Chapter 4

Nonparametric Techniques

Bayes Theorem for Classification\n
$$
\begin{bmatrix}\nP(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j) \cdot P(\omega_j)}{p(\mathbf{x})} & (1 \leq j \leq c) & \text{(Bayes Formula)} \\
\text{To compute posterior probability } P(\omega_j|\mathbf{x}), \text{ we need to know:}\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\n\text{Prior probability: } P(\omega_j) & \text{Likelihood: } p(\mathbf{x}|\omega_j) \\
\text{Linear probability: } P(\omega_j) & \text{Likelihood: } p(\mathbf{x}|\omega_j)\n\end{bmatrix}
$$

Case I: $p(\mathbf{x}|\omega_j)$ has certain **parametric form** $p(\mathbf{x}|\omega_j, \boldsymbol{\theta}_j)$

Maximum-Likelihood (ML) Estimation

Bayesian Parameter Estimation

Pattern Recognition Spring Semester (1997) 2

Bayes Theorem for Classification (Cont.) Potential problems for Case I The assumed parametric form may not fit the ground-truth density encountered in practice, e.g.: *Assumed parametric form*: Unimodal (单峰, such as Gaussian pdf) *Ground-truth form*: Multimodal (多峰)

 \Box **Case II:** $p(\mathbf{x}|\omega_i)$ doesn't have **parametric form**

Let the data speak for themselves!

Parzen Windows

kn-nearest-neighbor

Density Estimation

General settings

Feature space: $\mathcal{F} = \mathbf{R}^d$

Feature vector: $x \in \mathcal{F}$

pdf function: $\mathbf{x} \sim p(\cdot)$

Fundamental fact

The probability of a vector **x falling into a region** $\mathcal{R} \subset \mathcal{F}$:

$$
P = \Pr[\mathbf{x} \in \mathcal{R}] = \int_{\mathcal{R}} p(\mathbf{x}') d\mathbf{x}
$$

A smoothed/averaged version of $p(x)$

Density Estimation (Cont.)
$$
Pr[x \notin \mathcal{R}] = 1 - P
$$

\n
$$
\begin{array}{ccc}\nP = Pr[x \in \mathcal{R}] = \int_{\mathcal{R}} p(x') dx' \\
\downarrow \qquad \qquad \downarrow \qquad \down
$$

Pattern Recognition Spring Semester (1997)

X will take Binomial

distribution (二项分布):

 $X \sim \mathcal{B}(n, P)$

Density Estimation (Cont.)

Density Estimation (Cont.)

 \mathcal{R} \longrightarrow \mathcal{R}_n (containing **x**) To show the explicit relationships with *n*: $p(\mathbf{x}) = \frac{k/n}{V}$ $\longrightarrow p_n(\mathbf{x}) = \frac{k_n/n}{V_n}$ *V*_{*n*}: volume of \mathcal{R}_n *n*: # training examples Quantities: *kn* : # training examples falling within Fix V_n and determine k_n **Parzen Windows** Fix k_n and determine V_n \longrightarrow k_n -nearest-neighbor Pattern Recognition Spring Semester ($\sqrt{2}$) 8

Parzen Windows

Assume \mathcal{R}_n is a *d*-dimensional hypercube (超立方体) , $V_n = h_n^d$ The length of each edge is *hⁿ*

i Determine k_n with window function (窗口函数), a.k.a. kernel function (核函数), potential **¦function** (势函数), etc.

Emanuel Parzen (1929-)

 $\psi(\cdot)$ is not limited to be the hypercube window function of $\mathrm{[Eq.9\ [pp.164]}$ $\varphi(\mathbf{u}) \geq 0$

$$
\varphi(\cdot)
$$
 could be any
pdf function: $\int \varphi(\mathbf{u}) d\mathbf{u} = 1$

