs. Semi-supervised
learning is one of the major paradigms to exploit unlabeled data together with
labeled data to improve learning performance automatically, without human
interventions (Chapelle et al 2006; Zhou and Li 2010; Zhu 2006).

This paper deals with semi-supervised ensembles, i.e. ensemble learning

with labeled and unlabeled data. In contrast to the huge volume of literatures
on ensemble learning and on semi-supervised learning, only a few works have
been devoted to the study of semi-supervised ensembles. As recently indi-
cated by Zhou (2009b), this was caused by the different philosophies of the
ensemble learning community and the semi-supervised learning community.
The ensemble learning community believes that it is able to boost the per-
formance of weak learners to strong learners by using multiple learners, and
so there is no need to use unlabeled data; while the semi-supervised learning
community believes that it is able to boost the performance of weak learners
to strong learners by exploiting unlabeled data, and so there is no need to
use multiple learners. However, as Zhou (2009b) indicated, there are several
important reasons why ensemble learning and semi-supervised learning are
actually mutually beneficial, among which an important one is that by con-
sidering unlabeled data it is possible to help augment the diversity among the
base learners, as explained in the following paragraph.

It is well-known that the generalization error of an ensemble is related to
the average generalization error of the base learners and the diversity among
the base learners. Generally, the lower the average generalization error (or, the
higher the average accuracy) of the base learners and the higher the diversity
among the base learners, the better the ensemble (Krogh and Vedelsby 1995).
Previous ensemble methods work under supervised setting, trying to achieve
a high average accuracy and a high diversity by using the labeled training set.
It is noteworthy, however, pursuing a high accuracy and a high diversity may
suffer from a dilemma. For example, for two classifiers which have perfect per-
formance on the labeled training set, they would not have diversity since there
is no difference between their predictions on the training examples. Thus, to
increase the diversity needs to sacrifice the accuracy of one classifier. However,
when we have unlabeled data, we might find that these two classifiers actually
make different predictions on unlabeled data. This would be important for en-
semble design. For example, given two pairs of classifiers, (A,B) and (C,D),
if we know that all of them are with 100% accuracy on labeled training data,
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then there will be no difference taking either the ensemble consisting of (A,B)
or the ensemble consisting of (C,D); however, if we find that A and B make
the same predictions on unlabeled data, while C and D make different predic-
tions on some unlabeled data, then we will know that the ensemble consisting
of (C,D) should be better. So, in contrast to previous ensemble methods which
focus on achieving both high accuracy and high diversity using only the la-
beled data, the use of unlabeled data would open a promising direction for
designing new ensemble methods.

In this paper, we propose the Udeed (Unlabeled Data to Enhance En-

semble Diversity) approach which extends our previous research on ensemble
learning with labeled and unlabeled data (Zhang and Zhou 2010). Specifically,
Udeed aims to maximize accuracies of base learners on labeled data while
maximize diversity among them on unlabeled data. Extensive experiments
over twenty-five data sets are conducted with either few or abundant labeled
training data. Experimental results show that: a) By using unlabeled data for
diversity augmentation, Udeed achieves much better performance than its
counterpart which does not consider the usefulness of unlabeled data; and b)
Udeed also achieves highly comparable performance to other state-of-the-art
semi-supervised ensemble methods.

The rest of this paper is organized as follows. Section 2 briefly reviews
related work on semi-supervised ensembles. Section 3 presents Udeed. Section
4 reports our experimental results. Section 5 discusses several related issues.
Finally, Section 6 concludes.

2 Related Work

In ensemble learning area, there have been many works on building strong
ensembles by trying to maximize ensemble diversity, such as imposing negative
correlation constraints among base learners (Liu and Yao 1999a,b), utilizing
artificial examples to encourage diversity (Melville and Mooney 2003; Melville
2005), etc. However, most of them are supervised ensembles which learn from
labeled examples without considering unlabeled data. In this section, we will
focus on reviewing related works on semi-supervised ensembles. As mentioned
before, in contrast to the huge volume of literatures on ensemble learning and
on semi-supervised learning, only a few work has been devoted to the study
of semi-supervised ensembles.

Zhou and Li (2005) proposed the Tri-training approach which uses three
classifiers and in each round if two classifiers agree on an unlabeled instance
while the third classifier disagrees, then the two classifiers, under a certain
condition, will label this unlabeled instance for the third classifier; the three
classifiers are voted to make prediction. This is a disagreement-based semi-
supervised learning approach (Zhou and Li 2010), which can be viewed as a
variant of the famous co-training method (Blum and Mitchell 1998). Later, Li
and Zhou (2007) extended Tri-training to Co-forest, by including more
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base classifiers and in each round the majority teach minority strategy is still
adopted.

In addition to Tri-training and Co-forest, there are several semi-

supervised boosting methods (Bennett et al 2002; d’Alché Buc et al 2002; Chen
and Wang 2008; Mallapragada et al 2009; Valizadegan et al 2008). d’Alché Buc
et al (2002) proposed SSMBoost to handle unlabeled data within the mar-
gin cost functional optimization framework for boosting (Mason et al 2000),
where the margin of an ensemble H on unlabeled data x is defined as either
H(x)2 or |H(x)| with H(x) ∈ [−1, 1] being the ensemble output. Furthermore,
SSMBoost enforces that the base learners in the ensemble should be semi-
supervised in their nature. Later, Bennett et al (2002) developed Assemble,
which labels unlabeled data x by the current ensemble as y = sign [H(x)],
and then iteratively puts the newly labeled examples into the original labeled
set to train a new base learner which is then added to H . Following the same
margin cost functional optimization framework, Chen and Wang (2008) regu-
larized Assemble with local smoothness constraints to help induce new base
learners with more reliable self-labeling processes.

Other than the margin cost functional formalization, Mcssb (Valizadegan
et al 2008) and SemiBoost (Mallapragada et al 2009) estimate the labels of
unlabeled instances by optimizing an objective function containing two terms.
The first term encodes the manifold assumption that unlabeled instances with
high similarities in input space should share similar labels, while the other
term encodes the clustering assumption that unlabeled instances with high
similarities to a labeled example should share its given label. Here, Mcssb im-
plemented the objective terms based on Bregman divergence (Valizadegan et al
2008), while SemiBoost implemented them with traditional exponential loss
(Mallapragada et al 2009). Recently, regularization techniques have been intro-
duced to semi-supervised boosting by exploiting information-theoretic princi-
ples (Saffari et al 2008, 2009) or multiple semi-supervised assumptions (Chen
and Wang 2011) .

A commonness of the above semi-supervised ensemble methods is that
they construct the ensembles iteratively, and in particular, unlabeled data are
exploited through assigning pseudo-labels for them to enlarge labeled training
set. Specifically, pseudo-labels of unlabeled instances are estimated based on
the ensemble trained so far (Bennett et al 2002; d’Alché Buc et al 2002; Li and
Zhou 2007; Zhou and Li 2005), or with specific form of smoothness or manifold
regularization (Chen and Wang 2008; Mallapragada et al 2009; Valizadegan
et al 2008). After that, by regarding the estimated labels as their ground-truth
labels, unlabeled instances are used in conjunction with labeled ones to update
the current ensemble iteratively.

Although various strategies have been employed to make the pseudo-labeling
process more reliable, such as by incorporating data editing (Li and Zhou 2005;
Zhang and Zhou in press), the estimated pseudo-labels may still be prone to er-
ror, especially in initial training iterations where the ensemble is less accurate.
In the next section we will present the Udeed approach. Rather than assigning
pseudo-labels on unlabeled data to enlarge labeled training set, Udeed utilizes
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unlabeled data in a different way, i.e., help augment the diversity among base
learners.

3 The UDEED Approach

3.1 General Formulation

Let X = Rd be the d-dimensional real-valued input space and Y = {−1,+1}
be the binary output space. Let L = {(xi, yi)| 1 ≤ i ≤ L} be the labeled

training set which contains L labeled training examples with xi ∈ X and
yi ∈ Y, and U = {xi|L + 1 ≤ i ≤ L + U} be the unlabeled training set which
contains U unlabeled training examples with xi ∈ X .

We assume that the classifier ensemble is composed of m base classifiers
{fk|1 ≤ k ≤ m}, where each of them maps from the instance space to [−1,+1],
i.e. fk : X → [−1,+1]. Here, the value of fk(x) corresponds to the confidence
of x being positive. Accordingly, (fk(x)+1)/2 can be regarded as the posteriori
probability of P (y = +1|x).

The basic strategy of Udeed is to maximize the fit of the classifiers on
the labeled data, while maximize the diversity of the classifiers on the un-
labeled data. Therefore, Udeed chooses to generate the classifier ensemble
f = (f1, f2, · · · , fm) by minimizing the global loss function:

V (f ,L,D) = Vemp(f ,L) + γ · Vdiv(f ,D) (1)

Here, the first term Vemp(f ,L) corresponds to the empirical loss of the en-
semble on the labeled data set L; the second term Vdiv(f ,D) corresponds to
the diversity loss of the ensemble on a specified data set D, such as D = U .
Furthermore, γ is the cost parameter balancing the importance of the two loss
terms.1

The first loss term Vemp(f ,L) in Eq.(1) is calculated as:

Vemp(f ,L) =
1

m
·

m
∑

k=1

l(fk,L) (2)

Here, l(fk,L) measures the empirical loss of the k-th base classifier fk on the
labeled data set L.

As shown in Eq.(1), the second loss term Vdiv(f ,D) is used to characterize
the diversity among the based learners based on data set D. However, it is well-
known that diversity measurement is not a straightforward task since there
is no generally accepted formal definition (Kuncheva and Whitaker 2003).

