Supplementary Material for "Deep Multi-dimensional Classification with Pairwise Dimension-Specific Features"

To facilitate understanding, Table 1 summarizes the notations used in Section 3 and Algorithm 1 further presents the pseudo code of the proposed PIST approach. To eliminate the impact exerted by difference of base classifiers, we investigate five adjusted approaches including BR, KRAM, LEFA, MDKNN and SEEM by replacing the multi-class classifier with neural networks as PIST. In the context below, these approaches with changed base classifiers are denoted by the original name plus a subscript δ (e.g., BR $_{\delta}$) and detailed experimental results are reported in Table 2. To show whether PIST achieves significantly superior/inferior performance against other comparing approaches on each data set, pairwise t-test at 0.05 significance level is conducted, where the corresponding win/tie/loss counts have been reported in Table 4 of the main body of this paper.

Table 1: Summary of the notations used in our paper.

Notation	Descriptions
d	number of features in input space
q	number of class spaces (dimensions) in output space
K_j	number of class labels in the <i>j</i> -th class space $(1 \le j \le q)$
m	number of MDC training examples
X	the d-dimensional input (feature) space, i.e., $\mathcal{X} = \mathbb{R}^d$
C_j	the <i>j</i> -th class space where $C_j = \{c_1^j, c_2^j, \dots, c_{K_j}^j\}$ $(1 \le j \le q)$
c_a^j	the <i>a</i> -th class label in C_i $(1 \le a \le K_i)$
${\mathcal Y}$	the output space where $\mathcal{Y} = C_1 \times C_2 \times \ldots \times C_q$
\mathcal{D}	the set of MDC samples where $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) 1 \leq i \leq m\}$
$oldsymbol{x}_i$	the <i>i</i> -th feature vector where $\boldsymbol{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^\top \in \mathcal{X}$
$oldsymbol{y}_i$	the <i>i</i> -th class vector where $\boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top \in \mathcal{Y}$
$\phi(oldsymbol{x})$	the feature embedding of feature vector \boldsymbol{x} .
f	the MDC predictive model: $\mathcal{X} \mapsto \mathcal{Y}$
$l_{a_1a_2}$	a latent label embedding vector related to $c_{a_1}^1$ and $c_{a_2}^2$.
$l^{(12)}$	the pairwise dimension embedding w.r.t. C_1 and C_2 .
$f_{a_1 a_2}$	the number of examples labeled by $c_{a_1}^1$ and $c_{a_2}^2$ in the training set.
\bar{l}_{a_1}	the intra-class mean of $\{l_{a_11}, l_{a_12}, \dots, l_{a_1K_2}\}$ $(a_1 \in \{1, 2, \dots, K_1\}).$
\bar{l}'_{a2}	the intra-class mean of $\{l_{1a_2}, l_{2a_2}, \dots, l_{K_1a_2}\}(a_2 \in \{1, 2, \dots, K_2\}).$
ī	the global mean of all label embeddings w.r.t. C_1 and C_2 .
σ	ReLU activate function.
$oldsymbol{ heta}^{(12)}$	feature importance vector w.r.t. C_1 and C_2 .
$\mathbf{W}_l, \boldsymbol{b}_l$	weight matrix and bias of the attention network.
$\mathbf{W}_s, oldsymbol{b}_s$	weight matrix and bias of the network for transforming dimension-specific features.
$\mathbf{W}_{o}, oldsymbol{b}_{o}$	weight matrix and bias of the softmax regression.
$\psi(x,y)$	the injective function from the Cartesian product $\{1, 2, \dots, K_1\} \times \{1, 2, \dots, K_2\} \rightarrow \{1, 2, \dots, K_1K_2\}$.
$s^{(12)}$	pairwise dimension-specific features.
$\hat{m{p}}^{(12)}$	output vector of the softmax regression w.r.t. C_1 and C_2 .
$ ho_u^{(r)}$	the predicted sum of probabilities that label is exactly c_u^r in the <i>r</i> -th dimension.
Q^r_u	normalized $\rho_u^{(r)}$ with softmax operation.
\mathcal{L}_{ce}	cross-entropy loss.
\mathcal{L}_{le}	label embedding loss.

