
Appendices A. Pseudo-Code of FASTMIPL
Algorithm A1 is the complete procedure of FASTMIPL.
First, the algorithm uniformly initializes the model param-
eters θ and ϕ (Step 1). In each epoch, the training set
is divided into multiple mini-batches (Step 3). The subse-
quent step involves calculating the unbiased estimator of the
ELBO on batch of training examples, and updating parame-
ters θ, ϕ via mini-batch gradient descent (Step 4-6). For an
unseen multi-instance bag, the predicted label is the category
corresponding to the highest prediction probability (Step 7-
8).

Algorithm A1: The FASTMIPL Algorithm
Input:
D : the MIPL training set {(Xi,Si) | 1 ≤ i ≤ m}
T : the number of training epochs
X⋆ : the unseen multi-instance bag with n⋆ instances
Parameter: model parameters θ, variational parameters ϕ
Output:
y⋆ : the predicted label for X⋆

Process:
1: Initialize model parameters θ, variational parameters ϕ;
2: for t = 1 to T do
3: Sample B mini-batches from training set D;
4: Compute unbiased estimator of the ELBO on B by

Equation (6) and Equation (7);
5: Update parameters θ and ϕ via mini-batch gradient

descent.
6: end for
7: Calculatethe the predefined bag embeddings fγ(X⋆)

according to Equation (1) and Equation (2);
8: return y⋆ according to Equation (9)

Appendices B. Effectiveness Comparison with
on Benchmark Datasets

Given that MIL and PLL algorithms cannot natively address
MIPL problems, we employ the Mean-based approach and
MaxMin strategy as transformation techniques to evaluate
the effectiveness of PLL algorithms within MIPL tasks. Ad-
ditionally, we utilize the One-vs-Rest (OvR) decomposition
strategy to adapt MIL algorithms for handling partial-label
data.

Table B1 represents the effectiveness comparison between
FASTMIPL and comparative PLL algorithms. We involve
two types of PLL algorithms: the deep-learning-based ap-
proach with liniear classifiers (i.e., PRODEN (Lv et al. 2020),
RC (Feng et al. 2020), LWS (Wen et al. 2021) and CAVL
(Zhang et al. 2022a)) and the feature-aware disambiguation
algorithm (PL-AGGD (Wang, Li, and Zhang 2019)). FAST-
MIPL consistently surpasses PLL algorithms in all cases
across four benchmark datasets. There are two applied data
transformation techniques to address the applicability of
PLL algorithms on multi-instance structured data, named the
Mean-based approach and the MaxMin strategy. The Mean-
based approach calculates the feature representation at the
bag-level by obtaining the average of the feature values of

Algorithm r MNIST FMNIST Birdsong SIVAL

FASTMIPL
1 .999±.002 .911±.022 .797±.024 .779±.030
2 .998±.004 .901±.027 .792±.021 .708±.026
3 .975±.074 .816±.071 .772±.022 .615±.031

Mean

PRODEN
1 .605±.023 .696±.051 .296±.014 .219±.014
2 .481±.036 .573±.026 .272±.019 .185±.013
3 .283±.028 .345±.027 .210±.023 .166±.017

RC
1 .658±.031 .753±.049 .362±.015 .279±.011
2 .598±.033 .648±.030 .335±.011 .258±.017
3 .391±.037 .408±.044 .298±.016 .237±.020

LWS
1 .462±.051 .726±.031 .265±.010 .240±.014
2 .209±.028 .720±.025 .254±.012 .223±.008
3 .204±.013 .577±.098 .205±.016 .194±.026

CAVL
1 .597±.078 .727±.057 .370±.013 .260±.014
2 .412±.039 .586±.035 .334±.010 .216±.011
3 .315±.020 .352±.036 .313±.017 .175±.020

PL-AGGD
1 .670±.026 .743±.026 .354±.019 .355±.014
2 .597±.037 .678±.020 .313±.012 .314±.018
3 .381±.032 .474±.057 .296±.015 .286±.019

MaxMin

PRODEN
1 .508±.025 .426±.045 .389±.013 .316±.019
2 .401±.037 .375±.043 .356±.014 .285±.023
3 .345±.049 .309±.056 .336±.012 .248±.020

RC
1 .518±.033 .731±.027 .390±.015 .306±.023
2 .469±.035 .665±.027 .371±.013 .289±.021
3 .380±.048 .390±.058 .363±.010 .267±.019

LWS
1 .241±.042 .535±.049 .225±.038 .289±.017
2 .238±.048 .404±.040 .205±.035 .271±.015
3 .218±.017 .318±.064 .216±.029 .245±.021

CAVL
1 .480±.030 .543±.015 .354±.015 .251±.023
2 .387±.027 .263±.038 .235±.003 .216±.011
3 .289±.032 .283±.024 .195±.015 .175±.020

PL-AGGD
1 .529±.035 .397±.011 .384±.013 .399±.030
2 .440±.020 .373±.036 .373±.025 .363±.031
3 .321±.039 .327±.028 .345±.012 .329±.024

Table B1: The classification accuracy (mean±std) of FAST-
MIPL and comparative PLL algorithms on benchmark
datasets with the varying numbers of false positive labels
(r ∈ {1, 2, 3}).