1 Similar objective functions with the combination of an accuracy term and a diversity
term have been investigated in ensemble learning, though under the supervised setting with-
out considering unlabeled data (Opitz 1999; Opitz and Shavlik 1996).
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Moreover, most of the existing diversity measures need to refer to the ground-
truth labels of the data for diversity calculation, which are then not directly
applicable here if D contains unlabeled data.

In this paper, Udeed chooses to calculate Vdiv(f ,D) in a novel way as:

Vdiv(f ,D) =
2

m(m− 1)
·
m−1
∑

p=1

m
∑

q=p+1

d(fp, fq,D), where

d(fp, fq,D) =
1

|D|

∑

x∈D

fp(x)fq(x) (3)

Here, |D| returns the cardinality of data set D. Intuitively, d(fp, fq,D) repre-
sents the prediction difference between any pair of base classifiers on a specified
data set D, without referring to the ground-truth labels of the data.2 Further-
more, note that the prediction difference is calculated based on the concrete
output f(x) instead of the signed output sign[f(x)]. In this way, the predic-

tion confidence of each classifier other than the simple binary prediction is
fully utilized, and at the same time enables Udeed’s objective (Eq.(1)) being
a continuous function easier to be optimized.

Based on the above formulation, Udeed aims to find the target model f∗

which minimizes the loss function in Eq.(1):

f∗ = argmin
f

V (f ,L,D) (4)

3.2 Logistic Regression Implementation

In this paper, to instantiate the general formulation of Udeed given in the
above subsection, logistic regression is employed to implement the base clas-
sifiers due to its effectiveness and simplicity. Concretely, each base classifier
fk (1 ≤ k ≤ m) is modeled as:

fk(x) = 2 · gk(x)− 1 = 2 ·
1

1 + e−(wT
k
·x+bk)

− 1 (5)

Here, “T” represents the vector transpose. Furthermore, function gk : X →
[0, 1] takes the canonical form of logistic regression 1

1+e
−w

T
k

·x−bk
with d-dimensional

weight vector wk and bias value bk. Without loss of generality, in the rest of
this paper, bk is absorbed into wk by appending the input space X with an
extra dimension fixed at value 1.

2 As reviewed in (Kuncheva and Whitaker 2003), most existing diversity measures are
calculated based on the oracle (correct/incorrect) outputs of base learners, i.e. the ground-
truth labels of the data set are assumed to be known. However, considering that examples
contained in the specified data set D may be unlabeled, it is then infeasible to calculate
d(fp, fq,D) by directly utilizing existing diversity measures.
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Correspondingly, the first loss term Vemp(f ,L) in Eq.(1) is set to be the
negative binomial likelihood function on the labeled data set L, which is com-
monly used to measure the empirical loss of logistic regression:

Vemp(f ,L) =
1

m
·

m
∑

k=1

l(fk,L)

=
1

mL
·

m
∑

k=1

L
∑

i=1

−BLH(fk(xi), yi) (6)

Here, the term BLH(fk(xi), yi) returns the binomial likelihood of xi having
label yi, when fk serves as the classification model. Considering that the pos-
teriori probabilities of P (y = +1|x) and P (y = −1|x) can be calculated as
1+fk(x)

2 and 1−fk(x)
2 respectively with respect to the model fk, BLH(fk(xi), yi)

will then take the following form based on Eq.(5):

BLH(fk(xi), yi) = ln





(

1 + fk(xi)

2

)

1+yi
2

(

1− fk(xi)

2

)

1−yi
2





= −
1 + yi

2
ln
(

1 + e−wT
k ·xi

)

−
1− yi

2
ln
(

1 + ew
T
k ·xi

)

Note that the first term Vemp(f ,L) may also be evaluated in other ways, such
as l2 loss:

Vemp(f ,L) =
1

mL

m
∑

k=1

L
∑

i=1

(fk(xi)− yi)
2

or hinge loss:

Vemp(f ,L) =
1

mL

m
∑

k=1

L
∑

i=1

1− yifk(xi)

and other possible forms. Based on Eqs.(5) and (6), the global loss function
V (f ,L,D) is instantiated as:

V (f ,L,D)

=
1

mL

m
∑

k=1

L
∑

i=1

−BLH(fk(xi), yi) + γ ·
2

m(m− 1)
·
m−1
∑

p=1

m
∑

q=p+1

d(fp, fq,D)

=
1

mL

m
∑

k=1

L
∑

i=1

1 + yi
2

ln
(

1 + e−wT
k ·xi

)

+
1− yi

2
ln
(

1 + ew
T
k ·xi

)

+
2γ

m(m− 1)
·
m−1
∑

p=1

m
∑

q=p+1

1

|D|

∑

x∈D

(

2

1 + e−wT
p ·x

− 1

)

·

(

2

1 + e−wT
q ·x

− 1

)
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The target model f∗ is found by employing gradient descent -based tech-
niques. Note that under logistic regression implementation, the loss function
V (f ,L,D) is generally non-convex, and the target model f∗ returned by the
gradient descent process would correspond to a local optimal solution.

The gradients of V (f ,L,D) with respect to the model parameters Θ =
{wk|1 ≤ k ≤ m} are determined as follows:

∂V

∂Θ
=

[

∂V

∂w1
, · · · ,

∂V

∂wk

, · · · ,
∂V

∂wm

]

, where

∂V

∂wk

= −
1

mL
·

L
∑

i=1

∂ BLH(fk(xi), yi)

∂wk

+
2γ

m(m− 1)
·

m
∑

k′=1, k′ 6=k

∂ d(fk, fk′ ,D)

∂wk

, and

∂ BLH(fk(xi), yi)

∂wk

=

(

(1 + yi)(1− fk(xi))

4
ln
(

1 + e−wT
k ·xi

)

−
(1− yi)(1 + fk(xi))

4
ln
(

1 + ew
T
k ·xi

)

)

· xi, and

∂ d(fk, fk′ ,D)

∂wk

=
1

2|D|
·
∑

x∈D

fk′(x) · (1 − fk(x)
2) · x (7)

To initialize the ensemble, each classifier fk is learned from a bootstrapped

sample (Efron and Tibshirani 1993) of L, i.e. by sampling with replacement

from L to form the training set Lk = {(xk
i , y

k
i )|1 ≤ i ≤ L}. Conventional

maximum likelihood procedure is used to initialize the model parameter wk

by minimizing the following objective function:

1

2
||wk||

2 + λ ·
L
∑

i=1

−BLH(fk(x
k
i ), y

k
i )

Here, λ balances the model complexity (first term) and the binomial likelihood
of fk on Lk (second term). In this paper, λ is set to the default value of 1.

Recall that in Eq.(1), the first term Vemp(f ,L) regarding empirical loss
is defined on the labeled training set L, while the second term Vdiv(f ,D)
regarding diversity loss is defined on a specified data set D. Given the labeled
training set L and the unlabeled training set U , we consider three possibilities
of designating D:

• D = ∅: No data is employed to measure the diversity among base learners,
i.e. Vdiv(f ,D)=0. The resulting implementation is called Lc;

• D = L̃: Here, L̃ = {xi|1 ≤ i ≤ L} denotes the unlabeled data set derived
from L. In this case, labeled training examples are employed to measure the
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diversity among base learners, and the ensemble is optimized by exploiting
only L. The resulting implementation is called Lcd;

• D = U : Unlabeled training examples are employed to measure the diver-
sity among base learners, and the ensemble is optimized by exploiting both L
and U . The resulting implementation is called LcUd.3

For either Lc or Lcd, after the ensemble is initialized, a series of gradient
descent steps are performed to optimize the model by minimizing the global
loss function V (f ,L,D) with respective configuration of D. For LcUd how-
ever, instead of minimizing V (f ,L,D) in the straightforward way of directly
setting D = U , the loss function is firstly minimized by a series of gradient
descent steps by setting D = L̃. After that, by using the obtained intermedi-
ate model as the starting point, a series of gradient descent steps are further
conducted to finely search the model space by setting D = U . The purpose of
this two-stage process is to distinguish the priorities of the contribution from
labeled data and unlabeled data. In other words, the labeled training examples
are exploited with top priority to firstly induce the intermediate model for sub-
sequent optimization. Note that similar strategies have been adopted by some
successful semi-supervised ensemble methods, where objective terms involving
labeled data are given much higher weight than those involving unlabeled data
(Mallapragada et al 2009; Valizadegan et al 2008). More justifications on this
specific optimization choice of LcUd are given in Subsection 5.1.

For any gradient descent -based optimization process, it is terminated if
either the loss function V (f ,L,D) or the diversity term Vdiv(f ,D) does not
decrease anymore. For each implementation, the label of an unseen example z
is predicted by the learned ensemble f∗ = (f∗

1 , f
∗
2 , · · · , f

∗
m) via weighted voting:

f∗(z) = sign [
∑m

k=1 f
∗
k (z)]. Note that compared to unweighted voting where

f∗(z) = sign [
∑m

k=1 sign[f
∗
k (z)]], the prediction confidence of each base learner

could be fully utilized by weighted voting.
Intuitively, if the ensemble does benefit from the diversity augmented by

the unlabeled training examples, LcUd should achieve superior performance
than the other two implementations Lc and Lcd. In this paper, the third
implementation (i.e. LcUd) is referred to as Udeed, and the other two im-
plementations (i.e. Lc and Lcd) can be viewed as degenerated versions of
Udeed.

4 Experiments

4.1 Experimental Setup

Twenty-five publicly-available binary data sets are used for experiments, whose
characteristics are summarized in Table 1. Fifteen of them are from UCI Ma-

3 The other possibility of designating D with D = L̃ ∪ U has also been considered, and
the resulting implementation is called LcdUd. Preliminary experiments show that LcdUd

performs rather similar as LcUd, and therefore only LcUd is studied in this paper for the
simplicity of presentation.
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Table 1 Characteristics of the data sets.