$$
p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \qquad (V_n = h_n^d)
$$
\n
$$
\varphi(\cdot) \text{ being a pdf function } \downarrow p_n(\cdot) \text{ being a pdf function}
$$
\n
$$
\downarrow p_n(\mathbf{x}) \, dx = \frac{1}{n V_n} \sum_{i=1}^n \int \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \, dx \qquad \text{Integration by}
$$
\n
$$
= \frac{1}{n V_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, d(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, d(\mathbf{u}) = 1
$$
\n
$$
\downarrow p_n(\mathbf{x}) \, dx = \frac{1}{n V_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, d(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, d(\mathbf{u}) = 1
$$
\n
$$
\downarrow p_n(\mathbf{x}) \, d(\mathbf{u}) = \frac{1}{n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, d(\mathbf{u}) = 1
$$
\n
$$
\downarrow p_n(\mathbf{x}) \, d(\mathbf{x}) = \frac{1}{n V_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, d(\mathbf{u}) = \frac{1}{n V_n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, d(\mathbf{u}) = 1
$$
\n
$$
\downarrow p_n(\mathbf{x}) = \frac{1}{n V_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, d(\mathbf{u}) = \frac{1}{n V_n} \sum_{i=1}^n \int \varphi(\mathbf{u}) \, d(\mathbf{u}) = 1
$$
\n
$$
\downarrow p_n(\mathbf{x}) = \frac{1}{n V_n} \sum_{i=1}^n \int h_n^d \varphi(\mathbf{u}) \, d(\mathbf{u}) = \frac{1}{n V_n} \sum_{i=1}^n \int \varphi(\mathbf{u})
$$

Parzen pdf:
$$
p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \quad (V_n = h_n^d)
$$

 $\varphi(\cdot)$ being a pdf function $\rho_n(\cdot)$ being a pdf function

$$
\delta_n(\mathbf{x}) = \frac{1}{V_n} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \quad \boxed{}
$$

$$
p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i)
$$

-
- What is the effect of h_{n} ("window width") on the Parzen pdf?
- *pⁿ* (**x**): **superposition** (叠加) of *n* interpolations (插值)
- \blacksquare **x**_{*i*}: contributes to $p_n(\mathbf{x})$ based on its **"distance"** from **x** $(i.e. "x-x_i")$

Suppose $\varphi(\cdot)$ being a 2-d *Gaussian pdf*

The shape of $\delta_n(x)$ with decreasing values of h_n

$$
\sum_{i=1}^{n} p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^{n} \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \frac{1}{h_n^d}
$$

where $\delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right) \frac{1}{h_n^d}$

 \Box *h*^{*n*} very large → *δ*_{*n*}(**x**) being *broad* with *small amplitude pn* (**x**) will be the superposition of *n* broad, slowly changing (慢变) functions, i.e. being *smooth* (平滑) with *low resolution* (低分辨率)

\Box *h*_n very small \rightarrow $\delta_n(x)$ being *sharp* with *large amplitude*

pn (**x**) will be the superposition of *n* sharp pulses (尖脉冲), i.e. being *variable*/*unstable* (易变) with *high resolution* (高分辨率) A compromised value $(\text{--} \mathbb{R} \bar{\mathbb{R}} \hat{\mathbb{I}})$ of h_n should be sought for limited number of training examples

More illustrations: Subsection 4.3.3 [pp.168]

$$
p_n(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n \delta_n(\mathbf{x} - \mathbf{x}_i), \text{ where } \delta_n(\mathbf{x}) = \frac{1}{h_n^d} \varphi\left(\frac{\mathbf{x}}{h_n}\right)
$$

Suppose $\varphi(\cdot)$ being a 2-d *Gaussian pdf* and *n*=5

The shape of $p_n(x)$ with decreasing values of h_n

 k_n -Neareast-Neighbor

$$
p_n(\mathbf{x}) = \frac{k_n/n}{V_n}
$$
 Fix k_n , and then determine V_n

specify $k_n \rightarrow$ center a cell about $\mathbf{x} \rightarrow$ grow the cell until capturing k_n *nearest examples* \rightarrow return cell volume as V_n

kn -Neareast-Neighbor (Cont.)

Eight points in one dimension $(n=8, d=1)$

red curve: $k_n = 3$

black curve: $k_n = 5$

Thirty-one points in two dimensions (*n*=31, *d*=2)

black surface: $k_n = 5$

Related Topic

Nearest Neighbor Rule & Distance Metric

Nearest-Neighbor (NN) Rule (最近邻准则)

Classification with nearest-neighbor rule

Given the label space $\Omega = {\omega_1, \omega_2, \dots, \omega_c}$ and a set of *n* labeled training examples $\mathcal{D}^n = \{(\mathbf{x}_i, \theta_i) | 1 \leq i \leq n\}$, where $\mathbf{x}_i \in \mathbb{R}^d$ and $\theta_i \in \Omega$

for test example **x**, *identify* $\mathbf{x}' = \operatorname{argmin}_{\mathbf{x}_i \in \{\mathbf{x}_1, ..., \mathbf{x}_n\}} D(\mathbf{x}_i, \mathbf{x})$ *and then assign the label* θ' *associated with* x' to x

 $D(\mathbf{a}, \mathbf{b})$: distance metric between two vectors **a** and **b**, e.g. the *Euclidean distance*