Algorithm MNIST FMNIST Birdsong SIVAL
FASTMIPL .999±.002 .911±.022 .797±.024 .779±.030
MIVAE .694±.241 .601±.193 .140±.201 .101±.153
ATTEN .502±.018 .409±.079 .133±.019 .099±.025
ATTEN-GATE .499±.098 .354±.109 .160±.028 .114±.032
LOSS-ATTEN .843±.059 .774±.061 .537±.021 .319±.037

Table B2: The classification accuracy (mean±std) of FAST-
MIPL and comparative MIL algorithms on benchmark
datasets with one false positive labels (r = 1).

all instances in a data bag. The MaxMin strategy extracts
the maximum and minimum instance-level feature values in
a data bag and concatenates them together to represent data
bag-level features.

Table B2 summarizes the effectiveness comparison be-
tween FASTMIPL and comparative MIL algorithms on
benchmark datasets with one false positive label (r = 1).



We consider two types of MIL algorithms, containing a vari-
ational autoencoder (VAE)-based algorithm (MIVAE (Zhang
2021)) and three attention-based algorithms, containing AT-
TEN (Ilse, Tomczak, and Welling 2018), ATTEN-GATE (Ilse,
Tomczak, and Welling 2018) and LOSS-ATTEN (Shi et al.
2020)). FASTMIPL presents statistically effectiveness ad-
vantages compared to four MIL algorithms. The One vs.
Rest (OvR) decomposition strategy has been applied to com-
parative MIL algorithms, excepted the multi-class MIL al-
gorithm LOSS-ATTEN, to address the adaptation problem
of several candidate labels in complex MIPL scenarios. The
strategy aims to assign each label from the candidate set to
the bag, and matches each multi-instance bags to a singular
bag-level label. There are c (c ∈ {1, 2, . . . , k}) binary-class
classifiers in the MIL algorithm adopted OvR decomposi-
tion strategy, meaning that the c-th classifier focuses on the
c-th label, and treats c-th label and other labels as 1 (positive)
and 0 (negative) respectively.

The effectiveness of PLL and MIL algorithms diminishes
as the complexity of the benchmark datasets increases, as
indicated by the decline in prediction effectiveness from the
MNIST-MIPL to SIVAL-MIPL dataset. This effectiveness vari-
ation highlights the applicability limitations of these algo-
rithms in complex data.

Appendices C. Effectiveness Comparison on
the Real-world Dataset

Table C1 presents the effectiveness comparison between
FASTMIPL and PLL algorithms on the real-world dataset.

Algorithm C-Row C-SBN C-KMeans C-SIFT
FASTMIPL .487±.038 .573±.031 .573±.013 .526±.029

Mean
PRODEN .365±.009 .392±.008 .233±.018 .334±.029
RC .214±.011 .242±.012 .226±.009 .209±.007
LWS .291±.010 .310±.006 .237±.008 .270±.007
CAVL .312±.043 .364±.066 .286±.062 .329±.033
PL-AGGD .412±.008 .480±.005 .358±.008 .363±.012

MaxMin
PRODEN .401±.007 .447±.011 .265±.027 .291±.011
RC .227±.012 .338±.010 .208±.007 .246±.008
LWS .299±.008 .382±.009 .247±.005 .230±.007
CAVL .368±.054 .503±.025 .311±.038 .274±.018
PL-AGGD .460±.008 .524±.008 .434±.009 .285±.009

Table C1: The classification accuracy (mean±std) of FAST-
MIPL and comparative PLL algorithms on the real-world
dataset.

Obviously, FASTMIPL surpasses comparative algorithms
in all cases. Additionaly, the MaxMin strategy outperforms
the Mean-based approach among the PLL algorithms. This
discrepancy likely stems from the Mean-based approach’s
failure to consider the significant differences between the
tissue cells and the background on the CRC-MIPL dataset.
Notably, in the CRC-MIPL dataset, which presents complex
scenarios, FASTMIPL introduces random effects component
to capture the intricate heterogeneity for instance bags. This
approach significantly enhances the effectiveness of the pre-

dictive task of identifying true label from candidate labels
within bags.

Appendices D. Time Consumption
Comparison

Tables D1 and Table D2 present the time consumption val-
ues for both benchmark and real-world datasets. FASTMIPL
outperforms the comparative algorithms by an order of mag-
nitude in terms of time efficiency. Specifically, FASTMIPL
reduces time consumption by up to 35 times compared to
ELIMIPL and by up to 38 times compared to DEMIPL. This
significant improvement in efficiency is due to the fact that
FASTMIPL optimizes Equation (6) only once per epoch,
whereas attention-based MIPL algorithms optimize the loss
function multiple times, corresponding to the number of
bags in each epoch.

Algorithm r MNIST-
MIPL

FMNIST-
MIPL

Birdsong-
MIPL

SIVAL-
MIPL

FASTMIPL
1 16.909 16.783 70.804 110.180
2 16.769 17.096 70.966 101.345
3 16.894 16.519 83.552 109.472

ELIMIPL
1 579.413 553.961 709.847 823.999
2 569.412 571.749 702.397 792.799
3 565.581 580.469 714.688 816.927

DEMIPL
1 561.336 580.774 679.021 1686.970
2 570.101 576.258 693.691 1640.633
3 561.268 572.451 681.662 1656.847

Table D1: The time consumption (seconds) of FAST-
MIPL and comparative MIPL algorithms on the benchmark
datasets with the varying numbers of false positive labels
(r ∈ {1, 2, 3}).

Algorithm C-Row C-SBN C-KMeans C-SIFT
FASTMIPL 394.607 481.659 225.845 204.472
ELIMIPL 4060.509 3996.979 4028.986 4271.141
DEMIPL 7889.763 7737.639 8102.833 7964.447

Table D2: The time consumption (seconds) of FAST-
MIPL and comparative MIPL algorithms on the real-world
datasets.