# examples

data set dimensionality positive negative total

diabetes 8 268 500 768

heart 9 120 150 270

wdbc 14 357 212 569

austra 15 307 383 690

house 16 108 124 232

vote 16 168 267 435

vehicle 16 218 217 435

hepatitis 19 123 32 155

labor 26 37 20 57

# regular-scale: 20 ethn 30 1310 1320 2630

ionosphere 34 255 126 381

kr vs kp 40 1527 1669 3196

isolet 51 300 300 600

sonar 60 111 97 208

colic 60 136 232 368

credit g 61 300 700 1000

BCI 117 200 200 400

Digit1 241 734 766 1500

COIL2 241 750 750 1500

g241n 241 748 752 1500

adult 123 7841 24720 32561

web 300 1479 48270 49749

# large-scale: 5 ijcnn1 22 13565 128126 141691

cod-rna 8 110384 220768 331152

forest 54 283301 297711 581012

chine Learning Repository (Frank and Asuncion 2010), five from UCI KDD
Archive (Hettich and Bay 1998), four from Chapelle et al (2006) and one from
Lu and Jain (2004). Twenty regular-scale data sets (first part) as well as five
large-scale data sets (second part) are included. Specifically, the data set size
varies from 57 to 581,012, the dimensionality varies from 8 to 300, and the
ratio of positive examples to negative examples varies from 0.031 to 3.844.

For each data set, 50% of them are randomly selected to form the test set T ,
and the rest is used to form the training set, i.e. L

⋃

U . Let r = |L|/(|L|+ |U|)
denote the percentage of labeled data in training set. For each data set, 50
random L/U/T splits are performed. Hereafter, the reported performance of
each method corresponds to the averaged result out of 50 runs on different
splits. In this paper, r takes two different values: a) 0.05 representing the case
that only few labeled data is available; b) 0.25 representing the case where
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(d) Digit1 (r = 0.05)
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Fig. 1 Performance of Lc, Lcd and LcUd under varying ensemble sizes [(a)-(f): r = 0.05;
(g)-(l): r = 0.25].

there are abundant labeled data.4 As shown in Eq.(1), the cost parameter γ
balances the empirical loss and diversity loss of the learning system. In this

4 Generally, when there are only very few labeled data (say 2∼4 examples), it becomes
infeasible to launch ensemble learning. While with the help of unlabeled data, it is possible
to build ensembles under such situation (Zhou et al 2007), which is another advantage for
using unlabeled data with ensembles (Zhou 2009b). However, this is beyond the scope of the
paper since the goal of this paper is to show that unlabeled data can help ensemble learning
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Fig. 2 Performance of Bagging, AdaBoost, Assemble and SemiBoost under varying
ensemble sizes [(a)-(f): r = 0.05; (g)-(l): r = 0.25].

paper, it is set to the default value of 1. More discussions on the choice of γ
are given in Subsection 5.1.

In the rest of this paper, a series of experiments are conducted to validate
the effectiveness of our proposed approach:

by enhancing diversity, instead of justifying the usefulness of unlabeled data for ensembles
with sparse labeled data.
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Table 2 Predictive accuracy of each comparing algorithm under small-scale ensemble size
(m = 20). Bagging, AdaBoost, Assemble and SemiBoost are abbreviated as Bagg,
AdaB, Assem and SemiB respectively.

Algorithm

r = 0.05 r = 0.25

Data Set Udeed Bagg AdaB Assem SemiB Udeed Bagg AdaB Assem SemiB

diabetes 0.670 0.652 0.656 0.648 0.679 0.726 0.690 0.728 0.700 0.695

heart 0.670 0.626 0.561 0.550 0.641 0.793 0.779 0.766 0.744 0.789

wdbc 0.802 0.646 0.700 0.646 0.661 0.927 0.807 0.934 0.898 0.793

austra 0.714 0.629 0.653 0.614 0.682 0.834 0.810 0.809 0.801 0.815

house 0.889 0.886 0.597 0.868 0.889 0.921 0.922 0.849 0.921 0.924

vote 0.898 0.899 0.658 0.894 0.896 0.932 0.930 0.906 0.928 0.932

vehicle 0.805 0.767 0.685 0.612 0.677 0.916 0.914 0.916 0.921 0.886

hepatitis 0.770 0.786 0.588 0.781 0.795 0.800 0.792 0.763 0.788 0.796

labor 0.660 0.650 0.500 0.570 0.613 0.809 0.801 0.646 0.747 0.810

ethn 0.871 0.867 0.879 0.832 0.720 0.944 0.942 0.934 0.939 0.929

ionosphere 0.688 0.664 0.663 0.667 0.677 0.795 0.721 0.807 0.772 0.746

kr vs kp 0.859 0.851 0.873 0.839 0.835 0.940 0.938 0.941 0.942 0.936

isolet 0.964 0.954 0.743 0.841 0.932 0.989 0.988 0.714 0.985 0.989

sonar 0.575 0.558 0.536 0.528 0.555 0.690 0.690 0.701 0.672 0.692

colic 0.714 0.722 0.654 0.663 0.691 0.777 0.785 0.747 0.748 0.765

credit g 0.656 0.695 0.664 0.673 0.680 0.690 0.710 0.678 0.686 0.702

BCI 0.514 0.510 0.515 0.510 0.513 0.582 0.576 0.606 0.575 0.569

Digit1 0.893 0.886 0.854 0.852 0.892 0.939 0.940 0.928 0.927 0.941

COIL2 0.682 0.676 0.735 0.630 0.710 0.807 0.809 0.862 0.819 0.823

g241n 0.665 0.657 0.658 0.587 0.623 0.793 0.794 0.760 0.751 0.791

adult 0.831 0.836 0.818 0.831 N/A 0.835 0.844 0.840 0.843 N/A

web 0.974 0.973 0.971 0.974 N/A 0.981 0.980 0.980 0.981 N/A

ijcnn1 0.904 0.904 0.918 0.904 N/A 0.914 0.906 0.910 0.906 N/A

cod-rna 0.902 0.792 0.933 0.683 N/A 0.920 0.850 0.945 0.851 N/A

forest 0.707 0.703 0.735 0.688 N/A 0.706 0.703 0.736 0.696 N/A

– Firstly, comparative studies between Udeed (i.e. LcUd) and other well-
established semi-supervised ensemble methods are reported;

– Secondly, experiments on the three different implementations Lc, Lcd and
LcUd are further conducted to show whether unlabeled data do benefit
ensemble learning;

– Thirdly, analysis based on several popular diversity measures is performed
to verify whether the diversity among base learners can be enhanced by
Udeed through utilizing unlabeled data in ensemble generation.

4.2 Comparative Studies

In this subsection, to evaluate the effectiveness of Udeed (LcUd) in ensem-
ble learning, it is compared with two popular supervised ensemble methods
Bagging (Breiman 1996) and AdaBoost (Freund and Schapire 1995), as
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Table 3 Predictive accuracy of each comparing algorithm under medium-scale ensemble
size (m = 50). Bagging, AdaBoost, Assemble and SemiBoost are abbreviated as Bagg,
AdaB, Assem and SemiB respectively.

Algorithm

r = 0.05 r = 0.25

Data Set Udeed Bagg AdaB Assem SemiB Udeed Bagg AdaB Assem SemiB

diabetes 0.657 0.653 0.658 0.637 0.684 0.710 0.691 0.731 0.699 0.696

heart 0.649 0.612 0.555 0.554 0.642 0.794 0.782 0.766 0.736 0.794

wdbc 0.710 0.640 0.704 0.664 0.707 0.885 0.806 0.925 0.916 0.816

austra 0.685 0.622 0.654 0.593 0.701 0.828 0.812 0.808 0.815 0.816

house 0.889 0.890 0.680 0.833 0.891 0.921 0.920 0.793 0.925 0.924

vote 0.899 0.899 0.624 0.888 0.896 0.931 0.929 0.868 0.927 0.932

vehicle 0.813 0.784 0.679 0.609 0.717 0.914 0.914 0.914 0.919 0.893

hepatitis 0.778 0.786 0.640 0.779 0.794 0.796 0.792 0.737 0.785 0.797

labor 0.663 0.650 0.500 0.569 0.614 0.813 0.799 0.681 0.749 0.804

ethn 0.872 0.866 0.888 0.829 0.763 0.944 0.942 0.937 0.939 0.931

ionosphere 0.699 0.662 0.666 0.669 0.683 0.797 0.722 0.814 0.783 0.748

kr vs kp 0.857 0.854 0.880 0.831 0.833 0.939 0.938 0.943 0.943 0.935

isolet 0.964 0.959 0.724 0.870 0.931 0.989 0.988 0.672 0.986 0.990

sonar 0.574 0.569 0.537 0.546 0.552 0.687 0.690 0.714 0.679 0.696

colic 0.725 0.732 0.636 0.680 0.689 0.783 0.783 0.744 0.748 0.763

credit g 0.677 0.695 0.652 0.682 0.680 0.703 0.711 0.674 0.689 0.703

BCI 0.514 0.511 0.510 0.502 0.512 0.582 0.577 0.620 0.583 0.572

Digit1 0.894 0.888 0.832 0.854 0.892 0.941 0.940 0.929 0.925 0.941

COIL2 0.675 0.673 0.743 0.648 0.716 0.808 0.812 0.867 0.821 0.820

g241n 0.664 0.663 0.660 0.597 0.623 0.796 0.794 0.762 0.750 0.791

adult 0.835 0.837 0.818 0.830 N/A 0.842 0.844 0.841 0.842 N/A

web 0.974 0.974 0.971 0.975 N/A 0.981 0.980 0.980 0.981 N/A

ijcnn1 0.904 0.904 0.919 0.904 N/A 0.907 0.906 0.906 0.910 N/A

cod-rna 0.855 0.793 0.936 0.683 N/A 0.891 0.851 0.945 0.851 N/A

forest 0.705 0.703 0.735 0.688 N/A 0.705 0.703 0.737 0.698 N/A

well as two successful semi-supervised ensemble methods Assemble (Bennett
et al 2002) and SemiBoost (Mallapragada et al 2009). For fair comparison,
logistic regression is employed as the base learner of each compared method.
For Udeed, the maximum number of gradient descent steps is set to 25 and
the learning rate is set to 0.25. For the other compared methods, default pa-
rameters suggested in respective literatures are adopted.

