Chapter 2 Bayesian Decision Theory

Bayesian Decision Theory

Bayesian decision theory is a statistical approach to pattern recognition

> *The fundamentals of most PR algorithms are rooted from Bayesian decision theory*

Basic Assumptions

- \blacksquare The decision problem is posed (formalized) in **probabilistic** terms
- \Box All the relevant probability values are known

Key Principle

Bayes Theorem (贝叶斯定理**)**

Bayes Theorem Bayes theorem $P(H|X) = \frac{P(H)P(X|H)}{P(X)}$

X: the observed sample (also called **evidence**; *e.g.: the length of a fish*) *H*: the hypothesis (*e.g. the fish belongs to the "salmon" category*) *P*(*H*): the **prior probability** (先验概率) that *H* holds (*e.g. the probability of catching a salmon*)

P(*X*|*H*): the **likelihood** (似然度) of observing *X* given that *H* holds (e.g. *the probability of observing a 3-inch length fish which is salmon*)

P(*X*): the **evidence probability** that *X* is observed (*e.g. the probability of observing a fish with 3-inch length*)

P($H|X$): the **posterior probability** (后验概率) that *H* holds given *X* (e.g. *the probability of X being salmon given its length is 3-inch*)

Thomas Bayes (1702-1761)

A Specific Example

State of Nature (自然状态**)**

 \Box Future events that might occur *e.g. the next fish arriving along the conveyor belt* \Box State of nature is unpredictable

e.g. it is hard to predict what type will emerge next

From statistical/probabilistic point of view, the state of nature should be favorably regarded as a random variable

e.g. let ω *denote the (discrete) random variable* $\omega = \omega_1$: sea bass *representing the state of nature (class) of fish types* $\omega = \omega_2$: salmon

Prior Probability

Prior Probability (先验概率**)**

Prior probability is the probability distribution which reflects one's prior knowledge on the random variable

Probability distribution (for discrete random variable) Let $P(\cdot)$ be the probability distribution on the random variable ω with *c* possible states of nature $\{\omega_1, \omega_2, \dots, \omega_c\}$, such that: $P(\omega_i) \geq 0$ (non-negativity) $\sum_{i=1}^{c} P(\omega_i) = 1$ (normalization)

the catch produced as much sea bass as salmon \Box $P(\omega_1) = P(\omega_2) = 1/2$

the catch produced more sea bass than salmon \Box $P(\omega_1) = 2/3$; $P(\omega_2) = 1/3$

Decision Before Observation

The Problem

To make a decision on the type of fish arriving next, where 1) prior probability is known; 2) no observation is allowed

Naive Decision Rule

 Γ Decide ω_1 if $P(\omega_1) > P(\omega_2)$; otherwise decide ω_2

This is the *best* we can do without observation

 \Box Fixed prior probabilities \rightarrow Same decisions all the time

Incorporate observations into decision!

Good when $P(\omega_1)$ *is much greater (smaller) than* $P(\omega_2)$ *Poor when* $P(\omega_1)$ *is close to* $P(\omega_2)$ [only 50% chance of being right if $P(\omega_1) = P(\omega_2)$]

Probability Density Function (pdf)

Probability density function (pdf) (for continuous random variable)

Let $p(\cdot)$ be the probability density function on the continuous random variable x taking values in **R**, such that:

$$
p(x) \ge 0 \text{ (non-negativity)} \quad \int_{-\infty}^{\infty} p(x)dx = 1 \text{ (normalization)}
$$

- \Box For continuous random variable, it no longer makes sense to talk about the probability that *x* has a particular value (almost always be zero)
- We instead talk about the probability of *x* falling into a region *R,* say $R=(a,b)$, which could be computed with the pdf:

$$
\Pr[x \in R] = \int_{x \in R} p(x)dx = \int_{a}^{b} p(x)dx
$$

Incorporate Observations

The Problem

Suppose the fish *lightness measurement x* is observed, how could we incorporate this knowledge into usage?

