Chapter 2

Bayesian Decision Theory
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Decision Theory

Decision o
CCIS10 : Pattern Recognition

Make choice under

uncertainty ' Pattern = Category

N 4

Given a test sample, its category is uncertain
and a decision has to be made

In essence, PR is a decision process
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Bayesian Decision Theory

Bayesian decision theory is a statistical approach to
pattern recognition

The fundamentals of most PR algorithms are rooted
from Bayesian decision theory

Basic Assumptions

O The decision problem is posed (formalized) in
probabilistic terms

O All the relevant probability values are known

Key Principle
Bayes Theorem (I1H-HiEE

gy==

)
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‘ Bayes Theorem

X: the observed sample (also called evidence; e.g.: the length of a fish)
H: the hypothesis (e.g. the fish belongs to the “salmon” category)

P(H): the prior probability (4G4 % %) that H holds (e.g. the
probability of catching a salmon)

P(X|H): the likelihood ({LA%% &) of observing X given that H
holds (e.g. the probability of observing a 3-inch length fish
which is salmon)

P(X): the evidence probability that X is observed
(e.g. the probability of observing a fish with 3-inch length)
P(H|X): the posterior probability (J5 %) that H holds

given X (e.g. the probability of X being salmon given its length
is 3-inch)

Thomas Bayes
(1702-1761)
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A Specitfic Example

State of Nature (B 2ARE)

O Future events that might occur
e.g. the next fish arriving along the conveyor belt
O State of nature is unpredictable

e.g. it is hard to predict what type will emerge next

<

From statistical/probabilistic point of view, the state of nature
should be favorably regarded as a random variable

e.g. let w denote the (discrete) random variable w = wi : sea bass
representing the state of nature (class) of fish types w = ws : salmon
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Prior Probability

Prior Probability (JCIHEZR)

Prior probability is the probability distribution which
reflects one’s prior knowledge on the random variable

e S EE S B B BN B EEE EEE EEE EEE BEE SN SN EEE EEE BEE SEE BN BN BEE BEE SEE BN BEE BEE BEE SEE EEE BN BEE BEE SEE BN BEE BEE BEE BEE BN B B A S e .

' Probability distribution (for discrete random variable)

Let I°(-) be the probability distribution on the random variable

w with ¢ possible states of nature {ws,ws, . .., w.}, such that:

P(w;) > 0 (non-negativity) Z?_l P(w;) = 1 (normalization)

the catch produced as much sea bass as salmon |:> P(wy) = P(wy) =1/2
the catch produced more sea bass than salmon |:> P(wy) =2/3; P(ws) =1/3
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Decision Before Observation
The Problem

To make a decision on the type of fish arriving next, where
1) prior probability is known; 2) no observation is allowed

Naive Decision Rule

:_ Decide wy if P(wy) > P(ws); otherwise decide ws |

O This is the best we can do without observation

O Fixed prior probabilities =» Same decisions all the time

Incorporate Good when P(wy) is much greater (smaller) than P(w)

observations  Poor when P(w,) is close to P(w-)

into decisionl  lonly 50% chance of being right if P(w;) = P(ws) ]
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Probability Density Function (pdf)

Probability density function (pdf)
(for continuous random variable)

random variable z taking values in R, such that:

oo

|
i
|
Let p(-) be the probability density function on the continuous |
|
|
i

p(x) > 0 (non-negativity) / p(z)dz =1 (normalization)

oo

O For continuous random variable, it no longer makes sense to talk about
the probability that x has a particular value (almost always be zero)

O We instead talk about the probability of x falling into a region R, say
R=(a,b), which could be computed with the pdf:

Prz € R] = / e = / bp(x)dac
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Incorporate Observations
The Problem

Suppose the fish lightness measurement x is observed,
how could we incorporate this knowledge into usage?

