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Chapter 2

Bayesian Decision Theory
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Decision Theory

Pattern Recognition

Pattern  Category

Decision

Make choice under 
uncertainty

Given a test sample, its category is uncertain 
and a decision has to be made

In essence, PR is a decision process
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Bayesian Decision Theory

Bayesian decision theory is a statistical approach to 
pattern recognition

The fundamentals of most PR algorithms are rooted 
from Bayesian decision theory

Basic Assumptions

 The decision problem is posed (formalized) in 

probabilistic terms

 All the relevant probability values are known

Key Principle

Bayes Theorem (贝叶斯定理)
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Bayes Theorem

Thomas Bayes

(1702-1761)

X: the observed sample (also called evidence; e.g.: the length of a fish)

H: the hypothesis (e.g. the fish belongs to the “salmon” category)

P(H|X): the posterior probability (后验概率) that H holds 

given X (e.g. the probability of X being salmon given its length 

is 3-inch)

P(X|H): the likelihood (似然度) of observing X given that H

holds (e.g. the probability of observing a 3-inch length fish 

which is salmon)

P(H): the prior probability (先验概率) that H holds (e.g. the 

probability of catching a salmon)

P(X): the evidence probability that X is observed 

(e.g. the probability of observing a fish with 3-inch length)

Bayes theorem  
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A Specific Example

State of Nature (自然状态)

 Future events that might occur

e.g. the next fish arriving along the conveyor belt

 State of nature is unpredictable

e.g. it is hard to predict what type will emerge next

From statistical/probabilistic point of view, the state of nature 
should be favorably regarded as a random variable

e.g. let      denote the (discrete) random variable 

representing the state of nature (class) of fish types  
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Prior Probability

Prior Probability (先验概率)

Prior probability is the probability distribution which 
reflects one’s prior knowledge on the random variable

Let         be the probability distribution on the random variable 

with c possible states of nature                           , such that:

Probability distribution (for discrete random variable)

the catch produced as much sea bass as salmon

the catch produced more sea bass than salmon
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Decision Before Observation

The Problem
To make a decision on the type of fish arriving next, where 

1) prior probability is known; 2) no observation is allowed

Naive Decision Rule

 This is the best we can do without observation

 Fixed prior probabilities  Same decisions all the time

Good when              is much greater (smaller) than 

Poor when             is close to             

[only 50% chance of being right if                            ]

Incorporate 

observations 

into decision!
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Probability Density Function (pdf)

Let         be the probability density function on the continuous

random variable     taking values in R, such that:

Probability density function (pdf)
(for continuous random variable)

 For continuous random variable, it no longer makes sense to talk about 

the probability that x has a particular value (almost always be zero)

 We instead talk about the probability of x falling into a region R, say 

R=(a,b), which could be computed with the pdf:



Pattern Recognition Spring Semester 9

Incorporate Observations

The Problem
Suppose the fish lightness measurement x is observed, 

how could we incorporate this knowledge into usage?

Class-conditional probability density function

(类条件概率密度)

 It is a probability density function (pdf) for x given that 

the state of nature (class) is     , i.e.:

 The class-conditional pdf describes the difference in the 

distribution of observations under different classes
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Class-Conditional PDF

An illustrative example

class-conditional pdf for lightness

h-axis: lightness of fish scales

v-axis: class-conditional pdf
values

black curve: sea bass

red curve: salmon

 The area under each curve 

is 1.0 (normalization)

 Sea bass is somewhat 

brighter than salmon
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Decision After Observation
Known

Prior probability

Class-conditional 
pdf

Observation for 
test example

(e.g.: fish lightness)

Unknown

Bayes 

Formula

Posterior probability

The quantity which we want to use 
in decision naturally (by exploiting 
observation information)

Convert the prior probability        
to the posterior probability 
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Bayes Formula Revisited

Joint probability density function (联合分布)

Marginal distribution (边缘分布)

Law of total probability (全概率公式) [ref. pp.615]
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Bayes Formula Revisited (Cont.)

Bayes Decision Rule

 and              are assumed to be known

 is irrelevant for Bayesian decision (serving 

as a normalization factor, not related to any state 

of nature)
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Bayes Formula Revisited (Cont.)

Normally, prior probability and likelihood function 
together in Bayesian decision process

Special Case I: Equal prior probability

Depends on the 

likelihood

Special Case II: Equal likelihood

Degenerate to naive 

decision rule
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Bayes Formula Revisited (Cont.)

An illustrative example

class-conditional pdf for lightness

What will the 

posterior 

probability for 

either type of fish 

look like?



Pattern Recognition Spring Semester 16

Bayes Formula Revisited (Cont.)

