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Chapter 4

Nonparametric Techniques
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Bayes Theorem for Classification

To compute posterior probability            , we need to know:

Prior probability: Likelihood:

 Case I:                has certain parametric form

Maximum-Likelihood (ML) Estimation

Bayesian Parameter Estimation
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Bayes Theorem for Classification (Cont.)

 Case II:                doesn’t have parametric form

Potential problems for Case I

The assumed parametric form may not fit the ground-truth 

density encountered in practice, e.g.:

Assumed parametric form: Unimodal (单峰, such as Gaussian pdf)

Ground-truth form: Multimodal (多峰)

Let the data 

speak for 

themselves!

Parzen Windows

kn-nearest-neighbor
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Density Estimation

General settings

Feature space: 

Feature vector: 

pdf function: 

How to estimate 

p(x) from the 

training examples?

Fundamental fact

The probability of a vector x falling into a region :

A smoothed/averaged 

version of p(x)
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Density Estimation (Cont.)

Given n examples (i.i.d.) {x1, x2, … , xn} with 

Let X be the (discrete) random variable representing the 

number of examples falling into 

X will take Binomial 

distribution (二项分布): 
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Density Estimation (Cont.)

Table 3.1 [pp.109]

Assume      is small 

p() hardly varies 

within 
(x is a point within     ) 

(V is the volume enclosed by     ) 
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Density Estimation (Cont.)

X peaks sharply

about          when 

n is large enough

Let k be the actual value of X

after observing the i.i.d. training 

examples {x1, x2, … , xn}
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Density Estimation (Cont.)

To show the explicit 

relationships with n:

Fix Vn and determine kn Parzen Windows

Fix kn and determine Vn kn-nearest-neighbor

Vn: volume of n: # training examples

kn: # training examples falling within
Quantities:

(containing x)
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Parzen Windows

Emanuel Parzen

(1929-)

Fix Vn, and then determine kn

Assume       is a d-dimensional 

hypercube (超立方体)

The length of each edge is hn

Determine kn with window function (窗口函数), 

a.k.a. kernel function (核函数), potential 

function (势函数), etc.
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Parzen Windows (Cont.)

Window function:
1

0     otherwise

defines a unit hypercube 

centered at the origin

xi falls within the hypercube 

of volume Vn centered at x
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Parzen Windows (Cont.)

An average of functions 

of x and xi

is not limited to be the hypercube window function of 

Eq.9 [pp.164]

could be any 

pdf function:
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Parzen Windows (Cont.)

being a pdf function being a pdf function

window function 

(being pdf)

Integration by 

substitution (换元积分)

window 

width
+

training 

data
+

Parzen

pdf
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Parzen Windows (Cont.)

Parzen pdf:

 pn(x): superposition (叠加) 

of n interpolations (插值)

 xi: contributes to pn(x) based 

on its “distance” from x

(i.e. “x-xi”)

being a pdf function being a pdf function

What is the effect of 

hn (“window width”) on 

the Parzen pdf?
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Parzen Windows (Cont.)

Affects the amplitude

(vertical scale, 幅度)

The effect of hn (“window width”)

Affects the width

(horizontal scale, 宽度)

For          :

What do “amplitude” 

and “width” mean 

for a function?

(amplitude)

(width)

For           :
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Parzen Windows (Cont.)

Integration by substitution

δn() being a 

pdf function

Function amplitude

(vertical scale)

Function width

(horizontal scale)

Function amplitude

(vertical scale)

Function width

(horizontal scale)

Case I Case II
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Parzen Windows (Cont.)

Suppose          being a 2-d 

Gaussian pdf

The shape of δn(x) with decreasing values of hn

h=1.0 h=0.5 h=0.2
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Parzen Windows (Cont.)

 hn very large  δn(x) being broad with small amplitude

pn(x) will be the superposition of n broad, slowly changing (慢变) 

functions, i.e. being smooth (平滑) with low resolution (低分辨率)

 hn very small  δn(x) being sharp with large amplitude

pn(x) will be the superposition of n sharp pulses (尖脉冲), i.e. 

being variable/unstable (易变) with high resolution (高分辨率)

A compromised value (折衷值) of hn should be 

sought for limited number of training examples
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Parzen Windows (Cont.)

Suppose          being a 2-d Gaussian pdf and n=5

The shape of pn(x) with decreasing values of hn

h=1.0 h=0.5 h=0.2

More illustrations: 

Subsection 4.3.3 [pp.168]
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kn-Neareast-Neighbor

Fix kn, and then determine Vn

specify kn  center a cell about x grow the cell until 

capturing kn nearest examples  return cell volume as Vn

The principled rule to specify kn [pp.175]

A rule-of-thumb

choice for kn:
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kn-Neareast-Neighbor (Cont.)