Class-conditional probability density function

CREMGBRE )

O It is a probability density function (pdf) for x given that

the state of nature (class) is w , i.e.:

p(z|w) plew) 2 0 /_O:o plrlw)ds = 1

O The class-conditional pdf describes the difference in the

distribution of observations under different classes

p(x|wy) should be different to p(x|ws)
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Class-Conditional PDF

An illustrative example

h-axis: lightness of fish scales
plxlw,)

ot v-axis: class-conditional pdf
values

0.3
black curve: sea bass

red curve: salmon

0 The area under each curve

is 1.0 (normalization)

- X 0 Sea bass is somewhat
9 10 11 12 13 14 15

class-conditional pdf for lightness brighter than salmon

Pattern Recognition Spring Semester
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Decision After Observation

Known Unknown
(The quantity which we want to use h
Prior probability in decision naturally (by exploiting
Pw;) (1<j<¢ \\Observation informatio{/_)
Class-conditional Bayes Posterior probability
" ’ | Plele) (1< <0
p(r|w;) (1 <j<e) Formula A

Observation for
test example

Convert the prior probability P(w;)

1" (e.g. fish lightness) to the posterior probability P(w,|z*)
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‘ Bayes Formula Revisited
Joint probability density function (Bk&43-41) p(w, o)
Marginal distribution (A% 216) P ( ) p(z)

p(w, x)dx p(w;, )

s

Law of total probability (£MER A ) [ref. pp.615]

w,r) = Plw|z) - plx
powt) = P D) e Plafa) - ple) = P(w) - plef)

w,z) = Plw) - plr|w
plora) =P pak) T \
p(x)
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Bayes Formula Revisited (Cont.)
p(rlw;) - Plw)) (

p(x)
Bayes Decision Rule

1 <j<e¢) (Bayes Formula)

P(wjlz) =

—————————————————————————————————

O P(w;) and p(z|w;) are assumed to be known

O p(x)is irrelevant for Bayesian decision (serving
as a normalization factor, not related to any state
of nature)

pla) =3 plwja) =Y plelw;) - Plw))
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Bayes Formula Revisited (Cont.)

p(z|w;) - Plw;)

P(wjl|z) = (@)

evidence

( , likelihood x pT’iOT‘)
posterior =

Special Case I: Equal prior probability
P(w;) = P(ws) = - = P(w,) = 1 :> Depends on the

c likelihood p(z|w;)

Special Case II: Equal likelihood
p(z|wr) = plajws) = -+ = pa|w.) :> Degenerate to naive

decision rule

Normally, prior probability and likelihood function
together in Bayesian decision process
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Bayes Formula Revisited (Cont.)

An illustrative example

X,
p(xlew) w1 . sea bass
047

W, Wy + salmon

9 10 11 12 13 14 15

class-conditional pdf for lightness

Plw) =

Plwy) =

Wl Wl

What will the
posterior
probability for
either type of fish
look like?

Pattern Recognition Spring Semester
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Bayes Formula Revisited (Cont.)

An illustrative example

h-axis: lightness of fish scales
P(wx)

v-axis: posterior probability
1%

for either type of fish

black curve: sea bass

red curve: salmon

O For each value of x, the
higher curve yields the
output of Bayesian decision

..... I N N N N 1 N N N N 1 N N N N 1 N N N N 1 N N A - dl'
0 10 1 12 13 14 s O Foreach value of x, the

posteriors of either curve

posterior probability for either type of fish
sum to 1.0
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Another Example

Problem statement

O A new medical test is used to detect whether a patient has a certain
cancer or not, whose test result is either + (positive) or - (negative )

O For patient with this cancer, the probability of returning positive test
result is 0.98

O For patient without this cancer, the probability of returning negative
test result is 0.97

O The probability for any person to have this cancer is 0.008

Question

If positive test result is returned for some person, does
he/she have this kind of cancer or not?