Algorithm 1 The PIST approach

Input: MDC training set \mathcal{D} , an unseen instance \boldsymbol{x}_* , the dimension of label embeddings t

Output: Predicted class vector \hat{y}_* for x_*

- 1: repeat
- 2: Randomly sample an example $(\boldsymbol{x}, \boldsymbol{y})$ from \mathcal{D}
- 3: for u = 1 to q do
- 4: for v = u + 1 to q do
- Initialize label embeddings $\{l_{a_1a_2}|1 \leq a_1 \leq K_u, 1 \leq a_2 \leq K_v\}$ by standard normal distribution and calculate 5: $f_{a_1a_2}$ according to its definition
- Obtain pairwise dimension embedding $l^{(uv)}$ by Eq.(1) 6:
- Calculate the label embedding loss $\mathcal{L}_{le}^{(uv)}$ by Eq.(4) 7:
- Calculate pairwise dimension-specific feature $\mathbf{s}^{(uv)}$ by Eq.(5) and Eq.(6) Obtain predicted joint probability $\hat{\mathbf{p}}^{(uv)}$ by Eq.(10) and Eq.(11) 8:
- 9:
- end for 10:
- end for 11:
- 12:for j = 1 to q do
- Initialize label embeddings $\{l_a | 1 \leq a \leq K_j\}$ by standard normal distribution and calculate f_a according to its 13: definition
- 14:
- 15:
- Obtain dimension embedding $l^{(jj)}$ by Eq.(7) Calculate dimension-specific feature $s^{(jj)}$ by Eq.(8) and Eq.(9) Obtain predicted joint probability $\hat{p}^{(jj)}$ by Eq.(13) and Eq.(14) 16:
- 17:for a = 1 to K_j do
- 18:Calculate normalized confidence score Q_a^j by Eq.(16) and Eq.(17)
- 19:end for
- 20: Obtain predicted result ω w.r.t. the *j*-th dimension by Eq.(20)
- 21:end for
- 22: Calculate the final loss \mathcal{L} by Eq.(19)
- Update the trainable parameters with SGD algorithm 23:
- 24: until Converge
- 25: Feed \boldsymbol{x}_* to trained model by above steps and output predicted results $\hat{\boldsymbol{y}}_*$
- 26: Return \hat{y}_*

Table 2: Experimental results (mean \pm std.) of MDC approaches of which base classifier are replaced with a multi-layer perceptron with a single hidden layer. In addition, \bullet/\circ indicates whether PIST is significantly superior/inferior to other compared approaches on each data set with pairwise t-test at 0.05 significance level.