Basic assumption:

$$
P(\omega_i \mid \mathbf{x}') \simeq P(\omega_i \mid \mathbf{x})
$$

as $n \to \infty$

Voronoi tessellation (维诺图)

Each training example **x** leads to a cell in the Voronoi tessellation

> *any point in the cell is closer to* **x** *than to any other training examples*

- *partition the feature space into n cells*
- *any point in the cell shares the same class label as* **x**

Error Rate of Nearest Neighbor Rule

- $P(e | x)$: The probability of making an erroneous classification on **x** based on nearest-neighbor rule
	- $P(e)$: The **average probability of error** based on nearest-neighbor rule: $P(e) = \int P(e | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$
- $P^*(e | \mathbf{x})$: The **minimum** possible value of $P(e | \mathbf{x})$, i.e. the one given by *Bayesian decision rule*: $P^*(e | \mathbf{x}) = 1 - \max_{1 \le i \le c} P(\omega_i | \mathbf{x})$

 $P^*(e)$: The **Bayes risk** (*under zero-one loss*): $P^*(e) = \int P^*(e | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$

Error bounds of nearest neighbor rule $P^*(e) \le P(e) \le P^*(e) \left(2 - \frac{c}{c-1}P^*(e)\right)$ (*c*: # class labels)

k-Nearest-Neighbor (*k*NN) Rule (*k-*近邻准则)

Classification with k-nearest-neighbor rule

Given the label space $\Omega = {\omega_1, \omega_2, \dots, \omega_c}$ and a set of *n* labeled training examples $\mathcal{D}^n = \{(\mathbf{x}_i, \theta_i) \mid 1 \leq i \leq n\}$, where $\mathbf{x}_i \in \mathbb{R}^d$ and $\theta_i \in \Omega$

for test example **x**, *identify* $S' = {\mathbf{x}_i | \mathbf{x}_i$ is among the kNN of **x** and *then assign the most frequent label w.r.t.* S', *i.e.* $\arg \max_{\omega_i \in \Omega} \sum_{\mathbf{x}_i \in S'} 1_{\theta_i = \omega_i}$ *to* X .

 1_{π} : an indicator function which returns 1 if predicate π holds, and *0 otherwise*

For binary classification problem (c=2), an odd value of k is generally used to avoid ties

k-Nearest-Neighbor (*k*NN) Rule (Cont.)

 $c=2$, $k=5$ the error rate of kNN rule (i.e. P) lower-bounded by the Bayes risk (i.e. P*) for binary classification (c=2)

Computational Complexity of *k*NN Rule

Given *n* labeled training examples in *d*-dimensional feature space, the computational complexity of classifying one test example is $O(dn)$

General ways of reducing computational burden

Partial distance:
$$
D_r(\mathbf{a}, \mathbf{b}) = \left(\sum_{j=1}^r (a_j - b_j)^2\right)^{\frac{1}{2}}
$$
 $(r < d)$

Pre-structuring:

create some form of search tree, where nearest neighbors are recursively identified following the tree structure

Editing/Pruning/Condensing:

eliminate "redundant" ("useless") examples from the training set, e.g. example surrounded by training examples of the same class label

Properties of Distance Metric

The NN/kNN rule depends on the use of distance metric to identify nearest neighbors

Four properties of distance metric

 \Box non-negativity: $D(\mathbf{a}, \mathbf{b}) \geq 0$

 \Box **reflexivity:** $D(\mathbf{a}, \mathbf{b}) = 0$ if and only if $\mathbf{a} = \mathbf{b}$

 \square **symmetry:** $D(\mathbf{a}, \mathbf{b}) = D(\mathbf{b}, \mathbf{a})$

 \blacksquare **triangle inequality:** $D(\mathbf{a}, \mathbf{b}) + D(\mathbf{b}, \mathbf{c}) \ge D(\mathbf{a}, \mathbf{c})$

Potential Issue of Euclidean Distance

Scaling the features change the distance relationship

Possible solution: normalize each feature into equal-sized intervals, e.g. [0, 1]

Minkowski Distance Metric

$$
L_k(\mathbf{a}, \mathbf{b}) = \left(\sum_{j=1}^d |a_j - b_j|^k\right)^{\frac{1}{k}} \quad (k > 0)
$$