Class-conditional probability density function (类条件概率密度**)**

 It is a probability density function (pdf) for *x* given that the state of nature (class) is ω , i.e.:

 $p(x|\omega) \geq 0$ $\int_{-\infty}^{\infty} p(x|\omega)dx = 1$

 The *class-conditional* pdf describes the difference in the distribution of observations under different classes

 $p(x|\omega_1)$ should be different to $p(x|\omega_2)$

Class-Conditional PDF

An illustrative example

h-axis: lightness of fish scales v-axis: class-conditional pdf values

black curve: sea bass red curve: salmon

> \Box The area under each curve is 1.0 (*normalization*)

 \Box Sea bass is somewhat brighter than salmon

Decision After Observation **Known Unknown** The quantity which we want to use **Prior probability** in decision naturally (by exploiting observation information) $P(\omega_j)$ $(1 \leq j \leq c)$ **Class-conditional Posterior probability** Bayes **pdf** $P(\omega_j|x^*)$ $(1 \leq j \leq c)$ $p(x|\omega_j)$ $(1 \leq j \leq c)$ Formula **Observation for test example** Convert the prior probability $P(\omega_i)$ (*e.g.: fish lightness*) to the posterior probability $P(\omega_i|x^*)$

Bayes Formula Revisited

Joint probability density function (联合分布) $p(\omega, x)$ **Marginal distribution (边缘分布)** $P(\omega)$ $p(x)$

$$
P(\omega) = \int_{-\infty}^{\infty} p(\omega, x) dx \qquad p(x) = \sum_{j=1}^{c} p(\omega_j, x)
$$

Law of total probability (全概率公式) [ref. pp.615]

$$
p(\omega, x) = P(\omega|x) \cdot p(x)
$$

\n
$$
P(\omega|x) \cdot p(x|\omega)
$$

\n
$$
P(\omega|x) \cdot p(x) = P(\omega) \cdot p(x|\omega)
$$

\n
$$
P(\omega|x) = \frac{p(x|\omega) \cdot P(\omega)}{p(x)}
$$

Bayes Formula Revisited (Cont.)

$$
P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} \quad (1 \le j \le c) \quad \text{(Bayes Formula)}
$$

Bayes Decision Rule

 \iint_{I} if $P(\omega_j|x) > P(\omega_i|x), \ \forall i \neq j \implies$ Decide ω_j

 \blacksquare $P(\omega_i)$ and $p(x|\omega_i)$ are assumed to be known \Box $p(x)$ is irrelevant for Bayesian decision (serving as a normalization factor, not related to any state of nature)

$$
p(x) = \sum_{j=1}^{c} p(\omega_j, x) = \sum_{j=1}^{c} p(x|\omega_j) \cdot P(\omega_j)
$$

Bayes Formula Revisited (Cont.)
\n
$$
P(\omega_j|x) = \frac{p(x|\omega_j) \cdot P(\omega_j)}{p(x)} \quad \left(posterior = \frac{likelihood \times prior}{evidence}\right)
$$
\n**Special Case I: Equal prior probability**
\n
$$
P(\omega_1) = P(\omega_2) = \dots = P(\omega_c) = \frac{1}{c} \quad \text{Depends on the likelihood } p(x|\omega_j)
$$

Special Case II: Equal likelihood Degenerate to naive $p(x|\omega_1) = p(x|\omega_2) = \cdots = p(x|\omega_c)$ decision rule

Normally, prior probability and likelihood function together in Bayesian decision process

Bayes Formula Revisited (Cont.)

An illustrative example

$$
P(\omega_1) = \frac{2}{3}
$$

$$
P(\omega_2) = \frac{1}{3}
$$

What will the posterior probability for either type of fish look like?

Bayes Formula Revisited (Cont.)

An illustrative example

h-axis: lightness of fish scales v-axis: posterior probability for either type of fish

black curve: sea bass red curve: salmon

- For each value of *x*, the higher curve yields the output of Bayesian decision
- For each value of *x*, the posteriors of either curve sum to 1.0

Another Example

Problem statement

- \Box A new medical test is used to detect whether a patient has a certain cancer or not, whose test result is either + (*positive*) or - (*negative*)
- For patient with this cancer, the probability of returning *positive* test result is 0.98
- For patient without this cancer, the probability of returning *negative* test result is 0.97
- \Box The probability for any person to have this cancer is 0.008

Question

If *positive* test result is returned for some person, does he/she have this kind of cancer or not?

Another Example (Cont.)

 $x \in \{+, -\}$ ω_1 : cancer ω_2 : no cancer $P(\omega_1) = 0.008$ $P(\omega_2) = 1 - P(\omega_1) = 0.992$ $P(+|\omega_1) = 0.98$ $P(-|\omega_1) = 1 - P(+|\omega_1) = 0.02$ $P(-|\omega_2) = 0.97$ $P(+|\omega_2) = 1 - P(-|\omega_2) = 0.03$ $P(\omega_1 | \cdot) = \frac{P(\omega_1)P(\cdot | \omega_1)}{P(\cdot)} = \frac{P(\omega_1)P(\cdot | \omega_1)}{P(\omega_1)P(\cdot | \omega_1) + P(\omega_2)P(\cdot | \omega_2)}$ 0.008×0.98 $\frac{0.008 \times 0.98}{0.008 \times 0.98 + 0.992 \times 0.03} = 0.2085$ $P(\omega_2 | +) > P(\omega_1 | +)$
No cancer! $P(\omega_2 | \cdot) = 1 - P(\omega_1 | \cdot) = 0.7915$

