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1 Additional Experiment Results
1.1 Results of PLL algorithms with MLP
We compared with four PLL algorithms, i.e., PRODEN [Lv et
al., 2020], RC [Feng et al., 2020], LWS [Wen et al., 2021],
and PL-AGGD [Wang et al., 2022]. Among these, the first
three algorithms can be used with either linear classifiers or
multi-layer perceptrons (MLP). Due to space limitations, we
presented only the results obtained using the linear classifiers
in the main body of the paper. Table A1 and A2 display the
results of ELIMIPL and the comparative PLL algorithms with
MLP on the benchmark and CRC-MIPL datasets, respectively.

Table A1 clearly illustrates that ELIMIPL consistently out-
performs the classification accuracies of the comparative PLL
algorithms with MLP. ELIMIPL consistently outperforms the
comparative PLL algorithms in all cases. However, when em-
ploying MLP, the comparative PLL algorithms did not con-
sistently achieve superior outcomes when compared to them-
selves using linear classifiers. This is particularly evident
when dealing with datasets containing relatively simple fea-
tures, where MLP results in lower performance than linear
classifiers. This phenomenon suggests that for the compar-
ative PLL algorithms, linear classifiers possess sufficient ca-
pacity to handle relatively simple features, while MLP might
lead to overfitting on the benchmark datasets.

Table A2 reveals that ELIMIPL significantly outperforms
the comparative PLL algorithms in 20 out of 24 cases while
showing inferior performance in 3 cases out of 24. Notably,
PLL algorithms utilizing MLP consistently outperform those
using linear classifiers across almost all cases. When re-
placing linear classifiers with MLP, results obtained from the
KMeansSeg image bag generator exhibit a substantial im-
provement compared to those generated by simpler image bag
generators (i.e., Row and SBN), while the improvements are
less pronounced with the SIFT image bag generator. In con-
clusion, although the PLL algorithms can attain satisfactory
results using MLP in certain scenarios, the development of
dedicated MIPL algorithms is essential.

1.2 Win/tie/loss counts of Experimental Results
To ensure the reliability of the results, we perform the pair-
wise t-test at a significance level of 0.05. We present the
∗Corresponding author

Algorithm r MNIST FMNIST Birdsong SIVAL

ELIMIPL

1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

Mean

PRODEN

1 .555±.033 .652±.033 .303±.016 .303±.020
2 .372±.038 .463±.067 .287±.017 .274±.022
3 .285±.032 .288±.039 .278±.006 .242±.009

RC

1 .660±.031 .697±.166 .329±.014 .344±.014
2 .577±.039 .684±.029 .301±.014 .299±.015
3 .362±.029 .414±.050 .288±.019 .256±.013

LWS

1 .605±.030 .702±.033 .344±.018 .346±.014
2 .431±.024 .547±.040 .310±.014 .312±.015
3 .335±.029 .411±.033 .289±.021 .286±.018

MaxMin

PRODEN

1 .465±.023 .358±.019 .339±.010 .322±.018
2 .338±.031 .315±.023 .329±.016 .295±.021
3 .260±.037 .265±.031 .305±.015 .244±.018

RC

1 .518±.022 .421±.016 .379±.014 .304±.015
2 .462±.028 .363±.018 .359±.015 .268±.023
3 .366±.039 .294±.053 .332±.024 .244±.014

LWS

1 .457±.028 .346±.033 .349±.013 .345±.013
2 .351±.043 .323±.031 .336±.013 .314±.019
3 .274±.037 .267±.034 .307±.016 .268±.019

Table A1: The classification accuracies (mean±std) of ELIMIPL
and comparative PLL algorithms on the benchmark datasets with
varying numbers of false positive candidate labels (r ∈ {1, 2, 3}).