Figure 1 illustrates the performance curves of Udeed and its counterparts
Lc and Lcd on six data sets with r = 0.05 ((a)-(f)) and r = 0.25 ((g)-(l))
respectively. Here, the ensemble size increases from 10 to 100 with an interval
of 10. Accordingly, Figure 2 illustrates the performance curves of Bagging,
AdaBoost, Assemble and SemiBoost on the same data sets. These pre-
liminary experiments indicate that, in most cases, the performance of all the
algorithms does not significantly change within successive ensemble sizes and
gradually levels out as the ensemble size grows to 60.

Therefore, for the sake of simplicity, three different ensemble sizes (i.e. m)
are considered in this paper: a) m = 20 representing the case of small-scale
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Table 4 Predictive accuracy of each comparing algorithm under large-scale ensemble size
(m = 100). Bagging, AdaBoost, Assemble and SemiBoost are abbreviated as Bagg,
AdaB, Assem and SemiB respectively.

Algorithm

r = 0.05 r = 0.25

Data Set Udeed Bagg AdaB Assem SemiB Udeed Bagg AdaB Assem SemiB

diabetes 0.653 0.653 0.649 0.650 0.682 0.700 0.692 0.726 0.694 0.696

heart 0.633 0.616 0.556 0.566 0.664 0.790 0.781 0.757 0.751 0.792

wdbc 0.661 0.638 0.714 0.663 0.719 0.852 0.805 0.930 0.916 0.825

austra 0.655 0.619 0.644 0.585 0.701 0.824 0.812 0.806 0.808 0.817

house 0.889 0.888 0.609 0.837 0.890 0.921 0.921 0.831 0.919 0.924

vote 0.898 0.898 0.667 0.889 0.895 0.930 0.930 0.902 0.926 0.932

vehicle 0.813 0.792 0.714 0.625 0.745 0.913 0.915 0.930 0.911 0.897

hepatitis 0.784 0.788 0.601 0.784 0.794 0.797 0.790 0.743 0.782 0.797

labor 0.660 0.650 0.500 0.554 0.610 0.811 0.808 0.683 0.756 0.809

ethn 0.871 0.867 0.891 0.826 0.782 0.943 0.942 0.938 0.939 0.932

ionosphere 0.694 0.663 0.669 0.662 0.684 0.780 0.721 0.812 0.779 0.747

kr vs kp 0.857 0.854 0.880 0.836 0.832 0.939 0.938 0.945 0.944 0.935

isolet 0.963 0.962 0.745 0.829 0.932 0.989 0.989 0.616 0.984 0.990

sonar 0.575 0.565 0.547 0.507 0.552 0.690 0.689 0.713 0.679 0.696

colic 0.729 0.731 0.663 0.674 0.690 0.784 0.786 0.741 0.745 0.763

credit g 0.689 0.696 0.655 0.672 0.679 0.706 0.711 0.679 0.686 0.703

BCI 0.517 0.512 0.510 0.505 0.511 0.580 0.578 0.620 0.588 0.572

Digit1 0.895 0.888 0.845 0.850 0.892 0.940 0.940 0.927 0.925 0.941

COIL2 0.676 0.676 0.742 0.647 0.715 0.807 0.811 0.870 0.819 0.820

g241n 0.665 0.663 0.662 0.602 0.624 0.795 0.796 0.760 0.754 0.792

adult 0.836 0.837 0.817 0.830 N/A 0.844 0.844 0.840 0.843 N/A

web 0.974 0.974 0.971 0.975 N/A 0.981 0.980 0.980 0.981 N/A

ijcnn1 0.904 0.904 0.919 0.904 N/A 0.906 0.905 0.906 0.906 N/A

cod-rna 0.825 0.792 0.938 0.682 N/A 0.873 0.851 0.945 0.851 N/A

forest 0.707 0.703 0.734 0.688 N/A 0.705 0.703 0.737 0.698 N/A

ensemble; b) m = 50 representing the case of medium-scale ensemble; and c)
m = 100 representing the case of large-scale ensemble.

Tables 2 to 4 report the detailed experimental results under small-scale,
medium-scale and large-scale ensemble sizes respectively, when few (r = 0.05)
or abundant (r = 0.25) labeled data is available. On each data set, the mean
predictive accuracy out of 50 runs of each comparing algorithm is recorded, and
the best performance is shown in boldface. In addition, SemiBoost fails to
work on the five large-scale data sets, due to its demanding storage complexity,
i.e. O((|L|+ |U|)2), to maintain the similarity matrix for labeled and unlabeled
training examples.

For small-scale ensemble size (Table 2), when few labeled data is available
(r = 0.05), Udeed ranks in 1st place among the five comparing algorithms
at 48% cases, in 2nd place at 40% cases, in 3rd place at 4% cases, and in
4th or 5th places at only 8% cases; When abundant labeled data is available
(r = 0.25), Udeed ranks in 1st place at 32% cases, in 2nd place at 40% cases,
in 3rd place at 20% cases, and in 4th or 5th places at only 8% cases.
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Table 5 Wilcoxon signed-ranks test (at 95% significance level) for Udeed versus each of the
other comparing algorithms. The p-value out of the corresponding statistical test is shown
in the brackets.

Udeed versus

Labeled Ratio Ensemble Size Bagging AdaBoost Assemble SemiBoost

m = 20 win [6.3e-3 ] win [8.0e-3 ] win [1.1e-4 ] win [1.3e-2 ]

r = 0.05 m = 50 win [1.1e-2 ] win [1.0e-2 ] win [4.1e-5 ] tie [5.9e-2 ]

m = 100 win [3.2e-3 ] win [3.8e-2 ] win [4.0e-5 ] tie [3.0e-1 ]

m = 20 win [1.8e-2 ] tie [1.5e-1 ] win [6.9e-4 ] win [2.6e-2 ]

r = 0.25 m = 50 win [7.6e-3 ] tie [2.8e-1 ] win [8.9e-3 ] win [2.0e-2 ]

m = 100 win [2.6e-2 ] tie [5.3e-1 ] win [1.1e-2 ] win [4.0e-2 ]

For medium-scale ensemble size (Table 3), when few labeled data is avail-
able (r = 0.05),Udeed ranks in 1st place among the five comparing algorithms
at 44% cases, in 2nd place at 36% cases, in 3rd place at 12% cases, and in
4th or 5th places at only 8% cases; When abundant labeled data is available
(r = 0.25), Udeed ranks in 1st place at 32% cases, in 2nd place at 44% cases,
in 3rd place at 16% cases, and in 4th or 5th places at only 8% cases.

For large-scale ensemble size (Table 4), when few labeled data is available
(r = 0.05), Udeed ranks in 1st place among the five comparing algorithms
at 36% cases, in 2nd place at 52% cases, in 3rd place at 8% cases, and in
4th or 5th places at only 4% cases; When abundant labeled data is available
(r = 0.25), Udeed ranks in 1st place at 28% cases, in 2nd place at 48% cases,
in 3rd place at 20% cases, and in 4th or 5th places at only 4% cases.

To perform comparative analysis in a more well-founded way, we further
examine the relative performance among the comparing algorithms based on
statistical tests. Generally speaking, Friedman test may be the favorable choice
(Demšar 2006) as several algorithms are compared over multiple data sets
in this paper. Unfortunately, it is not directly applicable here as the ranks
of SemiBoost on the five large-scale data sets are not available due to the
missing results on them. As an alternative, we employ the Wilcoxon signed-
ranks test (Demšar 2006; Wilcoxon 1945) to see whetherUdeed is significantly
different from each of the other comparing algorithms. Table 5 summarizes the
statistical test results at 95% significance level, where the p-values of respective
Wilcoxon signed-ranks tests are also reported in the brackets.

Results in Table 5 indicate that: a) Udeed outperforms Bagging and
Assemble under all the labeled ratios and ensemble sizes; b) Udeed achieves
statistically comparable performance to AdaBoostwhen abundant (r = 0.25)
labeled data is available, while outperforms AdaBoost when few (r = 0.05)
labeled data is available; c) Udeed achieves statistically comparable perfor-
mance to SemiBoost when few labeled data is available with medium-scale

(m = 50) and large-scale (m = 100) ensemble sizes, while outperforms Semi-
Boost under other circumstances.
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Table 6 Average ranks as well as critical difference (CD) for the post-hoc Nemenyi test
(at 95% significance level) among Udeed, Bagging, AdaBoost and Assemble. The lowest
average rank is shown in boldface and a mark “⋆” is indicated if the average rank difference
between Udeed and the comparing algorithm is larger than one CD.