Feasibility of Bayes Formula

$$
P(\omega|x) = \frac{p(x|\omega) \cdot P(\omega)}{p(x)}
$$
 (Bayes Formula)

To compute posterior probability $P(\omega|x)$, we need to know:

Prior probability: $P(\omega)$ Likelihood: $p(x|\omega)$

A simple solution: Counting

relative frequencies (相对频率)

An advanced solution: Conduct

density estimation (概率密度估计)

A Further Example

Problem statement

Based on the height of a car in some campus, decide whether it costs more than \$50,000 or not

A Further Example (Cont.)

Collecting samples

Suppose we have randomly picked 1209 cars in the campus, got prices from their owners, and measured their heights

Compute $P(\omega_1), P(\omega_2)$:

 $P(\omega_1) = \frac{221}{1209} = 0.183$ # cars in ω_1 : 221 $P(\omega_2) = \frac{988}{1209} = 0.817$ # cars in ω_2 : 988

A Further Example (Cont.)

Compute $p(x|\omega_1), p(x|\omega_2)$:

Discretize the height spectrum (say [0.5m, 2.5m]) into 20 intervals each with length 0.1m, and then count the number of cars falling into each interval for either class

A Further Example (Cont.)

Question

For a car with height 1.05m, is its price greater than \$50,000?

$$
\frac{P(\omega_1) = 0.183}{P(\omega_1) = 0.183} \qquad P(\omega_2) = 0.817
$$
\n
$$
\frac{P(\omega_1) = 0.183}{P(x = 1.05 \mid \omega_1) = 0.2081} \qquad p(x = 1.05 \mid \omega_2) = 0.0597
$$
\n
$$
\frac{P(\omega_2 \mid x = 1.05)}{P(\omega_1 \mid x = 1.05)} = \frac{P(\omega_2) \cdot p(x = 1.05 \mid \omega_2)}{p(x = 1.05)} / \frac{P(\omega_1) \cdot p(x = 1.05 \mid \omega_1)}{p(x = 1.05)}
$$
\n
$$
= \frac{P(\omega_2) \cdot p(x = 1.05 \mid \omega_2)}{P(\omega_1) \cdot p(x = 1.05 \mid \omega_1)} \qquad \frac{P(\omega_2 \mid x) > P(\omega_1 \mid x)}{P(\omega_2 \mid x) > P(\omega_1 \mid x)}
$$
\n
$$
= \frac{0.817 \times 0.0597}{0.183 \times 0.2081} = 1.280
$$

Is Bayes Decision Rule Optimal?

Bayes Decision Rule (In case of two classes)

if $P(\omega_1|x) > P(\omega_2|x)$, Decide ω_1 ; Otherwise ω_2

Whenever we observe a particular *x*, the probability of error is:

 $P(error | x) = \begin{cases} P(\omega_1 | x) & \text{if we decide } \omega_2 \\ P(\omega_2 | x) & \text{if we decide } \omega_1 \end{cases}$

Under Bayes decision rule, we have $P(error | x) = min[P(\omega_1 | x), P(\omega_2 | x)]$

For every *x*, we ensure that $P(error \mid x)$ is as small as possible

The average probability of error over all possible *x* must be as small as possible

Bayes Decision Rule – The General Case

\triangleright By allowing to use more than one feature $x \in \mathbf{R} \implies \mathbf{x} \in \mathbf{R}^d$ (*d*-dimensional Euclidean space)

- \triangleright By allowing more than two states of nature $\Omega = {\omega_1, \omega_2, \ldots, \omega_c}$ (finite set of *c* states of nature)
- \triangleright By allowing actions other than merely deciding the state of nature

 $\mathcal{A} = \{\alpha_1, \alpha_2, \dots, \alpha_a\}$ (finite set of *a* possible actions)

Note: $c \neq a$

Bayes Decision Rule – The General Case (Cont.)

 By introducing a loss function more general than the probability of error

 $\lambda: \Omega \times \mathcal{A} \rightarrow \mathbf{R}$ (loss function)

 $\lambda(\omega_i,\alpha_i):$ the loss incurred for taking action α_i when the state of nature is ω_i

A simple loss function

For ease of reference, usually written as: $\lambda(\alpha_i | \omega_j)$

Bayes Decision Rule – The General Case (Cont.)