Pattern Recognition Spring Semester
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Another Example (Cont.)

wi . cancer Ws : 1O cancer T € {+, —}
P(w1) = 0.008 P(ws) =1— P(w1) = 0.992
P(+|wi) =0.98 P(-|lwi)=1—-P(+|w)=0.02

P(-|w2) =097  P(+|ws) =1— P(= | ws) = 0.03

Plw | +) = Plo)P+ Jw) _ Pwi)P(+ | w1)
P(+) P(w1)P(+ | wi) + P(w2) P(+ | w2)
0.008 x 0.98
= 0.2085

~ 0.008 X 0.98 + 0.992 x 0.03

Plwa [ +) > Plw+)

Plwor | +)=1— Plw|+) =0.7915
(w2 ] +) (wil#) No cancer!
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‘ Feasibility of Bayes Formula
p(r|w) - P(w)
p(z)

To compute posterior probability P(w|z) , we need to know:

P(w|x) =

(Bayes Formula)

Prior probability: P(w) Likelihood: p(z|w)

O A simple solution: Counting

l:ow do we :> relative frequencies (FHX %)
now these
probabilities? O An advanced solution: Conduct

density estimation (H# % fiiit)

Pattern Recognition Spring Semester
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A Further Example

Problem statement

Based on the height of a car in some campus, decide whether
it costs more than $50,000 or not

wi : price > $50,000 P(wi|z) > Plws|z)
wo = price < $50, 000 ?
x : height of car Plwi|z) < P(ws|x)
. <y Counting relative
Quantities to know: ) J

frequencies via
Plwi) Plw2) plz|wr) plz|w) collected samples
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A Further Example (Cont.)

Collecting samples

Suppose we have randomly picked 1209 cars in the

campus, got prices from their owners, and measured
their heights

Compute P(w1), P(ws)

P _ 221

# carsin wi : 221 (w1) = 1200 0.183

# carsin wo : 988 [ Pluy) = 988 _ 0817
1209
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‘ A Further Example (Cont.)

Compute p(z|w), p(zlws)

Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals
each with length 0.1m, and then count the number of cars falling
into each interval for either class

| Suppose > x falls into interval
L= 1.05 [ =[1.om, 1.1m]

|

1

! p(r = 1.05|w;) ! !

I 46

T 991 0.2081 For Wi, # carsin [,
| < is 46

| p(z = 1.05|ws) ,

| =9 For W2, # carsin I,
| = — =0.0597 is 59

Lo e

Pattern Recognition Spring Semester
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A Further Example (Cont.)

Question

For a car with height 1.05m, is its price greater than $50,0007?

Estimated quantities

|
|
|
! P(wy) = 0.183 P(ws) = 0.817
|
|

p(x =1.05 | wy) = 0.2081

p(x = 1.05 | wy) = 0.0597

wi) - plx =1.05 | wy)

~ 0.183 x 0.2081

Pattern Recognition

P(ws) - p(x =1.05 | we) / P(
p(x = 1.05) /

P(ws) - p(x = 1.05 | wo)

P(wy) - p(x = 1.05 | w)

0.817 x 0.0597

= 1.280

Spring Semester

p(x = 1.05)

P(wy | ) > P(w1 | )
price < $50, 000
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Is Bayes Decision Rule Optimal?

Bayes Decision Rule (In case of two classes)

if P(w1|z) > P(wa|z), Decide wy; Otherwise ws |

Whenever we observe a particular x, the probability of error is:

P(wy | z)  if we decide ws
P(error | x) = {

P(ws | z)  if we decide wy

For every x, we ensure The average probability of error
that P(error | x) is as over all possible x must be as
small as possible small as possible
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Bayes Decision Rule — The General
Case

» By allowing to use more than one feature

r€R = x €R? (d-dimensional Euclidean space)

» By allowing more than two states of nature

Q= {wy,wy,...,w.} (finite set of ¢ states of nature)

» By allowing actions other than merely deciding the
state of nature

A ={a1,as,...,a,} (finite set of a possible actions)
Note : c # a
Pattern Recognition Spring Semester

25



‘ Bayes Decision Rule — The General
Case (Cont.)