Eight points in one dimension 

(n=8, d=1)

red curve: kn=3

black curve: kn=5

Thirty-one points in two 

dimensions (n=31, d=2)

black surface: kn=5
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Related Topic

Nearest Neighbor Rule &

Distance Metric
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Nearest-Neighbor (NN) Rule 

(最近邻准则)
Classification with nearest-neighbor rule

Given the label space                                        and a set of n labeled training 

examples                                               , where                and  

for test example    , identify                                                        and then 

assign the label      associated with      to  

distance metric between two vectors a and b, e.g. the 

Euclidean distance

Basic assumption:
as
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Voronoi tessellation (维诺图)

Each training example x

leads to a cell in the 

Voronoi tessellation

 any point in the cell is 
closer to x than to any 
other training 
examples

 partition the feature 
space into n cells

 any point in the cell 
shares the same class 
label as x
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Error Rate of Nearest Neighbor Rule

The probability of making an erroneous classification on x

based on nearest-neighbor rule 

The average probability of error based on nearest-neighbor 

rule: 

The minimum possible value of               , i.e. the one given 

by Bayesian decision rule:  

The Bayes risk (under zero-one loss):

Error bounds of nearest neighbor rule

(c: # class labels)
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k-Nearest-Neighbor (kNN) Rule 

(k-近邻准则)
Classification with k-nearest-neighbor rule

Given the label space                                        and a set of n labeled training 

examples                                               , where                and  

for test example    , identify                                                                 and 

then assign the most frequent label w.r.t.     , i.e. 

to    . 

an indicator function which returns 1 if predicate     holds, and 

0 otherwise

For binary classification problem (c=2), an odd value 
of k is generally used to avoid ties
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k-Nearest-Neighbor (kNN) Rule (Cont.)

c=2, k=5 the error rate of kNN rule 
(i.e. P) lower-bounded by 
the Bayes risk (i.e. P*) for 
binary classification (c=2)
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Computational Complexity of kNN Rule

Given n labeled training examples in d-dimensional feature space, the 

computational complexity of classifying one test example is

General ways of reducing computational burden

 Partial distance:

 Pre-structuring:

create some form of search tree, where nearest neighbors are 

recursively identified following the tree structure

 Editing/Pruning/Condensing:

eliminate “redundant” (“useless”) examples from the training 

set, e.g. example surrounded by training examples of the same 

class label
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Properties of Distance Metric

The NN/kNN rule depends on the use of distance 

metric to identify nearest neighbors

Four properties of distance metric

 non-negativity:

 reflexivity:

 symmetry:

 triangle inequality:
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Potential Issue of Euclidean Distance

(Euclidean distance)

Scaling the features  change the distance relationship

Possible solution: normalize each feature into equal-sized 
intervals, e.g. [0, 1]
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Minkowski Distance Metric

 k=2:  Euclidean distance

 k=1:  Manhattan distance (city block distance)

(a.k.a.      norm)

 k=     :       distance
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Distance Metric Between Sets

Tanimoto distance

Example: treat each word as a set of characters

Which word out of ‘cat’, ‘pots’ and ‘patches’ mostly 

resembles ‘pat’?
cat
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Distance Metric Between Sets (Cont.)

Hausdorff distance

(                 any distance metric between s1 and s2)

Example: Hausdorff distance between two sets of 

feature vectors
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Summary

 Basic settings for nonparametric techniques

 Let the data speak for themselves

 Parametric form not assumed for class-conditional pdf

 Estimate class-conditional pdf from training examples 

Make predictions based on Bayes Formula

 Fundamental result in density estimation

Vn: volume of region       containing x

n: # training examples

kn: # training examples falling within
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Summary (Cont.)

 Parzen Windows: Fix Vn  Determine kn

 Effect of hn (window width): A compromised value for 

a fixed number of training examples should be chosen

being a pdf function being a pdf function

window function 

(being pdf)

window 

width
+

training 

data
+

Parzen

pdf
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Summary (Cont.)

 kn-nearest-neighbor: Fix kn  Determine Vn

specify kn  center a cell about x grow the cell until 

capturing kn nearest examples  return cell volume as Vn

The principled rule to specify kn [pp.175]

A rule-of-thumb

choice for kn:
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Summary (Cont.)

 Nearest neighbor (NN) rule & distance metric

 Classification with NN rule: Voronoi tessellation

 Error bounds of NN rule w.r.t. Bayes risk

 Classification with kNN rule

 Reducing computational complexity

 Partial distance, pre-structuring, Editing/Pruning/Condensing

 Distance metric

 non-negativity, reflexivity, symmetry, triangle inequality

 Minkowski distance, Tanimoto distance, Hausdorff distance