An illustrative example

posterior probability for either type of fish

h-axis: lightness of fish scales

v-axis: posterior probability 
for either type of fish

 For each value of x, the 

higher curve yields the 

output of Bayesian decision 

 For each value of x, the 

posteriors of either curve 

sum to 1.0

black curve: sea bass

red curve: salmon
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Another Example

Problem statement

 A new medical test is used to detect whether a patient has a certain 

cancer or not, whose test result is either + (positive) or - (negative )

 For patient with this cancer, the probability of returning positive test 

result is 0.98

 For patient without this cancer, the probability of returning negative

test result is 0.97

 The probability for any person to have this cancer is 0.008

Question

If positive test result is returned for some person, does 

he/she have this kind of cancer or not?
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Another Example (Cont.)

No cancer!



Pattern Recognition Spring Semester 19

Feasibility of Bayes Formula

To compute posterior probability            , we need to know:

Prior probability: Likelihood:

How do we 

know these 

probabilities?

 A simple solution: Counting 

relative frequencies (相对频率)

 An advanced solution: Conduct

density estimation (概率密度估计)
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A Further Example

Problem statement

Based on the height of a car in some campus, decide whether 

it costs more than $50,000 or not

?

Quantities to know:
Counting relative 

frequencies via 

collected samples
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A Further Example (Cont.)

Collecting samples

Suppose we have randomly picked 1209 cars in the 

campus, got prices from their owners, and measured 

their heights

Compute                 :

# cars in 221

# cars in 988
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A Further Example (Cont.)

Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals 

each with length 0.1m, and then count the number of cars falling 

into each interval for either class

Suppose x falls into interval 

Ix=[1.0m, 1.1m]

For      , # cars in Ix

is 46 

For      , # cars in Ix

is 59 

Compute                      :
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A Further Example (Cont.)
Question

For a car with height 1.05m, is its price greater than $50,000?

Estimated quantities
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Is Bayes Decision Rule Optimal?

Bayes Decision Rule (In case of two classes)

Whenever we observe a particular x, the probability of error is:

For every x, we ensure 

that P(error | x) is as 

small as possible

The average probability of error 

over all possible x must be as 

small as possible

Under Bayes decision rule, we have
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Bayes Decision Rule – The General 

Case

 By allowing to use more than one feature

(d-dimensional Euclidean space)

 By allowing more than two states of nature

(finite set of c states of nature)

 By allowing actions other than merely deciding the 

state of nature

(finite set of a possible actions)
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Bayes Decision Rule – The General 

Case (Cont.)
By introducing a loss function more general than 

the probability of error

the loss incurred for taking action     when the

state of nature is 

For ease of reference,

usually written as:

Action
Class

5 50 10,000

60 3 0

A simple loss function
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Bayes Decision Rule – The General 

Case (Cont.)

The problem

Given a particular x, we have to decide which action to take

We need to know the loss of taking each action

incur the loss

the action being 
taken is

true state of 
nature is

However, the true state 

of nature is uncertain

Expected (average) loss
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Bayes Decision Rule – The General 

Case (Cont.)

Expected loss (期望损失)

The probability of 

being the true state

of nature

The incurred loss of taking

action      in case of true

state of nature being

The expected loss is also named as (conditional) 

risk (条件风险)

Average by enumerating over 

all possible states of nature!
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Bayes Decision Rule – The General 

Case (Cont.)

Action
Class

5 50 10,000

60 3 0

Suppose we have:

Similarly, we can get:

For a particular x:
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Bayes Decision Rule – The General 

Case (Cont.)

The task:  find a mapping from patterns to actions

In other words, for every x, the decision function     

assumes one of the a actions

Overall risk R

expected loss 
with decision 
function

pdf for 
patterns

Conditional risk for pattern 
x with action 
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Bayes Decision Rule – The General 

Case (Cont.)

The overall risk over all possible 

x must be as small as possible

For every x, we ensure that the 

conditional risk                              

is as small as possible

Bayes decision rule (General case)  The resulting overall 

risk is called the Bayes 

risk (denoted as R*)

 The best performance 

achievable given p(x) 

and loss function
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Two-Category Classification

Special case
 (two states of nature)



the loss incurred for deciding

when the true state of nature is

The conditional risk:

decide decide

yes no
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Two-Category Classification (Cont.)
likelihood 
ratio

constant θ
independent of x

by 
definition

by 
re-arrangement by Bayes 

theorem

the loss for being 
error is ordinarily 
greater than the loss 
for being correct
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Minimum-Error-Rate Classification

Classification setting

 (c possible states of nature)



Zero-one (symmetrical) loss function

 Assign no loss (i.e. 0) to a correct decision

 Assign a unit loss (i.e. 1) to any incorrect decision (equal cost)
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Minimum-Error-Rate Classification 

(Cont.)

error rate (误差率/错误率)

the probability that action

is wrong

Minimum error rate
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Minimax Criterion

Generally, we assume that the prior probabilities over 

the states of nature                                are fixed 

Nonetheless, in some cases we need to design 
classifiers which can perform well under varying 
prior probabilities

e.g. the prior probabilities of catching a sea bass or salmon 

fish might vary in different regions

Varying prior 

probabilities 

leads to varying 

overall risk

The minimax criterion (极小化极大
准则) aims to find the classifier which 

can minimize the worst overall risk

for any value of the priors
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Minimax Criterion (Cont.)
Two-category classification

 (two states of nature)



the loss incurred for deciding

when the true state of nature is

Suppose the two-category classifier          decides      in region       and 

decides      in region      . Here,                           and                       .