» By introducing a loss function more general than
the probability of error
A Qx A— R (loss function)

AMwj, ;) : theloss incurred for taking action «; when the

state of nature is w;
A simple loss function

|
| . For ease of reference, ap = Qry = vz =
“Recipe A”| “Recipe B”| “No Recipe”

| usually written as: o1 — “cancer” 5 50 10,000

ws = “no cancer’ 60 3 0

26
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‘ Bayes Decision Rule — The General

Case (Cont.)
The problem

Given a particular x, we have to decide which action to take

¢ 4

We need to know the loss of taking each action «; (1 <% < a)

true state of  the action being
nature is w; taken is «;

Y ¢

incur the loss \(«; | w;)
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Bayes Decision Rule — The General

Case (COI]t.) {Average by enumerating over
' r
Expected loss (%%}EQ) all possible states of nature!
R(a; | x) = Ma; | wy) - Plw; | x)
The incurred loss of taking The probability of w;
action «; in case of true being the true state
state of nature being w; of nature

The expected loss is also named as (conditional)

risk (214 X )

Pattern Recognition Spring Semester
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‘ Bayes Decision Rule — The General

Case (Cont.)

Suppose we have:

1 = Xy — 3 =
- “Recipe A”| “Recipe B”| “No Recipe”
w; = “cancer” 5 50 10,000
wy = “no cancer” 60 3 0

Rlar |x) =" Maa |w))- Pl | %)

j:

For a particular x:
P(w; | x) = 0.01
P(ws | x) = 0.99

= AMag |wi) - P(wy | x) + AMaq | we) - P(ws | x)

= 5 X 0.01 4 60 x 0.99 = 59.45

Similarly, we can get: R(a: | x) =3.47 R(as|x) =100

Pattern Recognition

Spring Semester
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Bayes Decision Rule — The General
Case (Cont.)

The task: find a mapping from patterns to actions

a: R* = A (decision function)

In other words, for every x, the decision function «(x)

assumes one of the a actions 1. ..., qa,
' Overall risk R i R = /R(a(x) | X)) - p(x)dx
' I
| ex.pected. Igss : / \
| with 46(31510’7 . Conditional risk for pattern pdf for
! function o(-) | x with action o (x) patterns

———————————————
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Bayes Decision Rule — The General
Case (Cont.)

For every x, we ensure that the

Th 11 risl 11 ibl
conditional risk R(a(x) | x) :> e overall risk over all possible

x must be as small as possible

is as small as possible

O The resulting overall
risk is called the Bayes
______________________________ ' risk (denoted as R*)

— in R,
a(x) = arg min R(a; | x)

Bayes decision rule (General case)

O The best performance

|
|
|
|
— arg min Mo | w;) - Plw; | x)| achievable given p(x)
! and loss function
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Two-Category Classification

Special case
O Q = {w;,ws} (two states of nature)

= - o - -y

|
: : OA={a;,a} (a; = decide wy; as = decide ws)

the loss incurred for deciding w;
/\ij — )\(OJ@ ‘ (,Uj) .

when the true state of nature is w;

The conditional risk:

R(Oﬁl X) = )\11 . P(wl X) -+ )\12 . P(CL)Q X)

R(Oﬁg X) — )\21 . P(wl X) -+ )\22 . P(Wz X)
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Two-Category Classification (Cont.)

o1 constant 0
R(ay | x) < R(az | x) hk?thOd independent of x
ratio
by T N ____ T_ L
definition :p(X | wl) Ao — Moo P(wz)i
_______________________ I
s Plon [ %)+ Plop [x)1 20X @2  An A Plen,
! . < : Ao1 — A1 >0
o Pl [0+ A Pl [, e oss o being
error is ordinarily
by greater than the loss
re-arrangement by Bayes for being correct
i()\21 —Ay)P(wy | x)! theorem :()\21 W
| > | |
I
iz ~ Aa) Pl [ 2, (12~ Am) plx | w2) - Plen)

Pattern Recognition

Spring Semester




Mintimum-Error-Rate Classification

Classification setting
O Q= {w,ws,...,w.} (cpossible states of nature)