Algorithm Row SBN KMeans SIFT
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010

Mean
PRODEN .405±.012 .515±.010 .512±.014 .352±.015
RC .290±.010 .394±.010 .304±.017 .248±.008
LWS .360±.008 .440±.009 .422±.035 .338±.009

MaxMin
PRODEN .453±.009 .529±.010 .563±.011 .294±.008
RC .347±.013 .432±.008 .366±.010 .204±.008
LWS .381±.011 .442±.009 .335±.049 .287±.009

Table A2: The classification accuracies (mean±std) of ELIMIPL
and comparative PLL algorithms on the real-world datasets.

win/tie/loss counts between ELIMIPL and the comparative al-
gorithms on the benchmark datasets for varying numbers of
false positive labels (r ∈ {1, 2, 3}), as well as the CRC-
MIPL dataset, in Table A3. Several key observations emerge:
(a) ELIMIPL demonstrates statistical superiority over MIPL
and PLL algorithms in 67.7% and 96.9% of cases, respec-
tively. (b) Across the benchmark datasets, ELIMIPL exhibits
statistical superiority over comparative algorithms in 95.3%
of cases. (c) Specifically, for the CRC-MIPL dataset, ELIMIPL



ELIMIPL against
In totalDEMIPL MIPLGP PRODEN RC LWS PL-AGGD

r = 1 2/2/0 3/1/0 16/0/0 16/0/0 16/0/0 8/0/0 61/3/0
r = 2 3/1/0 3/1/0 16/0/0 16/0/0 16/0/0 8/0/0 62/2/0
r = 3 2/2/0 2/2/0 16/0/0 16/0/0 16/0/0 8/0/0 60/4/0

CRC-MIPL 4/0/0 2/1/0 11/2/3 16/0/0 16/0/0 6/0/2 55/3/5
In total 11/5/0 10/5/0 59/2/3 64/0/0 64/0/0 30/0/2 238/12/5

Table A3: Win/tie/loss counts on the classification performance of ELIMIPL against the comparing algorithms.
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Figure A1: t-SNE visualization of aggregated bag-level feature representations produced by the attention mechanisms in DEMIPL, DAM-CLI,
and ELIMIPL on the test set of the MNIST-MIPL dataset (r ∈ {1, 2}).

Algorithm Row SBN KMeans SIFT
ELIMIPL .433±.008 .509±.007 .546±.012 .540±.010
DAM-CLI .424±.007 .501±.008 .534±.012 .531±.010

Table A4: The classification accuracies of ELIMIPL and DAM-CLI.

shows statistical superiority over the comparative algorithms
in 87.3% of cases. In summary, ELIMIPL achieves either su-
perior or competitive performance comparative to the MIPL
and PLL algorithms.

1.3 Effectiveness of the Attention Mechanism

We now show the results to demonstrate the effectiveness
of our scaled additive attention mechanism by contrasting it
with the disambiguation attention mechanism proposed previ-
ously [Tang et al., 2023]. DAM-CLI is derived by substituting
the scaled additive attention mechanism in ELIMIPL with the
disambiguation attention mechanism from DEMIPL. Conse-
quently, the sole distinction between ELIMIPL and DAM-CLI
lies in the utilization of different attention mechanisms.

Table A4 illustrates that ELIMIPL consistently attains
higher average accuracies compared to DAM-CLI, indicating
the effectiveness of the scaled additive attention mechanism.

1.4 Visualization of the Feature Representations
To delve deeper into the scaled additive attention mechanism,
we employ t-SNE [Van der Maaten and Hinton, 2008] to visu-
alize the aggregated bag-level feature representations, i.e., zi

in Eq. (4), on the test set of the MNIST-MIPL dataset when
r ∈ {1, 2}. The t-SNE algorithm is implemented by the
sklearn.manifold package with default parameters.

Figure A1 illustrates the feature representations generated
by the attention mechanisms in DEMIPL, DAM-CLI, and
ELIMIPL on the test set of the MNIST-MIPL dataset when
r ∈ {1, 2}. Here, DAM-CLI signifies the use of the dis-
ambiguation attention mechanism in DEMIPL to replace the
scaled additive attention mechanism in ELIMIPL. In Figure
A1, the feature representations produced by the disambigua-
tion attention mechanism in DEMIPL exhibit more intersec-
tions between different categories, suggesting the reduced
discriminations of the representations. In contrast, the feature
representations generated by the disambiguation attention
mechanisms in DAM-CLI form more compact clusters than
those produced by the disambiguation attention mechanisms
in DEMIPL. Additionally, the feature representations gener-
ated by the scaled additive attention mechanisms in ELIM-
IPL exhibit increased accuracy and separability compared to
those produced by the disambiguation attention mechanisms
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Figure A2: The classification accuracies of ELIMIPL with varying l on the benchmark datasets.
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Figure A3: The classification accuracies of ELIMIPL with varying l
on the CRC-MIPL dataset.

in DEMIPL and DAM-CLI.
Consequently, the proposed scaled additive attention

mechanism is more effective for aggregating bag-level feature
representations than the disambiguation attention mechanism
proposed in DEMIPL [Tang et al., 2023]. Moreover, the CLI
enhances the attention mechanism’s ability to aggregate more
compact bag-level feature representations.