The overall 

risk:
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Minimax Criterion (Cont.)

Eq.22 [pp.28]
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Minimax Criterion (Cont.)

Rewrite the overall risk R as a function of            via:
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Minimax Criterion (Cont.)

A linear function of            , which can also be expressed as a 

linear function of            in similar way.

=0 for minimax solution

= Rmm, minimax risk
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Discriminant Function (判别函数)

Pattern  Category

Classification
actions

decide 
categories

Discriminant functions

 Useful way to represent classifiers

 One function per category
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Discriminant Function (Cont.)

Minimum risk:

Minimum-error-rate:

Various 

discriminant functions

Identical 

classification results

is a monotonically increasing function (单调递增函数)

(i.e. equivalent in decision)

e.g.:
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Discriminant Function (Cont.)

Decision region (决策区域)

c decision regions c discriminant functions

andwhere

Decision boundary (决策边界)

surface in feature space where 

ties occur among several largest 

discriminant functions

decision 
boundary
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Expected Value

Expected value (数学期望), a.k.a. expectation, mean

or average of a random variable x

Discrete case

Continuous case Notation:
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Expected Value (Cont.)
Given random variable x and function        , what is the 

expected value of 

Discrete case:

Continuous case:

Variance (方差)

Discrete case:

Continuous case:

Notation: (   : standard deviation (标准偏差))
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Gaussian Density – Univariate Case
Gaussian density (高斯密度函数), a.k.a. normal density 

(正态密度函数), for continuous random variable
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Vector Random Variables (随机向量)

(joint pdf)

(marginal pdf)

Expected vector

marginal pdf on 

the i-th componentNotation:
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Vector Random Variables (Cont.)

Covariance matrix (协方差矩阵)

marginal pdf on a pair of 

random variables (xi, xj)

 symmetric

(对称矩阵)

Properties of

 Positive 

semidefinite

(半正定矩阵)

Appendix A.4.9 [pp.617]
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Gaussian Density – Multivariate Case

d-dimensional column vector

d-dimensional mean vector

covariance

matrix
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Gaussian Density – Multivariate Case 

(Cont.)
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Discriminant Functions for Gaussian 

Density
Minimum-error-rate classification

Constant, could be ignored
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Case I: 

Covariance matrix: times the identity matrix I
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Case I:               (Cont.) 

the same for all states of nature, 

could be ignored

Linear discriminant functions (线性判别函数)

weight vector (权值向量)

threshold/bias (阈值/偏置)
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Case II: 

Covariance matrix: identical for all classes

reduces to Euclidean distance
P. C. Mahalanobis

(1893-1972)

squared Mahalanobis

distance (马氏距离)
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Case II: (Cont.)

the same for all states of nature, 

could be ignored

Linear discriminant functions

weight vector

threshold/bias
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Case III: 

quadratic discriminant functions (二次判别函数)

weight vector

threshold/bias

quadratic matrix
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Summary

 Bayesian Decision Theory

 PR: essentially a decision process

 Basic concepts

 States of nature

 Probability distribution, probability density function (pdf)

 Class-conditional pdf

 Joint pdf, marginal distribution, law of total probability

 Bayes theorem

 Prior + likelihood + observation  Posterior probability

 Bayes decision rule

 Decide the state of nature with maximum posterior
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Summary (Cont.)

 Feasibility of Bayes decision rule

 Prior probability + likelihood

 Solution I: counting relative frequencies

 Solution II: conduct density estimation (chapters 3,4)

 Bayes decision rule: The general scenario

 Allowing more than one feature

 Allowing more than two states of nature

 Allowing actions than merely deciding state of nature

 Loss function:



Pattern Recognition Spring Semester 59

Summary (Cont.)

 Expected loss (conditional risk)

Average by enumerating over all possible states of nature

 General Bayes decision rule

 Decide the action with minimum expected loss

 Minimum-error-rate classification

 Actions  Decide states of nature

 Zero-one loss function

 Assign no loss/unit loss for correct/incorrect decisions
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Summary (Cont.)
 Discriminant functions

 General way to represent classifiers

 One function per category

 Induce decision regions and decision boundaries

 Gaussian/Normal density

 Discriminant functions for Gaussian pdf

linear discriminant function

quadratic discriminant function