OA={a,as,...,a.} (o =decide w;, 1 <i<c¢)
Zero-one (symmetrical) loss function

0 1=
A(ozz-|wj):{ 1<y <e
L 1#

O Assign no loss (i.e. 0) to a correct decision

O Assign a unit loss (i.e. 1) to any incorrect decision (equal cost)

Pattern Recognition Spring Semester
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Minimum-Error-Rate Classification

(Cont.)
Rl | %)= Mai|wy) - Plw; | %)

= Mai | wj) - Plwj | x) + Mai |wi) - Plw; | x)

J71
=D P(w; | x) error rate (ix 723 /fH IR )
1 - ']'D """ . the probability that action
_(\ \i ) (wi |—}f)/ «; (decide w;) is wrong

Decide W; if ]D((JJZ | X) > P(OJj | X) for all j ?é ?
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Minimax Criterion

Generally, we assume that the prior probabilities over
the states of nature Q = {w;.ws....,w.} are fixed

Nonetheless, in some cases we need to design
classifiers which can perform well under varying
prior probabilities
e.g. the prior probabilities of catching a sea bass or salmon
fish might vary in different regions

\Varying prior .The minimax criterion (B /MUK

 probabilities :> | AEIU)) aims to find the classifier which !
' leads to varying | - can minimize the worst overall risk
overall risk | ' , for any value of the priors !
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Minimax Criterion (Cont.)

Two-category classification

O Q= {w;,ws} (two states of nature)

|
: : ] A — {061, 052} (061 — decide Wi, (g — decide UJQ)

the loss incurred for deciding w;
Aij = Mai [ w)) - .
when the true state of nature is w;
Suppose the two-category classifier a(-) decides w; in region R; and

decides w2 in region Ro. Here, R1 U Ry = R?and R NRy = 0.

------------- R= [ Bla(x) | %) px)dx

Lo . = / R(a; | x)) -p(x)dx+/ R(as | x)) - p(x)dx
R1

Ro
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Minimax Criterion (Cont.)
R = /R R(as | x)) - p(x)dx + /R R(azlx))-p(x)dx

| B %) pxyix Eq 22 [pp.28]
= /7; ijl Moy | wy) - P(w; | x) - p(x)dx

N /’R Z; Aij - Plwy) - p(x | wy)dx

= L [/\11 . P(W1) p(X | wl) + A12 - P(w2) ) p(X | wQ)] dx

/R R(as | x)) - p(x)dx

= [ D P plx 1) + X Plan) - plx )] d
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Minimax Criterion (Cont.)

R = /R At - Plen) - p(x | 1) + Asa - Plo) - plx | wn)] dx

+/R [Az1 - P(wy) - p(x | wi) + Agz - Plwa) - p(x | wy)] dx

Rewrite the overall risk R as a function of P(w,) via:
L P(u)l):l—P(WQ)

. [R]p<xw1>dx=1—/ p(x | wn)dx

Ro

R = )\22 -+ ()\12 — )\22)/ p(X | WQ)CZX

R1

+P@) | (s = dan) + (s = ) [ o [ea)ix = (o =) [ x| )ix

R
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Minimax Criterion (Cont.)

Rpym = oo + (A2 — )\22)/ p(x | we)dx

R1

= R, Minimax risk = A1 + (Ao — )\11)/ p(x | w)dx
\ e

{ \
R = Ay + (A2 — )\22)/ p(x | we)dx

R1

+P@) | (s = dan) + (s =) [ ol [e)ix = (o =) [l )ix
| |

|
=0 for minimax solution

A linear function of P(w;), which can also be expressed as a

linear function of P(w,) in similar way.
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Discriminant Function (] 71 B £

Classification decide

actions <¢=mmp

Pattern =» Category categories

Discriminant functions

action
(e.g., classification)

g:R'=-R (1<i<e¢)

O Useful way to represent classifiers

O One function per category functions

|
1
|
1
|
1
|
1
|
: discriminant
1
|
. 1
Decide w; |
1
|
1
|
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‘ Discriminant Function (Cont.)