1.5 Robustness to the Embedded Space Dimension
In the instance-level feature extractor, the feature transforma-
tion network ψ2(·) maps instance-level features to an embed-
ded space of dimension l. Furthermore, the scaling factor
in the scaled additive attention is 1/

√
l. To examine the im-

pact of parameter l on disambiguation outcomes, we vary l
within the set {64, 128, 256, 512, 1024}. Especially, for each
dataset, all experiments maintain consistent data partitioning
and other parameters except for varying l.

Figures A2 and A3 depict the classification accuracies
of ELIMIPL on the benchmark and CRC-MIPL datasets with

varying l, respectively. On the benchmark dataset, ELIM-
IPL’s performance demonstrates insensitivity to dimension l
for r = 1 or 2. However, when r = 3, some variations
in classification accuracy emerge for the MNIST-MIPL and
SIVAL-MIPL datasets. Specifically, an increase in l correlates
with a decrease in classification accuracy. This phenomenon
can be attributed to the relatively straightforward features
of the benchmark datasets, resulting in an undue emphasis
on their feature representation when projected into a higher-
dimensional embedding space. This effect becomes partic-
ularly pronounced under challenging disambiguation condi-
tions, i.e., r = 3. Overall, ELIMIPL achieves improved clas-
sification accuracies on the benchmark datasets when em-
ploying smaller values of dimension l. On the CRC-MIPL

dataset, ELIMIPL’s classification accuracies remain stable
across variations in l. Notably, when utilizing the Row and
KMeansSeg image bag generators, ELIMIPL demonstrates
strong robustness to the varying dimension l.

Based on the insights derived from the above analysis,
we opt for uniform settings of l = 128 for the benchmark
datasets and l = 512 for the CRC-MIPL dataset, correspond-
ing to log2 l = 7 and log2 l = 9, respectively. From Figures
A2 and A3, it is evident that such parameter configurations of
dimension l can yield commendable results.

1.6 Effectiveness of the Scaling Factor
The scaling factor prevents the softmax function from enter-
ing regions with small gradients, thereby mitigating the issue
of gradient vanishing. To assess the impact of the scaling fac-
tor, we introduce a variant called ELIMIPL wo 1√

l
, differing

from ELIMIPL only by excluding the scaling factor.
Table A5 displays the classification accuracies of ELIMIPL

wo 1√
l

and ELIMIPL on the benchmark datasets. The results



Algorithm r MNIST FMNIST Birdsong SIVAL

ELIMIPL

1 .992±.007 .903±.018 .771±.018 .675±.022
2 .987±.010 .845±.026 .745±.015 .616±.025
3 .748±.144 .702±.055 .717±.017 .600±.029

ELIMIPL wo 1√
l

1 .200±.000 .275±.080 .138±.019 .143±.030
2 .211±.032 .229±.049 .138±.020 .139±.029
3 – .200±.000 .129±.024 .131±.022

Table A5: The classification accuracies (mean±std) of ELIMIPL
and comparative algorithms on the benchmark datasets with vary-
ing numbers of false positive candidate labels (r ∈ {1, 2, 3}). The
symbol ”–” indicates that ELIMIPL wo 1√

l
fails to achieve accuracy

due to gradient vanishing.
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Figure A4: The loss values of ELIMIPL and ELIMIPL wo 1√
l

on the
MNIST-MIPL dataset (r = 1).

highlight that without the scaling factor, the model’s perfor-
mance resembles random classification, demonstrating inef-
fective learning and susceptibility to gradient vanishing. Fur-
thermore, Figure A4 illustrates that without the scaling factor,
the loss value fails to converge. Therefore, in ELIMIPL, the
scaling factor plays a pivotal role in achieving convergence.