(a) Hamming Score									
Data Set	Pist	Br_{δ}	$\operatorname{KRAM}_{\delta}$	$LEFA_{\delta}$	Mdknn_{δ}	SEEM_{δ}			
WQplants	$.661 {\pm} .013$	$.664 \pm .014$.576±.023•	$.662 {\pm} .017$	$.615 \pm .019 \bullet$	$.643 {\pm} .038$			
WQanimals	$.632 {\pm} .014$	$.631 {\pm} .010$	$.544 {\pm} .020 {\bullet}$	$.635 {\pm} .013$	$.566 {\pm} .020 {\bullet}$	$.621 {\pm} .017 \bullet$			
WaterQuality	$.647 {\pm} .012$	$.647 {\pm} .009$	$.565 {\pm} .011 {\bullet}$	$.648 {\pm} .010$	$.588 {\pm} .018 {\bullet}$	$.630 {\pm} .017 {\bullet}$			
BeLaE	$.452 {\pm} .015$.411±.015•	$.369 {\pm} .017 {\bullet}$	$.406 {\pm} .012 {\bullet}$	$.338 {\pm} .019 {\bullet}$	$.382 {\pm} .017 \bullet$			
Voice	$.954 {\pm} .008$	$.848 {\pm} .019 {\bullet}$	$.963{\pm}.005{\circ}$	$.834 {\pm} .016 {\bullet}$	$.943 {\pm} .006 {\bullet}$	$.553 {\pm} .166 {\bullet}$			
Scm20d	$.845 {\pm} .012$.715±.010●	$.844 {\pm} .003$	$.754 {\pm} .013 {\bullet}$	$.862 {\pm} .004 {\circ}$	$.486 {\pm} .048 {\bullet}$			
CoIL2000	$.957 {\pm} .004$	$.869 {\pm} .004 {\bullet}$	$.954 {\pm} .004 {\bullet}$	$.932 {\pm} .006 {\bullet}$	$.871 {\pm} .006 {\bullet}$	$.801 {\pm} .099 \bullet$			
TIC2000	$.945 {\pm} .004$	$.931 {\pm} .005 {\bullet}$	$.942 {\pm} .008$	$.939 {\pm} .003 {\bullet}$	$.862 {\pm} .004 {\bullet}$	$.756 {\pm} .153 {\bullet}$			
Flickr	$.795 {\pm} .003$	$.751 {\pm} .005 {\bullet}$	$.752 {\pm} .006 {\bullet}$	$.719 {\pm} .008 {\bullet}$	$.726 {\pm} .007 {\bullet}$	$.791{\pm}.005{\bullet}$			
Adult	$.725 {\pm} .003$	$.722 {\pm} .005$	$.672 {\pm} .010 {\bullet}$	$.668 {\pm} .007 {\bullet}$	$.685 {\pm} .005 {\bullet}$	$.598 {\pm} .078 {\bullet}$			
Default	$.676 {\pm} .003$.673±.003●	$.659 {\pm} .003 \bullet$	$.655 {\pm} .002 \bullet$	$.652 {\pm} .003 \bullet$	$.651 {\pm} .045$			
(b) Exact Match									
Data Set	Pist	Br_{δ}	$\operatorname{KRAM}_{\delta}$	$LEFA_{\delta}$	$Mdknn_{\delta}$	SEEM_{δ}			
WQplants	$.094 {\pm} .021$	$.101 \pm .029$.039±.019•	$.100 {\pm} .033$	$.068 {\pm} .027 {\bullet}$	$.086 {\pm} .033$			
WQanimals	$.057 {\pm} .015$	$.059 {\pm} .021$	$.019 {\pm} .013 \bullet$	$.062 {\pm} .026$	$.026 {\pm} .015 \bullet$	$.048 {\pm} .019$			
WaterOuality	$.009 \pm .006$	$.008 \pm .007$	$.002 \pm .004 \bullet$	$.008 \pm .005$.001±.003•	$.007 \pm .007$			

BeLaE

Scm20d

CoIL2000

TIC2000

Flickr

Adult

Default

 $.822 {\pm} .014$

 $.843 \pm .013$

 $.330 \pm .013$

 $.288 \pm .006$ $.285 \pm .011$

 $.195 \pm .006$ $.192 \pm .006$

Voice

(c) Sub-Exact Match

 $.035 \pm .019$ $.025 \pm .009$ $.006 \pm .004 \bullet$ $.020 \pm .011$ $.010 \pm .010 \bullet$ $.016 \pm .009 \bullet$

.910±.016 .702±.038• .928±.010° .677±.033• .888±.013• .291±.208•

 $.199 \pm .019$ $.119 \pm .006 \bullet$ $.185 \pm .015 \bullet$ $.140 \pm .009 \bullet$ $.224 \pm .010 \circ$ $.000 \pm .000 \bullet$