Minimum risk: gi(x)=—-R(oy | x) (1<i<¢)

' Various :> Identical |
| discriminant functions classification results :

f(-) is a monotonically increasing function (115 1 pR 27
L{} f(g:(x)) <= gi(x) (i.e. equivalent in decision)
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Discriminant Function (Cont.)

Decision region (#3& X 1)

¢ discriminant functions
gi(-) (1 <i < ¢) :

g
-
@)
v
(@)
s
D)
e
|
= —

Var

subly

Decision boundary ({3

surface in feature space where

ties occur among several largest

discriminant functions

Pattern Recognition Spring Semester

¢ decision regions

RiCRY(1<i<e¢)

decision
boundary
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‘ Expected Value

Expected value (15 #%2), a.k.a. expectation, mean

or average of a random variable x

Discrete case

reX={ry,r9,...,0.}
v~ P() > =3 w Pl che

rEeX
(~: “has the distribution”)

Continuous case Notation: p = &[]
r e R 0

A :/ z-p(x)de
T A~ p() > e
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Expected Value (Cont.)
| E Given random variable x and function f(-) , what is the
expected value of f(z)?

i Discrete case: &[f(v)] = erx flx) - P(x) = Z;l flai) - P(xi) i

Continuous case: &[f(x)] = /_OO f(x) - p(x)de
 Variance (77 %) Varlz] = [(z — £[z])?] (ie. f(z) = (z — n)?)

|

[

|

c [

 Discrete case: Var[z] = > (wi— ) Play) :
I 1=1 I
| |
[

|

[

' Continuous case: Var[z] = / (x — p)* - p(2) do

Notation: o = Var[z| (o:standard deviation (b5 %))
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‘ Gaussian Density — Univariate Case

Gaussian density (/=11 % & K %%), a.k.a. normal density

— 57

(1IES% EEpR4Y), for continuous random variable

p(z) = ;m exp {; (x - “)2} r ~ N(p,0”)

plx)
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Vector Random Variables (Bﬁjﬂ f@_%)

(@1\  1x~p(x)=pler,az....24) (joint pdf) |
L2

\37 1) N =0xUx=x _________ .

/5[:(:1]\ Elx;] :/_OO zi - play)de; (1 <1< d)

marginal pdf on

Elx| = _
Notation:

\Elzdl) w=EX =€ (1<i<d)

the i-th component
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Vector Random Variables (Cont.)
Covariance matrix (V3 5 Z5H[E)

Properties of X

(011 012 ... Uld\ O symmetric
001 099 ... Ooy (CHH AR B )
> = |0i]1<ij<d = O Positive
\adl S Odd) s?/midjfinife
(2 1E B AR )
oi; =05 =E(x; — — 14;)] Appendix A.4.9 [pp.617]

//

Oi; — Var[x,,;] - O'-

1

Pattern Recognition Spring Semester
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Gaussian Density — Multivariate Case

x ~ N(u,3) Vi =[] o =05 = [(iﬁz‘—ﬂz‘)(iﬁj_ﬂj)]i

B 1
p(X) o (QW)d/2|E‘1/2

X = (11,T2,...,24)" : d-dimensional column vector
= (pi1. fta, . ... pq)" : d-dimensional mean vector
/011 o1y ... Uld\ d X d. covariance
matrix
021 022 02d
3 = [Uz‘j]lgz’,jgd — : : . : 13| : determinant
\Udl gq2 - .. Udd/ > 1 inverse
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Gaussian Density — Multivariate Case

(Cont.)