Average rank

Labeled Ratio Ensemble Size Udeed Bagging AdaBoost Assemble CD

m = 20 1.680 2.360 2.640⋆ 3.320⋆ 0.938

r = 0.05 m = 50 1.720 2.240 2.840⋆ 3.200⋆ 0.938

m = 100 1.700 2.240 2.880⋆ 3.340⋆ 0.938

m = 20 1.920 2.500 2.600 2.980⋆ 0.938

r = 0.25 m = 50 1.900 2.680 2.740 2.680 0.938

m = 100 1.960 2.540 2.620 3.040⋆ 0.938

Therefore, out of all the 24 statistical comparisons (2 labeled ratios ×
3 ensemble sizes × 4 comparing algorithms), it is rather impressive that
Udeed achieves significantly superior performance in 79.2% cases and no al-
gorithms have once outperformed Udeed. The above results clearly validate
that Udeed is highly competitive to other well-established ensemble learning
methods, whenever few or abundant labeled data is available.

As a reference, we also performed Friedman test (together with post-hoc
Nemenyi test (Demšar 2006) at 95% significance level) at the expense of ex-
cluding SemiBoost for comparison. A total of 18 statistical comparisons are
conducted (2 labeled ratios × 3 ensemble sizes × 3 comparing algorithms),
where the average rank of Udeed and each comparing algorithm as well as
the critical difference (CD) are reported in Table 6. The results reveal that: a)
Udeed achieves significantly superior performance in 44.4% cases, i.e. better
than AdaBoost and Assemble with r = 0.05 under all ensemble sizes and
better than Assemble with r = 0.25 under small-scale (m = 20) and large-

scale (m = 100) ensemble sizes; b) No algorithms have once outperformed
Udeed.

4.3 The Helpfulness of Unlabeled Data

As motivated in Section 1, Udeed aims to exploit unlabeled data to help
ensemble learning in the particular way of augmenting diversity among base
learners. Therefore, in addition to the above comparative experiments with
other (semi-supervised) ensemble methods, it is rather important to show
whether Udeed (LcUd) does achieve better performance than its counter-
parts (Lc and Lcd) which do not consider using unlabeled data for diversity
augmentation.

Table 7 reports the performance improvement (i.e. increase of predictive
accuracy) of LcUd against Lc and Lcd under various settings. On each data
set, the mean improved predictive accuracies out of 50 runs are recorded. Sim-
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Table 7 Accuracy improvement for LcUd against Lc and Lcd under various labeled ratios
and ensemble sizes.

LcUd against

Lc Lcd

r = 0.05 r = 0.25 r = 0.05 r = 0.25

Data Set m=20 m=50 m=100 m=20 m=50 m=100 m=20 m=50 m=100 m=20 m=50 m=100

diabetes 0.017 0.004 0.001 0.034 0.019 0.008 0.010 0.002 0.001 0.011 0.009 0.004

heart 0.049 0.029 0.023 0.023 0.009 0.006 0.023 0.013 0.010 0.009 0.003 0.004

wdbc 0.161 0.059 0.021 0.127 0.075 0.047 0.090 0.038 0.013 0.033 0.031 0.023

austra 0.089 0.067 0.036 0.022 0.015 0.010 0.026 0.032 0.018 0.004 0.006 0.005

house -0.004 0.001 0.001 0.003 -0.001 0.001 -0.001 -0.001 -0.001 0.002 0.000 0.001

vote 0.001 0.001 -0.001 0.002 0.001 0.001 0.001 0.001 -0.001 0.001 0.001 0.001

vehicle 0.029 0.017 0.010 0.005 0.002 0.001 0.007 0.007 0.006 0.003 0.001 0.001

hepatitis -0.018 -0.004 -0.005 0.010 0.005 0.008 -0.007 -0.002 -0.004 0.003 0.001 0.005

labor 0.010 0.013 0.010 0.003 0.004 0.004 -0.002 0.006 0.007 -0.007 0.007 0.004

ethn 0.011 0.005 0.003 0.002 0.001 0.001 0.006 0.004 0.003 0.001 0.001 0.001

ionosphere 0.028 0.038 0.031 0.073 0.076 0.057 -0.003 0.011 0.020 0.015 0.022 0.029

kr vs kp 0.005 0.004 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001

isolet 0.007 0.007 0.003 0.001 0.001 0.001 0.004 0.006 0.003 0.001 0.001 0.001

sonar 0.013 0.005 0.005 0.001 0.003 0.001 0.006 0.002 0.003 0.002 -0.001 0.001

colic -0.010 -0.004 -0.001 -0.006 -0.003 -0.001 -0.005 -0.002 0.001 -0.003 -0.003 0.001

credit g -0.039 -0.018 -0.007 -0.019 -0.008 -0.005 -0.021 -0.010 -0.003 -0.009 -0.004 -0.002

BCI 0.008 -0.001 0.001 0.006 0.003 0.002 0.005 0.001 -0.001 0.005 0.002 0.002

Digit1 0.006 0.007 0.005 0.001 0.001 0.001 0.003 0.003 0.003 0.001 0.001 0.001

COIL2 0.012 0.002 0.002 -0.001 -0.004 -0.003 0.007 0.002 0.002 0.001 -0.001 -0.002

g241n 0.002 0.003 0.002 0.001 0.001 -0.001 0.001 0.003 0.002 -0.001 0.001 -0.001

adult -0.005 -0.002 -0.001 -0.009 -0.002 -0.001 -0.003 -0.001 -0.001 -0.006 -0.002 -0.001

web 0.001 0.001 0.001 0.001 0.001 0.000 0.001 0.001 0.001 0.001 0.001 0.000

ijcnn1 -0.001 0.000 0.000 0.008 0.001 0.001 -0.001 0.000 0.000 0.006 0.001 0.001

cod-rna 0.109 0.062 0.033 0.069 0.041 0.023 0.036 0.029 0.016 0.022 0.018 0.011

forest 0.003 0.002 0.001 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 8 Wilcoxon signed-ranks test (at 95% significance level) for LcUd versus Lc and
Lcd. The p-value out of the corresponding statistical test is shown in the brackets.

LcUd versus

Labeled Ratio Ensemble Size Lc Lcd

m = 20 win [1.0e-2 ] win [4.2e-2 ]

r = 0.05 m = 50 win [3.7e-3 ] win [3.1e-3 ]

m = 100 win [2.7e-3 ] win [4.4e-3 ]

m = 20 win [3.4e-3 ] win [1.8e-2 ]

r = 0.25 m = 50 win [8.7e-3 ] win [1.1e-2 ]

m = 100 win [4.7e-3 ] win [2.0e-3 ]

ilar as Table 5, Wilcoxon signed-ranks test is employed to see whether LcUd

is significantly different from its two counterparts. Table 8 summarizes the sta-
tistical test results at 95% significance level, where the p-values of respective
Wilcoxon signed-ranks tests are reported in the brackets.

Results in Table 8 indicate that, out of all the 12 statistical comparisons
(2 labeled ratios × 3 ensemble sizes × 2 comparing algorithms), it is rather
impressive that LcUd achieves significantly superior performance in all 100%
cases. The above results clearly validate that, by exploiting unlabeled data
in the specific way of helping augment ensemble diversity, Udeed (LcUd) is



Exploiting Unlabeled Data to Enhance Ensemble Diversity 19

0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Lc

L
c
U

d

(a) LcUd vs. Lc (on wdbc)

0.5 0.6 0.7 0.8 0.9 1.0
0.5

0.6

0.7

0.8

0.9

1.0

Lcd

L
c
U

d

(b) LcUd vs. Lcd (on wdbc)

0.75 0.80 0.85 0.90 0.95
0.75

0.80

0.85

0.90

0.95

Lc

L
c
U

d

(c) LcUd vs. Lc (on cod-rna)

0.75 0.80 0.85 0.90 0.95
0.75

0.80

0.85

0.90

0.95

Lcd

L
c
U

d

(d) LcUd vs. Lcd (on cod-rna)

Fig. 3 Illustrative scatter plots between LcUd and Lc, Lcd in terms of predictive accuracy
with r = 0.05. Left column: LcUd vs. Lc, Right column: LcUd vs. Lcd.

capable of achieving better performance than its counterparts (Lc and Lcd)
which do not consider employing unlabeled in ensemble generation, whenever
few or abundant labeled data is available.

Furthermore, for more intuitionistic illustration, Figure 3 gives the scatter
plots between LcUd and its compared implementations Lc and Lcd on one
regular-scale data set (wdbc) and one large-scale data set (cod-rna), with r =
0.05. Accordingly, Figure 4 gives the scatter plots with r = 0.25. In each plot,
when the ensemble size is fixed, the predictive accuracy of LcUd in each of
the 50 runs is plotted against the compared implementation with a marker ‘+’
in the figure. Obviously, LcUd achieves better performance than Lc and Lcd

as the majority of markers lie above the diagonal.

4.4 Diversity Analysis

To clearly verify that Udeed (LcUd) does increase the diversity among base
learners after generating the ensemble by utilizing unlabeled data, additional
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Fig. 4 Illustrative scatter plots between LcUd and Lc, Lcd in terms of predictive accuracy
with r = 0.25. Left column: LcUd vs. Lc, Right column: LcUd vs. Lcd.

experiments are analyzed in this subsection based on several existing diversity
measures. Specifically, four diversity measures summarized in (Kuncheva and
Whitaker 2003) are considered, whose values are calculated based on the oracle
outputs of base learners, i.e. correct or incorrect prediction for the class label.

Let m denote the number of base classifiers in the ensemble and N denote
the number of examples in the test set T . In addition, let O = [oij ]m×N be the
oracle output matrix. Here, oij = 1 if the i-th base learner correctly classifies
the j-th test example (1 ≤ i ≤ m, 1 ≤ j ≤ N). Otherwise, oij = 0. The formal
definitions of the four diversity measures are as follows:

• Disagreement measure (DIS) (Skalak 1996):

DIS =
2

m(m− 1)

m−1
∑

i=1

m
∑

k=i+1

disik, where
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disik =

∑N

j=1 oij · (1 − okj) +
∑N

j=1(1− oij) · okj

N

Here, disik represents the ratio between the number of examples on which
a pair of base classifiers make opposite predictions to the total number of
examples in T .