The problem

Given a particular **x**, we have to decide which action to take

We need to know the *loss* of taking each action α_i $(1 \leq i \leq a)$

The expected loss is also named as *(conditional) risk* **(**条件风险**)**

Bayes Decision Rule – The General Case (Cont.)

Suppose we have:

For a particular **x**:

$$
P(\omega_1 | \mathbf{x}) = 0.01
$$

$$
P(\omega_2 | \mathbf{x}) = 0.99
$$

$$
R(\alpha_1 | \mathbf{x}) = \sum_{j=1}^2 \lambda(\alpha_1 | \omega_j) \cdot P(\omega_j | \mathbf{x})
$$

= $\lambda(\alpha_1 | \omega_1) \cdot P(\omega_1 | \mathbf{x}) + \lambda(\alpha_1 | \omega_2) \cdot P(\omega_2 | \mathbf{x})$
= $5 \times 0.01 + 60 \times 0.99 = 59.45$

Similarly, we can get: $R(\alpha_2 | x) = 3.47$ $R(\alpha_3 | x) = 100$

Bayes Decision Rule – The General Case (Cont.)

The task: *find a mapping from patterns to actions* $\alpha: \mathbf{R}^d \to \mathcal{A}$ (decision function)

In other words, for every **x**, the decision function $\alpha(\mathbf{x})$ assumes one of the *a* actions $\alpha_1, \ldots, \alpha_a$

Bayes Decision Rule – The General Case (Cont.) ${}^{\mathsf{I}}_1 R = \int R(\alpha(\mathbf{x}) | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} \text{ (overall risk)}$

For every **x**, we ensure that the conditional risk $R(\alpha(\mathbf{x}) | \mathbf{x})$ is as small as possible

The overall risk over all possible **x** must be as small as possible

Bayes decision rule (*General case*)

$$
\begin{aligned}\n\mathbf{r} &= \mathbf{r} - \math
$$

- The resulting overall risk is called the *Bayes risk* (denoted as *R**)
- \Box The best performance achievable given *p*(**x**) and loss function

Two-Category Classification **Special case** \Box $\Omega = {\omega_1, \omega_2}$ (two states of nature) $\begin{array}{c} \begin{array}{c} 1 \\ 1 \end{array} & \lambda_{11} \end{array} \begin{array}{c} \lambda_{21} \\ \lambda_{12} \end{array}$ $\blacksquare \mathcal{A} = \{\alpha_1, \alpha_2\} \ (\alpha_1 = \text{decide} \ \omega_1; \ \alpha_2 = \text{decide} \ \omega_2)$ the loss incurred for deciding ω_i $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$: when the true state of nature is ω_i

The conditional risk:

$$
R(\alpha_1 \mid \mathbf{x}) = \lambda_{11} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{12} \cdot P(\omega_2 \mid \mathbf{x})
$$

$$
R(\alpha_2 \mid \mathbf{x}) = \lambda_{21} \cdot P(\omega_1 \mid \mathbf{x}) + \lambda_{22} \cdot P(\omega_2 \mid \mathbf{x})
$$

decide decide yes no

Minimum-Error-Rate Classification

Classification setting

 \Box $\Omega = {\omega_1, \omega_2, \ldots, \omega_c}$ (*c* possible states of nature)

 $\blacksquare \mathcal{A} = \{\alpha_1, \alpha_2, \ldots, \alpha_c\} \ (\alpha_i = \text{decide } \omega_i, \ 1 \leq i \leq c)$

Zero-one (symmetrical) loss function

$$
\lambda(\alpha_i \mid \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases} \quad 1 \leq i, j \leq c
$$

- Assign no loss (i.e. 0) to a correct decision
- Assign a unit loss (i.e. 1) to any incorrect decision (**equal cost**)

Minimax Criterion

Generally, we assume that the prior probabilities over the states of nature $\Omega = {\omega_1, \omega_2, \ldots, \omega_c}$ are fixed

Nonetheless, in some cases we need to design classifiers which can perform well under **varying prior probabilities**

e.g. the prior probabilities of catching a sea bass or salmon fish might vary in different regions

Varying prior probabilities leads to varying overall risk

The minimax criterion (极小化极大 **| 准则)** aims to find the classifier which can **minimize the** *worst* **overall risk** for any value of the priors

Minimax Criterion (Cont.) **Two-category classification** \Box $\Omega = {\omega_1, \omega_2}$ (two states of nature) $\frac{1}{1} \lambda_{11} \lambda_{21}$
 $\frac{1}{1} \lambda_{12} \lambda_{22}$ $\Box A = {\alpha_1, \alpha_2} (\alpha_1 = \text{decide }\omega_1; \alpha_2 = \text{decide }\omega_2)$ the loss incurred for deciding ω_i $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$: when the true state of nature is ω_i

Suppose the two-category classifier $\alpha(\cdot)$ decides ω_1 in region \mathcal{R}_1 and decides ω_2 in region \mathcal{R}_2 . Here, $\mathcal{R}_1 \cup \mathcal{R}_2 = \mathbf{R}^d$ and $\mathcal{R}_1 \cap \mathcal{R}_2 = \emptyset$.