1.7 Parameter Sensitivity
Figure A5 illustrates the classification accuracies of ELIM-
IPL on the FMNIST-MIPL dataset across varying parameters
µ and γ. Specifically, µ and γ are chosen from the sets
{0.7, 0.8, 0.9, 1.0, 1.1} and {0.4, 0.5, 0.6, 0.7, 0.8}, respec-
tively. ELIMIPL exhibits robustness to various combinations
of parameters µ and γ. The accuracies remain stable in most
cases, even when r = 3. In our experiments, we set µ = 1
and γ = 0.5 for ELIMIPL on the FMNIST-MIPL dataset. The
results of these experiments validate the efficacy of such pa-
rameter configurations.

1.8 Computational Complexity
Table A6 presents the floating-point operations (FLOPs),
number of parameters (Params), peak GPU memory usage
(PM), average time per test multi-instance bag (Times), and
average accuracy (Acc) over 10 trials, providing comprehen-
sive metrics to assess model complexity. The complexity of
MIPLGP is denoted asO((k+1)n2), where k and n represent
the number of classes and instances, respectively.

As observed in Table A6, the computational complexities
of ELIMIPL and DEMIPL are comparable, yet ELIMIPL ex-
hibits higher accuracy than DEMIPL. Moreover, ELIMIPL
achieves this superior accuracy with a lighter computational

Algorithm FLOPs (M) Params (M) PM (MiB) Times (s) Acc
ELIMIPL 109.86 0.43 1824 1.554 .992
DEMIPL 109.86 0.43 1822 1.426 .976
MIPLGP – – 12938 1.187 .949

Table A6: The outcomes on the MNIST-MIPL dataset (r = 1).

burden compared to MIPLGP. This suggests that, while keep-
ing the computational cost comparable to that of DEMIPL,
ELIMIPL attains superior accuracy, outperforming MIPLGP
in terms of both accuracy and computational complexity.

2 Why ELIMIPL Works?
The experimental results presented in the main body of
the paper and the supplementary material demonstrate that
ELIMIPL outperforms the comparative MIPL and PLL algo-
rithms across the majority of scenarios. Furthermore, we con-
duct a thorough validation of the efficacy of each component
within ELIMIPL. In this section, we provide insights into the
key factors contributing to the success of ELIMIPL.
Scaled Additive Attention Mechanism The t-SNE visu-
alization in Figure A1 reveals that our proposed scaled ad-
ditive attention mechanism generates feature representations
that are not only more compact but also more accurate com-
pared to the disambiguation attention mechanism in DEMIPL
[Tang et al., 2023]. The results presented in Table A4 fur-
ther affirm that the utilization of the scaled additive attention
mechanism leads to higher classification accuracy than em-
ploying the disambiguation attention mechanism. Addition-
ally, as illustrated in Table A5 and Figure A4, the inclusion of
the scaling factor in the scaled additive attention mechanism
ensures the model’s convergence with satisfactory accuracy.
Without the scaling factor, the model fails to converge, result-
ing in classification outputs resembling random guesses.
CLI loss During training, ELIMIPL learns conjugate label
information by minimizing the CLI loss, comprising map-
ping loss, sparse loss, and inhibition loss. Figure 2 in the
main body of the paper illustrates that using CLI loss en-
hances the predicted probabilities of the classifier on true la-
bels while suppressing probabilities on non-candidate labels.
Tables 4 and 5 in the main body of the paper demonstrate that
the CLI loss significantly improves the model’s performance
compared to using mapping loss, mapping loss with sparse
loss, mapping loss with inhibition loss, and cross-entropy
loss. Thus, CLI loss effectively exploits the information from
the label sets and the intrinsic properties of the label space,
enhancing the model’s disambiguation performance.

In summary, the effectiveness of ELIMIPL can be at-
tributed to two pivotal components: (a) the scaled additive
attention mechanism, which is responsible for generating dis-
criminative bag-level feature representations, and (b) CLI
loss, which is proficient in exploiting the information from
the label sets and the intrinsic properties of the label space.

3 MIPL Datasets
We employ four benchmark datasets and one real-world
dataset, all of which are publicly accessible [Tang et al., 2024,
2023]. Next, we will provide detailed descriptions of the data
preparation procedures for each of these datasets.
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Figure A5: The performance of ELIMIPL with varying µ and γ on the FMNIST-MIPL dataset (r ∈ {1, 2, 3}).