• Double-fault measure (DF) (Giacinto and Roli 2001):

DF =
2

m(m− 1)

m−1
∑

i=1

m
∑

k=i+1

dfik, where

dfik =

∑N

j=1(1 − oij) · (1− okj)

N

Here, dfik represents the proportion of examples in T which have been mis-
classified by both base classifiers.

• Entropy measure (ENT) (Cunningham and Carney 2000):

ENT =
1

N

N
∑

j=1

1

m− ⌈m/2⌉
min {Lj ,m− Lj} , where

Lj =

m
∑

i=1

oij

Here, Lj represents the number of base classifiers which make correct predic-
tions for the j-th test example.

• Coincident failure diversity (CFD) (Partridge and Krzanowski 1997):

CFD =











0, p0 = 1.0

1
1−p0

∑m

i=1
m−i
m−1pi, p0 < 1.0

, where

pi =

∑N

j=1 1[[i=
∑

m
k=1(1−okj)]]

N
, (0 ≤ i ≤ m)

Here, 1[[π]] is an indicator function which takes value of 1 if predicate π holds
and 0 otherwise. Accordingly, pi represents the probability that i out of m
base classifiers give incorrect predictions on a randomly drawn example from
T .

Note that DIS and DF are pairwise measures which evaluate ensemble
diversity by leveraging the relations between each pair of base classifiers, while
ENT and CFD are non-pairwise measures which evaluate ensemble diversity
from a more holistic viewpoint. In this paper, 1-DF is used instead of DF such
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Table 9 Wilcoxon signed-ranks test (at 95% significance level) for Udeed’s FINAL ensem-
ble versus its INITIAL ensemble in terms of four diversity measures. The p-value out of the
corresponding statistical test is shown in the brackets.

FINAL ensemble versus INITIAL ensemble

Labeled Ratio Ensemble Size DIS DF ENT CFD

m = 20 win [4.3e-2 ] tie [8.8e-1 ] win [3.0e-2 ] tie [1.8e-1 ]

r = 0.05 m = 50 win [3.2e-2 ] tie [8.3e-2 ] win [4.6e-2 ] tie [7.2e-2 ]

m = 100 win [4.0e-2 ] win [8.6e-3 ] win [4.0e-2 ] win [3.2e-2 ]

m = 20 win [2.6e-2 ] tie [6.8e-2 ] win [2.8e-2 ] win [4.7e-3 ]

r = 0.25 m = 50 win [3.2e-2 ] win [3.7e-2 ] win [3.0e-2 ] win [7.4e-3 ]

m = 100 win [2.8e-2 ] win [1.4e-2 ] win [3.2e-2 ] win [6.6e-3 ]

Table 10 Wilcoxon signed-ranks test (at 95% significance level) for Udeed versus Bagging

in terms of four diversity measures. The p-value out of the corresponding statistical test is
shown in the brackets.

Udeed versus Bagging

Labeled Ratio Ensemble Size DIS DF ENT CFD

m = 20 win [4.3e-2 ] tie [1.7e-1 ] win [4.0e-2 ] win [4.9e-2 ]

r = 0.05 m = 50 win [4.6e-2 ] win [4.5e-2 ] tie [5.2e-2 ] win [6.1e-3 ]

m = 100 win [4.3e-2 ] win [2.1e-2 ] win [4.3e-2 ] tie [1.4e-1 ]

m = 20 win [9.3e-3 ] tie [9.8e-2 ] win [1.2e-2 ] win [1.2e-2 ]

r = 0.25 m = 50 tie [7.8e-2 ] win [1.8e-2 ] tie [9.3e-2 ] win [2.8e-2 ]

m = 100 win [2.1e-2 ] win [1.0e-2 ] win [2.6e-2 ] win [1.2e-2 ]

Table 11 Wilcoxon signed-ranks test (at 95% significance level) for Udeed versus Ad-

aBoost in terms of four diversity measures. The p-value out of the corresponding statistical
test is shown in the brackets.

Udeed versus AdaBoost

Labeled Ratio Ensemble Size DIS DF ENT CFD

m = 20 loss [3.0e-3 ] tie [6.2e-2 ] loss [5.1e-3 ] tie [1.2e-1 ]

r = 0.05 m = 50 loss [6.1e-3 ] tie [5.1e-2 ] loss [1.4e-2 ] win [4.9e-2 ]

m = 100 loss [1.4e-3 ] win [2.8e-2 ] loss [2.4e-3 ] win [4.5e-2 ]

m = 20 loss [1.8e-5 ] tie [8.8e-1 ] loss [2.4e-5 ] loss [4.3e-3 ]

r = 0.25 m = 50 loss [1.8e-5 ] tie [6.2e-1 ] loss [1.8e-5 ] tie [7.2e-2 ]

m = 100 loss [2.7e-5 ] tie [5.1e-1 ] loss [2.7e-5 ] tie [2.1e-1 ]

that for all the measures, the greater the value the higher the diversity. In
addition, all the four measures vary between 0 and 1.

Table 9 compares Udeed’s initial diversity after ensemble initialization
with its final diversity after ensemble learning under various settings. Similar
as Table 5, Wilcoxon signed-ranks test is employed to see whether the diversity
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of Udeed’s final ensemble is significantly different from its initial ensemble.
Statistical test results at 95% significance level are summarized in Table 8,
where the p-values of respective Wilcoxon signed-ranks tests are reported in
the brackets.

Results in Table 9 indicate that: a)Udeed significantly increases the initial
ensemble diversity in terms of DIS and ENT under all the labeled ratios and
ensemble sizes; b) Udeed significantly increases the initial ensemble diversity
in terms of DF when few (r = 0.05) labeled data is available with large-

scale (m = 100) ensemble size, and when abundant (r = 0.25) labeled data
is available with medium-scale (m = 50) and large-scale (m = 100) ensemble
sizes; c) Udeed significantly increases the initial ensemble diversity in terms
of CFD when few labeled data is available with large-scale ensemble size, and
when abundant labeled data is available.

Therefore, out of all the 24 statistical comparisons (2 labeled ratios × 3
ensemble sizes × 4 diversity measures), it is rather impressive that Udeed

significantly increases the initial ensemble diversity in 79.2% cases and never
significantly decreases the initial ensemble diversity. The above results clearly
validate that Udeed can effectively exploit unlabeled data to help augment
ensemble diversity, whenever few or abundant labeled data is available.

Similar as Table 9, Table 10 and 11 also compare the final ensemble diver-
sity produced by Udeed to those of Bagging and AdaBoost respectively,
where the latter two algorithms both work under supervised setting without
considering unlabeled data for diversity augmentation. Table 10 indicates that,
out of all the 24 statistical comparisons,Udeed attains significantly higher en-
semble diversity than Bagging in 75% cases and never produces significantly
lower ensemble diversity.

However, as indicated in Table 11, although AdaBoost attains signifi-
cantly higher ensemble diversity than Udeed in 54.2% cases, this may be
achieved at the expense of base learners’ accuracies. To verify this, Wilcoxon
signed-ranks test is again employed to compare the mean accuracy of the
base learners in the ensemble returned by Udeed and AdaBoost. Statistical
test results (at 95% significance level) reveal that, when few labeled data is
available, Udeed achieves significantly superior mean base accuracy than Ad-

aBoost with small-scale ensemble size (p <6.7e-4 ), medium-scale ensemble
size (p <9.0e-4 ), and large-scale ensemble size (p <1.9e-4 ); When abundant

labeled data is available, Udeed achieves significantly superior mean base ac-
curacy than AdaBoost with small-scale ensemble size (p <1.6e-5 ), medium-

scale ensemble size (p <1.8e-5 ), and large-scale ensemble size (p <3.5e-4 ).
These results show that Udeed is capable of maintaining a healthy equilib-
rium between the ensemble diversity and accuracies.

5 Discussion

In this section, several issues related to the Udeed approach are further dis-
cussed. Firstly, the algorithmic behaviors of Udeed are analyzed regarding the
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Fig. 5 Performance of Udeed (first row) and Udeed-Ncl (second row) on the wdbc data
set changes as the cost parameter γ increases under various settings.

optimization of its objective function. After that, the relationships between
Udeed and two well-established techniques for ensemble diversity augmen-
tation commonly used in supervised setting, i.e. negative correlation learn-
ing (Liu and Yao 1999a,b) and artificial examples construction (Melville and
Mooney 2003; Melville 2005), are discussed.

5.1 Algorithmic Behavior

In this paper, the cost parameter γ (Eq.(1)) controlling the tradeoff between
the empirical and diversity losses of Udeed is set to the default value of 1.
Figure 5 (first row) illustrates the impact of γ on Udeed’s performance on one
representative data set wdbc, where γ increases from 0.5 to 1.5 with an interval
of 0.1. It is obvious that in most cases, increasing the value of γ wouldn’t
jeopardize the performance of Udeed. To avoid over-emphasizing the diversity
loss on the objective function, we choose to set γ = 1 in the experiments
reported in Section 4. However, better performance could be expected if certain
strategies such as cross-validation are utilized to finely tune the cost parameter.