The overall
\n***risk:***
\n
$$
= \int_{\mathcal{R}_1} R(\alpha(\mathbf{x}) | \mathbf{x})) \cdot p(\mathbf{x}) d\mathbf{x}
$$
\n***risk:***
\n
$$
= \int_{\mathcal{R}_1} R(\alpha_1 | \mathbf{x})) \cdot p(\mathbf{x}) d\mathbf{x} + \int_{\mathcal{R}_2} R(\alpha_2 | \mathbf{x})) \cdot p(\mathbf{x}) d\mathbf{x}
$$

Minimax Criterion (Cont.)
\n
$$
R = \int_{\mathcal{R}_1} R(\alpha_1 | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} + \int_{\mathcal{R}_2} R(\alpha_2 | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}
$$
\n
$$
\int_{\mathcal{R}_1} R(\alpha_1 | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x} + \int_{\mathcal{R}_2} R(\alpha_2 | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}
$$
\n
$$
= \int_{\mathcal{R}_1} \sum_{j=1}^2 \lambda(\alpha_1 | \omega_j) \cdot P(\omega_j | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}
$$
\n
$$
= \int_{\mathcal{R}_1} \sum_{j=1}^2 \lambda_{1j} \cdot P(\omega_j) \cdot p(\mathbf{x} | \omega_j) d\mathbf{x}
$$
\n
$$
= \int_{\mathcal{R}_1} [\lambda_{11} \cdot P(\omega_1) \cdot p(\mathbf{x} | \omega_1) + \lambda_{12} \cdot P(\omega_2) \cdot p(\mathbf{x} | \omega_2)] d\mathbf{x}
$$
\n
$$
\int_{\mathcal{R}_2} R(\alpha_2 | \mathbf{x}) \cdot p(\mathbf{x}) d\mathbf{x}
$$
\n
$$
= \int_{\mathcal{R}_2} [\lambda_{21} \cdot P(\omega_1) \cdot p(\mathbf{x} | \omega_1) + \lambda_{22} \cdot P(\omega_2) \cdot p(\mathbf{x} | \omega_2)] d\mathbf{x}
$$

Minimax Criterion (Cont.)

$$
R = \int_{\mathcal{R}_1} \left[\lambda_{11} \cdot P(\omega_1) \cdot p(\mathbf{x} \mid \omega_1) + \lambda_{12} \cdot P(\omega_2) \cdot p(\mathbf{x} \mid \omega_2) \right] d\mathbf{x}
$$

$$
+ \int_{\mathcal{R}_2} \left[\lambda_{21} \cdot P(\omega_1) \cdot p(\mathbf{x} \mid \omega_1) + \lambda_{22} \cdot P(\omega_2) \cdot p(\mathbf{x} \mid \omega_2) \right] d\mathbf{x}
$$

Rewrite the overall risk *R* as a function of $P(\omega_1)$ via:

$$
\bullet \ \ P(\omega_1) = 1 - P(\omega_2)
$$

$$
\bullet \quad \int_{\mathcal{R}_1} p(\mathbf{x} \mid \omega_1) d\mathbf{x} = 1 - \int_{\mathcal{R}_2} p(\mathbf{x} \mid \omega_1) d\mathbf{x}
$$

$$
R = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{\mathcal{R}_1} p(\mathbf{x} \mid \omega_2) d\mathbf{x}
$$

+ $P(\omega_1) \left[(\lambda_{11} - \lambda_{22}) + (\lambda_{21} - \lambda_{11}) \int_{\mathcal{R}_2} p(\mathbf{x} \mid \omega_1) d\mathbf{x} - (\lambda_{12} - \lambda_{22}) \int_{\mathcal{R}_1} p(\mathbf{x} \mid \omega_2) d\mathbf{x} \right]$