3.1 Benchmark MIPL Datasets
The MNIST-MIPL and FMNIST-MIPL datasets are adaptations
of the original MNIST and Fashion-MNIST datasets [LeCun
et al., 1998; Xiao et al., 2017], respectively. To construct
the MNIST-MIPL and FMNIST-MIPL datasets, positive and neg-
ative instances within each multi-instance bag are selected
from targeted and reserved class labels, respectively. For
the MNIST-MIPL dataset, the classes {0, 2, 4, 6, 8} are desig-
nated as the targeted classes, ensuring the presence of positive
instances corresponding to these classes. Conversely, nega-
tive instances are drawn randomly from the reserved classes
{1, 3, 5, 7, 9}. Similarly, the FMNIST-MIPL dataset is con-
structed with the targeted class labels {T-shirt, Trouser, Coat,
Sneaker, Bag} and the reserved class labels {Pullover, Dress,
Sandal, Shirt, Ankle boot}.

The Birdsong dataset is widely employed in both multi-
instance multi-label learning [Briggs et al., 2012] and PLL
[Lv et al., 2020]. This dataset comprises 548 multi-instance
bags, collectively containing 10232 instances. Each instance
is represented by a 38-dimensional feature vector and corre-
sponds to a single label, which is either one of the 13 specific
target classes or a singular negative class. In the Birdsong-
MIPL dataset, the 13 targeted classes are utilized to select pos-
itive instances, while the negative class serves as the reserved
label encompassing the negative instances.

The SIVAL is a MIL benchmark dataset for content-based
image retrieval with 1500 images [Settles et al., 2007]. Each
image serves as a multi-instance bag containing either 31 or
32 instances, linked to one of 25 distinct class labels. Each in-
stance is characterized by a feature vector in a 30-dimensional
space. To create the SIVAL-MIPL dataset from the SIVAL
dataset, the arrangement of multi-instance bags remains un-
changed. Every candidate label set is generated by retaining
the true label and randomly choosing r false positive labels
from the remaining 24 classes.

3.2 Real-World MIPL Datasets
The CRC-MIPL dataset consists of 7000 images used for clas-
sifying colorectal cancer in the absence of exact labels. These
images are uniformly selected from the 7 classes of the NCT-
CRC-HE-100K dataset [Kather et al., 2019]. To form a can-
didate label set for each image, an expert trains three crowd-
sourced workers before annotation. The final candidate la-
bel set is obtained by aggregating the candidate labels from
all three workers. The methodology is elaborated as fol-
lows: Firstly, workers assign candidate labels with non-zero

probabilities, thereby creating a label set per image. Higher
probabilities indicate a greater likelihood of being the true la-
bel, whereas zero probabilities indicate non-candidate labels.
Secondly, the aggregated candidate label set is derived from
the three label sets, which includes labels present in two or
three sets. If the aggregated set contains only one or no label,
the labels with the highest probabilities in each set are se-
lected. In contrast to requiring expert annotation of true labels
for each image, this annotation approach effectively reduces
the expert workload while achieving satisfactory outcomes.

4 The Image Bag Generators
To learn multi-instance features on the CRC-MIPL dataset, we
employ four image bag generators [Wei and Zhou, 2016]:

Row Generator [Maron and Ratan, 1998]: This approach
treats each row within the image as an independent instance.
For feature extraction, it calculates the average RGB color
value of each row and analyzes the color differences with ad-
jacent rows. The resulting instance feature encompasses the
RGB values of the current instance, along with the disparities
in RGB values between the current instance and the preced-
ing one, as well as the subsequent one. This procedure yields
a 9-dimensional feature representation for each instance.

SBN Generator [Maron and Ratan, 1998]: This approach
utilizes five 2 × 2 blobs within the image to generate an
instance-level feature. This feature includes RGB color val-
ues of the central blob and its four neighboring blobs. In-
stances are generated by iteratively shifting one pixel at a
time, while the SBN generator omits feature information at
the image’s four corners. This results in a 15-dimensional
feature vector for each instance.

KMeansSeg Generator [Zhang et al., 2002]: This gen-
erator partitions the image into k segments, producing 6-
dimensional features for each segment. The initial three
dimensions represent color values within the YCbCr color
space, while the subsequent three dimensions derived through
wavelet transformation of the luminance Y component.

SIFT Generator [Lowe, 2004]: Using the scale-invariant
feature transform (SIFT) algorithm, the SIFT generator di-
vides instances into multiple 4× 4 subregions and maps gra-
dients of pixels within these subregions to 8 bins. As a result,
SIFT generates a 128-dimensional feature for each instance.
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