As shown in Subsection 3.2, the target model of Udeed is found by op-
timizing Eq.(1) based on gradient decent -based techniques. Therefore, the re-
turned model would correspond to a local optimal solution. To roughly il-
lustrate the possibility of getting stuck in a “bad” local solution, Table 12
summarizes the statistics of accuracy out of 50 runs, where the minimal, max-
imal, and mean (together with standard deviation) values are reported for the
wdbc and cod-rna data sets. Intuitively, values that fall one standard deviation
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Table 12 Accuracy statistics out of 50 runs on the wdbc and cod-rna data sets under various
settings, where values falling one standard deviation below the mean value are regarded as
“bad” local solutions.

wdbc

r = 0.05 r = 0.25

m = 20 m = 50 m = 100 m = 20 m = 50 m = 100

Min 0.714 0.643 0.633 0.883 0.848 0.802

Max 0.880 0.912 0.717 0.961 0.915 0.894

Mean±Std. Deviation 0.802 0.710 0.661 0.927 0.885 0.852

±0.039 ±0.051 ±0.020 ±0.014 ±0.017 ±0.021

Prob. of “Bad” Loc. Sol. 22% 20% 12% 14% 16% 14%

cod-rna

r = 0.05 r = 0.25

m = 20 m = 50 m = 100 m = 20 m = 50 m = 100

Min 0.893 0.851 0.822 0.918 0.888 0.871

Max 0.909 0.860 0.829 0.922 0.893 0.875

Mean±Std. Deviation 0.902 0.855 0.825 0.920 0.891 0.873

±0.004 ±0.003 ±0.002 ±0.001 ±0.001 ±0.001

Prob. of “Bad” Loc. Sol. 16% 18% 16% 16% 16% 14%

below the mean value will be regarded as “bad” local solutions. Accordingly,
the probability of obtaining a “bad” local solution can be calculated as shown
in Table 12. It is revealed that Udeed will get stuck in a “bad” local solution
with no more than 25% probability under either data set and various settings.

As shown in Eq.(1), Udeed’s objective function V (f ,L,D) is composed of
two different terms, i.e. the empirical loss term Vemp(f ,L) and the diversity

loss term Vdiv(f ,D). To show whether these two terms are optimized with
comparable scales, we calculated the relative differences between the two losses,
i.e. ∆loss = |Vemp − Vdiv|/V (γ = 1), on the five large-scale data sets. If the
two loss terms are on quite different scales, the value of ∆loss would be rather

close to 1. Out of all the 1500 calculations (2 labeled ratios × 3 ensemble sizes
× 5 large-scale data sets × 50 runs), ∆loss is less than 0.3 in 28.9% cases, less
than 0.5 in 71% cases, and less than 0.8 in 100% cases. These results indicate
that in most cases, Udeed could maintain a reasonable balance between the
empirical loss term and diversity loss term with γ fixed to 1.

In addition to the above algorithmic behaviors, another implementation is-
sue regarding Udeed (i.e. LcUd) lies in its specific gradient descent strategy.
As shown in Subsection 3.2, the objective function of Udeed is minimized by
using the intermediate model returned by Lcd as the starting point for gradi-
ent descent optimization. To show the importance of the above choice, another
version of Udeed named Udeed-Direct is implemented which directly in-
vokes the minimization procedure without exploiting intermediate model.
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Fig. 6 Scatter plots between Udeed and Udeed-Direct on the wdbc and cod-rna data sets
in terms of predictive accuracy. Left column: r = 0.05, Right column: r = 0.25.

Figure 6 gives the scatter plots between Udeed and Udeed-Direct on
the wdbc and cod-rna data sets. In each plot, when the ensemble size is fixed,
the predictive accuracy of Udeed in each of the 50 runs is plotted against
Udeed-Direct with a marker ‘+’ in the figure. Obviously, Udeed achieves
better performance than Udeed-Direct as the majority of markers lie above
the diagonal. This clearly validates that employing the intermediate model
returned by Lcd as the starting point is quite crucial for the success of Udeed.

5.2 Diversity Augmentation

Udeed aims to build strong ensembles by exploiting unlabeled data for di-
versity augmentation. On the other hand, the idea of enhancing ensemble
diversity has been widely investigated in ensemble learning under supervised
setting. In this subsection, two existing strategies closely related to Udeed

will be discussed in more details.



Exploiting Unlabeled Data to Enhance Ensemble Diversity 27

As shown in Eq.(3),Udeedmeasures ensemble diversity by considering the
predictive difference between each pair of base classifiers on a specified data set
D. Here, the predictive difference could be viewed as a specific quantification of
correlation between two classifiers, and maximizing diversity onD is effectively
equivalent to punish correlations among base learners in the ensemble. Actu-
ally, the idea of decorrelation has been investigated in learning neural network
ensembles (Rosen 1996), and later developed into the well-known techniques
named negative correlation learning (NCL) (Brown and Wyatt 2003; Chen
and Yao 2009; Liu and Yao 1999a,b; McKay and Abbass 2001). NCL aims
to train an ensemble by introducing a correlation penalty term to the cost
function of each individual learner.

NCL was proposed for ensemble learning under supervised setting. Here
we generalize it to unlabeled data and implement the diversity loss term in
Eq.(1) by enforcing negative correlation constraints (Liu and Yao 1999a,b) on
the unlabeled data as follows:

Vdiv(f ,D) = Vdiv(f ,U)

=
1

m

m
∑

k=1

pk

=
1

m

m
∑

k=1

·
1

U

L+U
∑

i=L+1

(fk(xi)− f(xi))
∑

k′ 6=k

(fk′ (xi)− f(xi))

= −
1

mU

m
∑

k=1

L+U
∑

i=L+1

(fk(xi)− f(xi))
2 (8)

Where D corresponds to the unlabeled data set U , pk represents the diversity
loss of the k-th classifier fk on D, and f(xi) =

1
m

∑m

k=1 fk(xi) is the ensemble
output on xi. The resulting variant of Udeed is named as Udeed-Ncl. Here,
logistic regression is again utilized as the base learner and the target model
f∗ is also found by employing gradient descent-based techniques.5

It is known that using an ensemble to generate artificial data, and then
using these data to train another learner is beneficial when the data sample
does not capture the whole data distribution or contains noise (Zhou and
Jiang 2004). Melville and Mooney(2003; 2005) argued that by using artificial
example construction, the diversity can be augmented. They proposed the
Decorate approach which builds an ensemble in an iterative manner. In
each iteration, the labeled training set is enlarged with a number of randomly
constructed artificial examples, which are given labels that disagree with the
decisions of current ensemble so as to encourage diversity when building the
new ensemble base classifier. In this paper, we re-implemented the Decorate

5 Similar to Udeed, Figure 5 (second row) also illustrates the impact of γ on Udeed-Ncl’s
performance on one representative data set wdbc, where γ increases from 0.5 to 1.5 with an
interval of 0.1. It is obvious that in most cases, increasing the value of γ wouldn’t jeopardize
the performance of Udeed-Ncl. Furthermore, Udeed-Ncl tends to perform stably when γ

increases to 1. Therefore, we choose to set γ = 1 forUdeed-Ncl in the following experiments.
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Table 13 Accuracy difference for Udeed against Udeed-Ncl and Decorate under various
settings.

Udeed against

Udeed-Ncl Decorate

r = 0.05 r = 0.25 r = 0.05 r = 0.25

Data Set m=20 m=50 m=100 m=20 m=50 m=100 m=20 m=50 m=100 m=20 m=50 m=100

diabetes 0.015 0.004 0.001 0.026 0.014 0.006 -0.013 -0.038 -0.043 -0.016 -0.011 -0.043

heart 0.045 0.041 0.022 0.005 0.006 0.006 0.033 0.027 0.037 0.021 0.014 0.000

wdbc 0.128 0.058 0.018 0.074 0.056 0.034 -0.014 -0.010 -0.016 0.001 -0.001 -0.008

austra 0.060 0.044 0.020 0.011 0.009 0.009 0.001 0.003 0.007 0.002 0.009 0.012

house 0.001 0.001 -0.001 0.001 0.001 0.001 0.009 0.005 0.004 0.008 0.009 0.008

vote 0.001 0.001 0.001 0.001 0.001 0.001 0.013 0.013 0.012 0.007 0.006 0.007

vehicle 0.010 0.006 0.006 0.001 0.001 -0.002 0.013 0.001 0.001 0.005 0.001 0.016

hepatitis -0.023 -0.008 -0.002 0.008 0.003 0.007 0.064 0.056 0.045 0.034 0.007 0.007

labor 0.010 0.013 0.010 -0.007 0.001 0.001 0.040 0.012 0.002 0.005 0.003 0.008

ethn 0.001 0.002 0.001 0.001 0.001 0.001 0.003 0.008 0.007 0.002 0.003 0.001

ionosphere 0.006 0.028 0.029 0.027 0.042 0.037 -0.006 -0.011 -0.012 -0.007 -0.018 -0.003

kr vs kp 0.005 0.002 0.002 0.002 0.001 0.001 0.004 0.010 0.014 0.006 0.008 0.010

isolet 0.002 0.000 -0.001 0.001 0.001 0.001 0.050 0.025 0.022 0.024 0.003 0.004

sonar 0.016 0.003 0.004 0.007 -0.004 0.001 0.005 -0.002 -0.007 0.001 -0.002 -0.001

colic -0.013 -0.005 -0.003 -0.004 -0.001 -0.001 0.052 0.046 0.049 0.018 0.022 0.028

credit g -0.033 -0.015 -0.004 -0.016 -0.006 -0.003 -0.006 0.021 0.048 -0.006 0.005 0.010

BCI -0.001 0.004 0.003 0.004 0.001 0.004 0.001 0.003 0.004 0.004 0.008 0.009

Digit1 0.012 0.004 0.004 -0.001 0.001 -0.001 0.016 0.005 0.001 0.002 0.003 0.001

COIL2 0.014 -0.002 0.002 -0.001 -0.002 -0.004 -0.013 -0.021 -0.018 -0.012 -0.011 -0.012

g241n 0.004 -0.001 0.001 0.000 0.001 -0.002 0.033 0.026 0.014 0.001 0.002 0.003

adult -0.005 -0.001 -0.001 -0.009 -0.002 -0.001 -0.006 -0.002 -0.001 -0.009 -0.002 -0.001

web 0.001 0.003 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ijcnn1 -0.001 -0.001 -0.001 0.008 0.001 0.001 -0.001 -0.001 -0.001 0.006 0.001 0.002

cod-rna 0.009 0.002 0.003 0.010 0.001 0.003 0.076 0.029 0.002 0.069 0.040 0.022

forest 0.004 0.002 0.004 0.003 0.002 0.002 0.007 0.009 0.006 0.004 0.001 0.001

Table 14 Wilcoxon signed-ranks test (at 95% significance level) for Udeed versus Udeed-

Ncl and Decorate. The p-value out of the corresponding statistical test is shown in the
brackets.