Minimax Criterion (Cont.) $R_{mm} = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{\mathcal{P}_1} p(\mathbf{x} \mid \omega_2) d\mathbf{x}$ $= \lambda_{11} + (\lambda_{21} - \lambda_{11}) \int_{\mathcal{D}} p(\mathbf{x} \mid \omega_1) d\mathbf{x}$ $=$ R_{mm} , minimax risk $R = \lambda_{22} + (\lambda_{12} - \lambda_{22}) \int_{\mathcal{P}_1} p(\mathbf{x} \mid \omega_2) d\mathbf{x}$ $+P(\omega_1)\left[(\lambda_{11}-\lambda_{22})+(\lambda_{21}-\lambda_{11})\int_{\mathcal{D}}p(\mathbf{x}|\omega_1)d\mathbf{x}-(\lambda_{12}-\lambda_{22})\int_{\mathcal{D}}p(\mathbf{x}|\omega_2)d\mathbf{x}\right]$ =0 for minimax solution A linear function of $P(\omega_1)$, which can also be expressed as a linear function of $P(\omega_2)$ in similar way.

Discriminant Function (Cont.)

Decision region (决策区域**)**

c discriminant functions <u>called</u> \overline{c} decision regions $q_i(\cdot)$ $(1 \leq i \leq c)$ $\mathcal{R}_i \subset \mathbf{R}^d \ (1 \leq i \leq c)$ $\mathbf{R}_i = \{ \mathbf{x} \mid \mathbf{x} \in \mathbf{R}^d : g_i(\mathbf{x}) > g_j(\mathbf{x}) \ \ \forall j \neq i \}$ where $\mathcal{R}_i \cap \mathcal{R}_j = \emptyset$ $(i \neq j)$ and $\bigcup_{i=1}^c \mathcal{R}_i = \mathbf{R}^d$

Decision boundary (决策边界**)**

surface in feature space where ties occur among several largest discriminant functions

Expected Value

Expected value (数学期望), a.k.a. *expectation*, *mean* or *average* of a random variable *x*

Discrete case

$$
x \in \mathcal{X} = \{x_1, x_2, \dots, x_c\}
$$

$$
x \sim P(\cdot)
$$

$$
\sum_{x \in \mathcal{X}} x \cdot P(x) = \sum_{i=1}^c x_i \cdot P(x_i)
$$

$$
(\sim: \text{``has the distribution''})
$$

Continuous case Notation: $\mu = \mathcal{E}[x]$

 $x \in \mathbf{R}$ $x \in \mathbf{R}$
 $x \sim p(\cdot)$ $\qquad \qquad \mathcal{E}[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx$

Expected Value (Cont.)

Given random variable *x* and function $f(\cdot)$, what is the \mathbf{R} expected value of $f(x)$?

Discrete case:
$$
\mathcal{E}[f(x)] = \sum_{x \in \mathcal{X}} f(x) \cdot P(x) = \sum_{i=1}^{c} f(x_i) \cdot P(x_i)
$$

Continuous case: $\mathcal{E}[f(x)] = \int_{-\infty}^{\infty} f(x) \cdot p(x) dx$

Variance
$$
(\overrightarrow{J}) \stackrel{\pm}{\equiv} \text{Var}[x] = \mathcal{E}[(x - \mathcal{E}[x])^2]
$$
 (i.e. $f(x) = (x - \mu)^2) \stackrel{\pm}{\parallel}$
\n**Discrete case:** $\text{Var}[x] = \sum_{i=1}^{c} (x_i - \mu)^2 \cdot P(x_i)$

Continuous case:
$$
\text{Var}[x] = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot p(x) \, dx
$$

Notation: σ^2 = Var[x] (σ : *standard deviation* (标准偏差))

Gaussian Density – Univariate Case Gaussian density (高斯密度函数), a.k.a. *normal density* (正态密度函数), for continuous random variable

$$
p(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right] \qquad x \sim N(\mu, \sigma^2)
$$

$$
\int_{-\infty}^{\infty} p(x)dx = 1
$$

$$
\mathcal{E}[x] = \int_{-\infty}^{\infty} x \cdot p(x) dx = \mu \left[\frac{e^{2\sigma x}}{\sigma^2 + e^{2\sigma x} + e^{2\sigma x}}\right]_{\mu = 2\sigma^2}^{\sigma^2}
$$

$$
\text{Var}[x] = \int_{-\infty}^{\infty} (x-\mu)^2 \cdot p(x) = \sigma^2
$$

Vector Random Variables (随机向量) **(joint pdf) (marginal pdf)**

Expected vector

$$
\mathcal{E}[\mathbf{x}] = \begin{pmatrix} \mathcal{E}[x_1] \\ \mathcal{E}[x_2] \\ \vdots \\ \mathcal{E}[x_d] \end{pmatrix} \xrightarrow{\mathcal{E}[x_i] = \int_{-\infty}^{\infty} x_i \cdot \underbrace{p(x_i)}_{\text{maxginal pdf on}} dx_i \quad (1 \le i \le d)} \underset{\mu = \mathcal{E}[x_i]}{\text{marginal pdf on}} \text{the } i\text{-th component}
$$

Vector Random Variables (Cont.)