 $.450 \pm .017 \bullet .812 \pm .016 \bullet .716 \pm .023 \bullet .542 \pm .018 \bullet .274 \pm .317 \bullet$

 $.805 \pm .015 \bullet$ $.834 \pm .020$ $.825 \pm .008 \bullet$ $.627 \pm .011 \bullet$ $.335 \pm .410 \bullet$

 $.237 {\pm}.012 {\bullet} \ .243 {\pm}.017 {\bullet} \ .195 {\pm}.015 {\bullet} \ .213 {\pm}.011 {\bullet} \ .317 {\pm}.014 {\bullet}$

 $.236 \pm .012 \bullet$ $.222 \pm .014 \bullet$ $.243 \pm .007 \bullet$ $.127 \pm .108 \bullet$

 $.174 \pm .007 \bullet$ $.169 \pm .005 \bullet$ $.174 \pm .005 \bullet$ $.173 \pm .044$

(c) Sub-Exact Match										
Data Set	Pist	Br_{δ}	$\operatorname{Kram}_{\delta}$	$LEFA_{\delta}$	$Mdknn_{\delta}$	SEEM_{δ}				
WQplants	$.285 \pm .050$	$.295 {\pm} .042$	$.168 {\pm} .044 \bullet$	$.299 {\pm} .042$	$.216 {\pm} .036 {\bullet}$	$.253 {\pm} .074$				
WQanimals	$.223 \pm .042$	$.230 {\pm} .032$	$.122 {\pm} .040 {\bullet}$	$.237 {\pm} .032$	$.141 {\pm} .020 {\bullet}$	$.203 {\pm} .040$				
WaterQuality	$.053 \pm .011$	$.050 {\pm} .022$	$.011 {\pm} .011 {\bullet}$	$.048 {\pm} .025$	$.021 {\pm} .016 {\bullet}$	$.046 {\pm} .022$				
BeLaE	$.160 \pm .024$.124±.026•	$.080 {\pm} .021 \bullet$	$.125 {\pm} .023 \bullet$	$.060 {\pm} .017 {\bullet}$	$.088 {\pm} .019 {\bullet}$				
Voice	$.997 {\pm} .003$	$.993 {\pm} .005$	$.999 {\pm} .002$	$.991 {\pm} .003 {\bullet}$	$.997 {\pm} .003$	$.816 {\pm} .155 \bullet$				
Scm 20d	$.403 {\pm} .025$	$.231 {\pm} .014 {\bullet}$	$.382 {\pm} .012 \bullet$	$.275 {\pm} .014 {\bullet}$	$.452{\pm}.014{\circ}$	$.001 {\pm} .003 \bullet$				
CoIL2000	$.966 \pm .006$.898±.010•	$.961 {\pm} .006$	$.947 {\pm} .008 {\bullet}$	$.863 {\pm} .009 {\bullet}$	$.778 {\pm} .174 {\bullet}$				
TIC2000	$.993 {\pm} .002$.990±.002•	$.992 {\pm} .004$	$.992 {\pm} .003$	$.961 {\pm} .004 {\bullet}$	$.936 {\pm} .047 {\bullet}$				
Flickr	$.723 \pm .009$.620±.012•	$.633 {\pm} .016 {\bullet}$	$.554 {\pm} .020 {\bullet}$	$.579 {\pm} .014 {\bullet}$	$.716 {\pm} .010$				
Adult	$.693 \pm .007$	$.684 {\pm} .011 {\bullet}$	$.599 {\pm} .017 {\bullet}$	$.595 {\pm} .009 {\bullet}$	$.618 {\pm} .007 {\bullet}$	$.472 \pm .129 \bullet$				
Default	$.610 \pm .007$	$.605 {\pm} .006 \bullet$	$.577 {\pm} .007 \bullet$	$.571 {\pm} .009 \bullet$	$.563 {\pm} .007 \bullet$	$.564 {\pm} .079$				