 $(a.k.a. L_k norm)$

k=2: *Euclidean* distance

k=1: *Manhattan* distance (*city block* distance)

$$
L_1(\mathbf{a}, \mathbf{b}) = \sum_{j=1}^d |a_j - b_j|
$$

 $\Box k = \infty : L_{\infty}$ distance

$$
L_{\infty}(\mathbf{a}, \mathbf{b}) = \max_{1 \leq j \leq d} |a_j - b_j|
$$

Pattern Recognition Spring Semester (1997) 30

Distance Metric Between Sets

Tanimoto distance

$$
D_{Tanimoto}(S_1, S_2) = \frac{n_1 + n_2 - 2n_{12}}{n_1 + n_2 - n_{12}}
$$

$$
(n_1 = |S_1|, n_2 = |S_2|, n_{12} = |S_1 \cap S_2|)
$$

Example: treat each word as a set of characters *Which word out of 'cat', 'pots' and 'patches' mostly resembles 'pat'?*

$$
S_1 = \{p, a, t\}
$$

\n
$$
S_2 = \{c, a, t\}
$$

\n
$$
S_3 = \{p, o, t, s\}
$$

\n
$$
S_4 = \{p, a, t, c, h, e, s\}
$$

\n
$$
D_{Tanimoto}(S_1, S_3) = \frac{3+4-2*2}{3+4-2} = 0.6
$$

\n
$$
S_5 = \{p, a, t, c, h, e, s\}
$$

\n
$$
D_{Tanimoto}(S_1, S_4) = \frac{3+7-2*3}{3+7-3} = 0.571
$$

Pattern Recognition Spring Semester (Water 31

 Q_1 Q_2

 Ω

cat

Distance Metric Between Sets (Cont.)

Hausdorff distance

$$
D_H(S_1, S_2) = \max\left(\max_{\mathbf{s}_1 \in S_1} \min_{\mathbf{s}_2 \in S_2} D(\mathbf{s}_1, \mathbf{s}_2), \max_{\mathbf{s}_2 \in S_2} \min_{\mathbf{s}_1 \in S_1} D(\mathbf{s}_2, \mathbf{s}_1)\right)
$$

 $(D(\mathbf{s}_1, \mathbf{s}_2))$: any distance metric between \mathbf{s}_1 and \mathbf{s}_2)

Example: Hausdorff distance between two sets of feature vectors

 $S_1 = \{(0.1, 0.2)^t, (0.3, 0.8)^t\}$ $S_2 = \{(0.5, 0.5)^t, (0.7, 0.3)^t\}$

 $D_H(S_1, S_2) = \max(\max(0.5, 0.36), \max(0.36, 0.61))$

 $=$ max $(0.5, 0.61)$

 $= 0.61$

Summary

- Basic settings for nonparametric techniques
	- \Box Let the data speak for themselves
		- Parametric form not assumed for class-conditional pdf
	- **□** Estimate class-conditional pdf from training examples **→ Make predictions based on Bayes Formula**
- **Fundamental result in density estimation** *n*: # training examples
	- V_n : volume of region \mathcal{R}_n containing **x**

kn : # training examples falling within

Summary (Cont.)

- **Parzen Windows: Fix** V_n \rightarrow **Determine** k_n
	- Effect of *hⁿ* (window width): A compromised value for a fixed number of training examples should be chosen

 $\frac{1}{n}p_n(\mathbf{x}) = \frac{1}{n}\sum_{i=1}^n \frac{1}{V_n} \varphi\left(\frac{\mathbf{x} - \mathbf{x}_i}{h_n}\right) \quad (V_n = h_n^d)$ $\phi(\cdot)$ being a pdf function \Box $p_n(\cdot)$ being a pdf function window function window training **N** Parzen + width data + pdf $p_n(\cdot)$ (being pdf)

Summary (Cont.)

 \blacksquare k_n -nearest-neighbor: Fix k_n \rightarrow Determine V_n

specify $k_n \rightarrow$ center a cell about $\mathbf{x} \rightarrow$ grow the cell until capturing k_n *nearest examples* \rightarrow return cell volume as V_n

Summary (Cont.)

- **Nearest neighbor (NN) rule & distance metric**
	- Classification with NN rule: Voronoi tessellation
	- Error bounds of NN rule w.r.t. Bayes risk

$$
P^*(e) \le P(e) \le P^*(e) \left(2 - \frac{c}{c-1}P^*(e)\right)
$$

- Classification with *k*NN rule
- **□** Reducing computational complexity
	- *Partial distance, pre-structuring, Editing/Pruning/Condensing*
- **Distance metric**
	- *non-negativity, reflexivity, symmetry, triangle inequality*
	- *Minkowski distance, Tanimoto distance, Hausdorff distance*