Covariance matrix (协方差矩阵**)**

$$
\mathbf{\Sigma} = [\sigma_{ij}]_{1 \leq i,j \leq d} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix} \begin{array}{c} \mathbf{\square} \text{ symmetric} \\ (\text{NfKSE}) \\ \mathbf{\square} \text{ positive} \\ \text{semidefinite} \\ (\#\text{E} \text{E}) \end{array}
$$

$$
\sigma_{ij} = \sigma_{ji} = \mathcal{E}[(x_i - \mu_i)(x_j - \mu_j)]
$$
 Appendix A.4.9 [pp.617]

$$
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_i - \mu_i)(x_j - \mu_j) \cdot p(x_i, x_j) dx_i dx_j
$$

$$
\sigma_{ii} = \text{Var}[x_i] = \sigma_i^2
$$
 marginal pdf on a pair of

random variables (*xⁱ* , *x^j*)

Pattern Recognition Spring Semester (Wallettern 48

Properties of Σ

Gaussian Density – Multivariate Case $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ $\left[\mu_i = \mathcal{E}[x_i] \right]$ $\sigma_{ij} = \sigma_{ji} = \mathcal{E}[(x_i - \mu_i)(x_j - \mu_j)]$ $p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\mathbf{\Sigma}|^{1/2}} \exp \left| -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right|$

 $\mathbf{x} = (x_1, x_2, \dots, x_d)^t : \mathbf{d}$ -dimensional *column vector* $\mu = (\mu_1, \mu_2, \dots, \mu_d)^t$: *d*-dimensional *mean vector*

$$
\Sigma = [\sigma_{ij}]_{1 \le i,j \le d} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \dots & \sigma_{1d} \\ \sigma_{21} & \sigma_{22} & \dots & \sigma_{2d} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{d1} & \sigma_{d2} & \dots & \sigma_{dd} \end{pmatrix} \begin{pmatrix} d \times d \text{ covariance} \\ \text{matrix} \\ |\Sigma| \text{ : determinant} \\ \Sigma^{-1} \text{ : inverse} \end{pmatrix}
$$

Gaussian Density – Multivariate Case (Cont.) $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}): p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left| -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right|$ $\mathbf{u}(\mathbf{x}-\boldsymbol{\mu})^t: 1 \times d$ matrix $(\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})^{\top}$ $\frac{1}{\text{scalar} \left(1 \times 1 \text{ matrix}\right)}$ Σ^{-1} : $d \times d$ matrix $(\mathbf{x} - \boldsymbol{\mu}) : d \times 1$ matrix Σ^{-1} : positive definite Σ : positive definite $-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \leq 0 \sum_{\mathbf{x}} (\mathbf{x}-\boldsymbol{\mu})^t \Sigma^{-1} (\mathbf{x}-\boldsymbol{\mu}) \geq 0$

Pattern Recognition Spring Semester (Wallettern 1980)

Discriminant Functions for Gaussian **Density**

Minimum-error-rate classification

 $g_i(\mathbf{x}) = P(\omega_i|\mathbf{x}) \quad (1 \leq i \leq c)$

$$
g_i(\mathbf{x}) = P(\omega_i|\mathbf{x})
$$
\n
$$
g_i(\mathbf{x}) = \ln P(\omega_i|\mathbf{x})
$$
\n
$$
g_i(\mathbf{x}) = \ln P(\omega_i|\mathbf{x})
$$
\n
$$
g_i(\mathbf{x}) = \ln P(\omega_i)
$$
\n
$$
g_i(\mathbf{x}) = \ln P(\omega_i)
$$
\n
$$
g_i(\mathbf{x}) = \ln P(\omega_i)
$$
\n
$$
g_i(\mathbf{x}) = \frac{1}{p(\mathbf{x}|\omega_i)} \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)
$$
\n
$$
g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)
$$
\n
$$
g_i(\mathbf{x}) = \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i)
$$
\n
$$
g_i(\mathbf{x}) = \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i)
$$

Pattern Recognition Spring Semester (Wallettern 1981)

Case I: $\Sigma_i = \sigma^2 I$ $\mathbf{P}(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$

$$
g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i) \frac{1}{1}
$$

Covariance matrix: σ^2 times the identity matrix **I**

$$
\Sigma_{i} = \sigma^{2} \cdot \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & \ddots & \\ & & & 1 \end{pmatrix} = \begin{pmatrix} \sigma^{2} & & & \\ & \sigma^{2} & & \\ & & \ddots & \\ & & & \sigma^{2} \end{pmatrix} \qquad \sum_{i} \vert \Sigma_{i} \vert = \sigma^{2d}
$$
\n
$$
\Sigma_{i}^{-1} = (1/\sigma^{2}) \mathbf{I}
$$