X ~ N([J,, Z) . p(X) — (27T)d/2|2|1/2 CXP [

o e o o Em o EE EE EE EE EE EE D EE EE EE EE M M SN SN SN EE EE MEE SN MEE MEN MEN MEN N N N M M N N M EE EE EE EE EE

[

1

[

: 7 d x d matrix >

1

' (x — )+ d X 1 matrix

= m m e e e e e e -
' X : positive definite > 37! : positive definite
|

1

SO ) B (- ) <0
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Discriminant Functions for (Gaussian
Density

Minimum-error-rate classification
g:(x) = Plwi|x) (1<i<¢)
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Case I: . =021

—

i ", DIEE
>, = o’ — o >
1 o2 ¥l =(1/0%)1
5
; 2 |- || : Fuclidean norm !
X — b

igi(x)——H s | +In P(w;) 2 t !
! o 1% — il = (x — i) (X—M):
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Case I: 3, =0°1(Cont.)

% — "
q; (X) - — 952 + In P(wz)
the same for all states of nature,
could be ignored
1
9i(X) = =5 20X + ] + In P(w;)

o = mm mm Em EE EE EE EE EE MmN M M M M M BN BN BN BN BN BEN BEE NN MEN BEE BN MmN BEE BN BN BN MEE MmN MEE MEE M M M M

| Linear discriminant functions (£ 437 p& %0)

gi(x) = Wi x + w;g

[
[ [
[ [
[ [
[ [
[ [
| 1 |
[ [
[ [
[ [
[ [
[ [
[ [

Wi = —3Hi weight vector (PUE M) =)
1
Wi = —ﬁufuz + In P(w;) threshold/bias (IF{E /&)
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‘ CZISC 11: EZ =>

g:(x) = —§(x — )27 (x — ) + In P(w;)

i N :squared Mahalanobis
| ¢ = 1) e = ) distance (5 [KFEE)

\d
|
-

:> reduces to Euclidean distance »
P. C. Mahalanobis
(1893-1972)
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Case II: 3; =3 (Cont.)

gi(x) = —5(x = ) B x = u) + 10 Pl

the same for all states of nature,
could be ignored

g:(x) = — — 2 x + !X ] + In Pw;)

Linear discriminant functions

gi(x) = Wi x + w;g

w; = X" 'u; weight vector

1
Wip = —§ﬂ52_1m + In P(w;) threshold/bias
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Case III: X; = arbitrary

: quadratic discriminant functions (X H| 75l & %L i
|
: gi(x) = x'W;x + wix + w; :
| |
| 1 |
W, = —52;1 quadratic matrix !
| |
| |
' w; =X "'u; weight vector !
: 1 .
| |
| |
|

W0 = —§H22 i — = lIl 13| + In P(w;) threshold/bias
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Summary

Bayesian Decision Theory
0 PR: essentially a decision process

0 Basic concepts
States of nature
Probability distribution, probability density function (pdf)
Class-conditional pdf
Joint pdf, marginal distribution, law of total probability
0 Bayes theorem

Prior + likelihood + observation =» Posterior probability

0 Bayes decision rule

Decide the state of nature with maximum posterior
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Summary (Cont.)

Feasibility of Bayes decision rule

0 Prior probability + likelihood

0 Solution I: counting relative frequencies

0 Solution II: conduct density estimation (chapters 3,4)

Bayes decision rule: The general scenario

o Allowing more than one feature

o Al

o Al

lowing more than two states of nature

lowing actions than merely deciding state of nature

o Loss function: A : 9 x A — R
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Summary (Cont.)

Expected loss (conditional risk)

Rloi [ %)= Mo |w;) - Plw; | %)

Average by enumerating over all possible states of nature

General Bayes decision rule

0 Decide the action with minimum expected loss

Minimum-error-rate classification
o Actions €= Decide states of nature

o Zero-one loss function

Assign no loss/unit loss for correct/incorrect decisions

Pattern Recognition Spring Semester

59



Summary (Cont.)

Discriminant functions

o General way to represent classifiers

o One function per category

0 Induce decision regions and decision boundaries

Gaussian/Normal density

1 1 _
x~N(pX): px)= (2m) V2|51 Xp |75 (x—p)' 27" (x — p)

Discriminant functions for Gaussian pdf
¥, =0°1,3;, =X : linear discriminant function

3.; = arbitrary : quadratic discriminant function
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