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Appendix A Training Details for Comparative Studies

During training, Pml-md and Pase perform meta-learning on the noisy training set D = {(xi, si)|1 6 i 6 m} and the clean

validation set Dv = {(xv
i ,y

v
i )|1 6 i 6 n}. To make a fair comparison with other partial multi-label learning (PML) approaches

whose learning procedures involve no clean validation set, we slightly adapt their learning procedures by attaching a supervised

component, so that they can acquire clean knowledge from the clean validation set by learning with the supervised component.

Specifically, for Fpml and Natal which learn from PML data with a unified objective function Ltrain(D,W), we introduce a

supervised objective function Lval(Dv,W) as follows

Ltrain
(D,W) +

m

n
· Lval

(Dv
,W), (A1)

where W denotes the parameters of classifiers. The learning proceeds by optimizing the original objective Ltrain on noisy training

set and the supervised objective Lval on clean validation set, which provides explicit knowledge on ‘what is noisy/clean’ to facilitate

learning. Since Fpml and Natal use the mean square error (MSE) loss to induce classifiers, we also set Lval to be the MSE loss

Lval
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i=1
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v
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v
i ||

2
2. (A2)

For Parvls which learns from PML data with successive two steps (i.e. credible label elicitation and classifier induction), we

skip the first step for the clean validation set as this step may corrupt originally clean labels in validation set. We disambiguate

the noisy training set via credible label elicitation, and directly merge the disambiguated training set and clean validation set to

induce classifier.

For deep approaches Upml-hl and Upml-rl which induce prediction model from PML data with unbiased estimators for Hamming

loss and Ranking loss respectively, we introduce corresponding surrogate losses (cf. Eq. (3) and Eq. (5) in their original paper [47])

to acquire clean knowledge from the clean validation set. These surrogate losses are degraded versions of two unbiased estimators

when the data is clean. In each training epoch, the prediction model is trained by optimizing the unbiased estimator on noisy

training set and the surrogate loss on clean validation set.

Appendix B Further Ablation Studies

In Pase, we implement the feature correction function as a simple affine transformation (i.e. Eq. (2)). To demonstrate such an

affine transformation is a reasonable choice to make Pase work well, we decompose it and employ its two components, i.e. a scaling

transformation and a translation transformation, to implement two variants respectively.

We employ ten-fold cross validation on all the real-world and synthetic PML data sets. Table B.1 summarizes the p-value

statistics of the Wilcoxon signed-ranks test at 0.05 significance level and Figure B.1 shows the detailed experimental results on

representative data sets in terms of Average precision, One-error and Ranking loss. Experimental results validate the superiority

of the considered affine transformation to these simplified variants.
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Figure B.1 Predictive performance of Pase and its variants in terms of Average precision, One-error and Ranking loss.

Table B.1 Summary of the Wilcoxon signed-ranks test for Pase against its variants at 0.05 significance level. p-values are shown

in the brackets.

Pase against Pase-scaling Pase-translation

Average precision win [2.9e-4] win [4.3e-4]
Hamming loss win [6.4e-4] win [1.2e-4]
One error win [1.4e-3] win [1.3e-3]
Coverage win [2.9e-4] win [4.4e-4]
Ranking loss win [2.9e-4] win [2.9e-4]

Appendix C Empirical Running Time Comparison

Empirical running time of each comparing approach considered in the Comparative Studies part of the main body is further

reported here for comprehensive evaluation. Figure C.1 illustrates the empirical training and test time of each comparing approach,

which shows that Pase is comparable to existing approaches in time overhead.

Figure C.1 Running time (training/test) of each comparing approach on five benchmark data sets. For histogram illustration,

the y-axis corresponds to the logarithm of running time.
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