Case I:
$$
\Sigma_i = \sigma^2 \mathbf{I} \text{ (Cont.)}
$$

$$
g_i(\mathbf{x}) = -\frac{||\mathbf{x} - \boldsymbol{\mu}_i||^2}{2\sigma^2} + \ln P(\omega_i)
$$

the same for all states of nature,
could be ignored
could be ignored
1
Linear discriminant functions (&##) + $\ln P(\omega_i)$
$g_i(\mathbf{x}) = -\frac{1}{2\sigma^2}(\mathbf{x}^t \mathbf{x}) - 2\boldsymbol{\mu}_i^t \mathbf{x} + \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i] + \ln P(\omega_i)$$g_i(\mathbf{x}) = \mathbf{w}_i^t \mathbf{x} + w_{i0}$$\mathbf{w}_i = \frac{1}{\sigma^2} \boldsymbol{\mu}_i \text{ weight vector } (\mathbb{R}[\mathbf{f}]\mathbf{f})$$w_{i0} = -\frac{1}{2\sigma^2} \boldsymbol{\mu}_i^t \boldsymbol{\mu}_i + \ln P(\omega_i) \text{ threshold/bias } (\mathbb{R}[\mathbf{f}]\mathbf{f})$</p>

Case II: $\Sigma_i = \Sigma$

 $\mathbf{u}_i \cdot p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)$ $g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \ln |\boldsymbol{\Sigma}_i| + \ln P(\omega_i) \frac{1}{4}$

Covariance matrix: *identical* for all classes

P. C. Mahalanobis (1893-1972)

Case II: (Cont.) the same for all *states of nature*, could be ignored Linear discriminant functions *weight vector threshold/bias*

Case III: Σ_i = arbitrary

$$
p(\mathbf{x}|\omega_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)
$$
\n
$$
g_i(\mathbf{x}) = -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_i| + \ln P(\omega_i)
$$
\n
$$
= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^t \boldsymbol{\Sigma}_i^{-1}(\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\ln|\boldsymbol{\Sigma}_i| + \ln P(\omega_i)
$$
\n
$$
= -\frac{1}{2}(\mathbf{x} - \mathbf{x} - \
$$

Summary

- Bayesian Decision Theory
	- PR: essentially a decision process
	- **□** Basic concepts
		- States of nature
		- Probability distribution, probability density function (pdf)
		- Class-conditional pdf
		- Joint pdf, marginal distribution, law of total probability
	- Bayes theorem
		- Prior + likelihood + observation \rightarrow Posterior probability
	- Bayes decision rule
		- Decide the state of nature with maximum posterior

Summary (Cont.)

- **Feasibility of Bayes decision rule**
	- **Prior probability + likelihood**
	- □ Solution I: counting relative frequencies
	- Solution II: conduct density estimation (chapters $3,4$)
- **Bayes decision rule: The general scenario**
	- **□** Allowing more than one feature
	- **□** Allowing more than two states of nature
	- Allowing actions than merely deciding state of nature
	- **u** Loss function: λ : $\Omega \times A \rightarrow \mathbf{R}$

Summary (Cont.)

Expected loss (*conditional risk*)

$$
R(\alpha_i \mid \mathbf{x}) = \sum_{j=1}^c \lambda(\alpha_i \mid \omega_j) \cdot P(\omega_j \mid \mathbf{x})
$$

Average by enumerating over all possible states of nature

- General Bayes decision rule
	- □ Decide the action with minimum expected loss
- **Minimum-error-rate classification**
	- \Box Actions \leftrightarrow Decide states of nature
	- Zero-one loss function
		- Assign *no loss*/*unit loss* for *correct*/*incorrect* decisions

Summary (Cont.)

- Discriminant functions
	- □ General way to represent classifiers
	- **Q** One function per category
	- Induce *decision regions* and *decision boundaries*
- Gaussian/Normal density $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}): p(\mathbf{x}) = \frac{1}{(2\pi)^{d/2} |\boldsymbol{\Sigma}|^{1/2}} \exp \left| -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^t \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right|$
- Discriminant functions for Gaussian pdf $\Sigma_i = \sigma^2 \mathbf{I}$, $\Sigma_i = \Sigma$: linear discriminant function

 Σ_i = arbitrary : quadratic discriminant function