Udeed versus

Labeled Ratio Ensemble Size Udeed-Ncl Decorate

m = 20 win [2.3e-2 ] win [1.9e-2 ]

r = 0.05 m = 50 win [2.3e-2 ] win [2.3e-2 ]

m = 100 win [8.0e-3 ] tie [5.8e-2 ]

m = 20 win [2.8e-2 ] win [4.0e-2 ]

r = 0.25 m = 50 win [2.1e-2 ] win [3.0e-2 ]

m = 100 win [2.8e-2 ] win [2.2e-2 ]

approach for comparative studies. For the sake of fair comparison, the number
of artificial examples constructed by Decorate in each iteration is the same
as the number of unlabeled data used by Udeed, i.e. |U|.

Table 13 reports the difference in performance of Udeed against Udeed-

Ncl and Decorate under various settings. On each data set, the mean pre-
dictive accuracy differences out of 50 runs are recorded. Wilcoxon signed-ranks
test is employed to see whether Udeed is significantly different from Udeed-

Ncl and Decorate. Table 14 summarizes the statistical test results at 95%
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significance level, where the p-values of respective Wilcoxon signed-ranks tests
are reported in the brackets.

As shown in Table 14, Udeed achieves significantly superior performance
than Udded-Ncl under different labeled ratios and ensemble sizes. Note that
for Udeed, the diversity is calculated based on the pairwise predictive dif-
ference between each pair of base classifiers where no ground-truth labels on
the unlabeled data are assumed (Eq.(3)). While for Udeed-Ncl, the diver-
sity is calculated based on the diversity loss of each individual base classifier
where the outputs of ensemble implicitly serve as the ground-truth labels on
the unlabeled data (Eq.(8)).

In addition, Table 14 shows that Udeed achieves statistically compara-
ble performance to Decorate under one setting (r = 0.05, m = 100), and
achieves significantly superior performance under all the other settings. Note
that the working mechanisms of using unlabeled data (Udeed) and using arti-
ficial data (Decorate) are quite different. By using unlabeled data, the learn-
ing system can exploit the underlying distributional information concealed in
unlabeled data. While by using artificial data, the randomly constructed arti-
ficial examples may not truly reflect the underlying distributions and therefore
lead to possible overfitting of the learned system.

6 Conclusion

There have been many works trying to maximize diversity for ensemble con-
struction, yet they are mainly based on using labeled data. On the other hand,
there were some studies trying to use unlabeled data, yet they focus on using
unlabeled data to improve accuracy. This paper proposes a new approach on
ensemble learning with unlabeled data (Zhang and Zhou 2010), which works
by maximizing accuracy on labeled data while maximizing diversity on unla-
beled data. The major contribution of our work is to use unlabeled data to
augment diversity, which suggests a new direction for ensemble design.

Extensive experiments on twenty-five data sets show that: a)Udeed achieves
highly comparable performance against other successful (semi-supervised) en-
semble methods; b) Udeed does benefit from unlabeled data by using them
to augment the diversity among base learners. In the future, it is interesting
to see whether Udeed works well with other base learners. It would be in-
sightful to analyze why Udeed can achieve good performance theoretically.
Furthermore, designing other ensemble methods by exploiting unlabeled data
to augment ensemble diversity gracefully and extending to categorical features
and multi-class classification is a direction very worth studying.
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application to boosting. In: Vitányi PMB (ed) Lecture Notes in Computer Science 904,
Springer, Berlin, pp 23–37

Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classifica-
tion processes. Image and Vision Computing 19(9/10):699–707

Hettich S, Bay SD (1998) The UCI KDD archive [http://kdd.ics.uci.edu]. Tech. rep., De-
partment of Information and Computer Science, University of California, Irvine, CA

Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning.
In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in Neural Information Processing
Systems 7, MIT Press, Cambridge, MA, pp 231–238

Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their
relationship with the ensemble accuracy. Machine Learning 51(2):181–207

Li M, Zhou ZH (2005) SETRED: Self-training with editing. In: Proceedings of the 9th
Pacific-Asia Conference on Knowledge Discovery and Data mining, Hanoi, Vietnam, pp
611–621

Li M, Zhou ZH (2007) Improve computer-aided diagnosis with machine learning techniques
using undiagnosed samples. IEEE Transactions on Systems, Man and Cybernetics - Part
A: Systems and Humans 37(6):1088–1098

Liu Y, Yao X (1999a) Ensemble learning via negative correlation. Neural Networks
12(10):1399–1404



Exploiting Unlabeled Data to Enhance Ensemble Diversity 31

Liu Y, Yao X (1999b) Simultaneous training of negatively correlated neural networks in an
ensemble. IEEE Transactions on Systems, Man and Cybernetics-Part B: Cybernetics
29(6):716–725

Lu X, Jain AK (2004) Ethnicity identification from face images. In: Proceedings of SPIE
International Symposium on Defense and Security, Kissimmee, FL, pp 114–123

Mallapragada PK, Jin R, Jain AK, Liu Y (2009) Semiboost: Boosting for semi-supervised
learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(11):2000–
2014

Mason L, Bartlett P, Baxter J, Frean M (2000) Functional gradient techniques for combining
hypotheses. In: Smola A, Bartlett P, Schölkopf B, Schuurmans D (eds) Advances in Large
Margin Classifiers, MIT Press, Cambridge, MA, pp 221–246

McKay R, Abbass H (2001) Analyzing anticorrelation in ensemble learning. In: Proceedings
of 2001 Conference on Artificial Neural Networks and Expert Systems, Otago, New
Zealand, pp 22–27

Melville P (2005) Creating diverse ensemble classifiers to reduce supervision. PhD thesis,
Department of Computer Sciences, University of Texas at Austin, Austin, TX

Melville P, Mooney RJ (2003) Constructing diverse classifier ensembles using artificial train-
ing examples. In: Proceedings of the 18th International Joint Conference on Artificial
Intelligence, Acapulco, Mexico, pp 505–510

Opitz DW (1999) Feature selection for ensembles. In: Proceedings of the 16th National
Conference on Artificial Intelligence, Orlando, FL, pp 379–384

Opitz DW, Shavlik JW (1996) Actively searching for an effective neural network ensemble.
Connection Science 8(3&4):337–353

Partridge D, Krzanowski WJ (1997) Software diversity: Practical statistics for its measure-
ment and exploitation. Information and Software Technology 39(10):707–717

Rosen BE (1996) Ensemble learning using decorrelated neural networks. Connection Science
8(3):373–383

Saffari A, Grabner H, Bischof H (2008) SERboost: Semi-supervised boosting with expec-
tation regularization. In: Proceedings of the 10th European Conference on Computer
Vision, Marseille, France, pp 588–601

Saffari A, Leistner C, Bischof H (2009) Regularized multi-class semi-supervised boosting.
In: Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, Miami, FL, pp 967–974

Skalak D (1996) The sources of increased accuracy for two proposed boosting algorithms.
In: Working Notes of AAAI-96 Workshop on Integrating Multiple Learned Models for
Improving & Scaling Machine Learning Algorithms, Portland, OR

Valizadegan H, Jin R, Jain AK (2008) Semi-supervised boosting for multi-class classifica-
tion. In: Proceedings of the 19th European Conference on Machine Learning, Antwerp,
Belgium, pp 522–537

Wilcoxon F (1945) Individual comparisons by ranking methods. Biometrics 1:80–83
Wolpert DH (1992) Stacked generalization. Neural Networks 5(2):241–259
Zhang ML, Zhou ZH (2010) Exploiting unlabeled data to enhance ensemble diversity. In:

Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Aus-
tralia, pp 619–628

Zhang ML, Zhou ZH (in press) CoTrade: Confident co-training with data editing. IEEE
Transactions on Systems, Man and Cybernetics - Part B: Cybernetics

Zhou ZH (2009a) Ensemble learning. In: Li SZ (ed) Encyclopedia of Biometrics, Springer,
Berlin

Zhou ZH (2009b) When semi-supervised learning meets ensemble learning. In: Proceedings
of the 8th International Workshop on Multiple Classifier Systems, Reykjavik, Iceland,
pp 529–538

Zhou ZH, Jiang Y (2004) NeC4.5: Neural ensemble based C4.5. IEEE Transactions on
Knowledge and Data Engineering 16(6):770–773

Zhou ZH, Li M (2005) Tri-training: Exploiting unlabeled data using three classifiers. IEEE
Transactions on Knowledge and Data Engineering 17(11):1529–1541

Zhou ZH, Li M (2010) Semi-supervised learning by disagreement. Knowledge and Informa-
tion Systems 24(3):415–439



32 Min-Ling Zhang, Zhi-Hua Zhou

Zhou ZH, Zhan DC, Yang Q (2007) Semi-supervised learning with very few labeled train-
ing examples. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence,
Vancouver, Canada, pp 675–680

Zhu X (2006) Semi-supervised learning literature survey. Tech. Rep. 1530, Department of
Computer Science, University of Wisconsin at Madison, Madison, WI


