
Supplementary Material for “Evolutionary Classifier Chain for

Multi-Dimensional Classification”

1 Example Diagram of the Encoding

To facilitate understanding, Figure S-I illustrates how a solution and a population are encoded.
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Figure S-I: Example diagram of the encoding of a solution and a population
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2 Summary of the Notations

Table S-I summarizes the notations used to describe the ECCO approach, as well as other notations used
in our paper.

Table S-I: Summary of the notations used in our paper.
Notation Descriptions
d number of features in original input space
q number of class spaces (dimensions) in output space
Kj number of class labels in the j-th class space (1 ≤ j ≤ q)

Cj the j-th class space where Cj = {cj1, c
j
2, . . . , c

j
Kj
} (1 ≤ j ≤ q)

cja the a-th class label in Cj (1 ≤ a ≤ Kj)
X the d-dimensional input (feature) space
Y the output space where Y = C1 × C2 × . . .× Cq

N the number of solutions contained in the overall population (the number of rows of the overall
population matrix)

proC the probability of crossover
proM the probability of mutation
PN the encoding matrix (N/2× q(d+ 1) dimensional) of the parent of the dominance-based

subpopulation
PN (:, 1 : q ∗ d) the encoding matrix (N/2× q ∗ d dimensional) of the part of input features in PN

PM the encoding matrix (N/2× q(d+ 1) dimensional) of the parent of the decomposition-based
subpopulation

PM (:, 1 : q ∗ d) the encoding matrix (N/2× q ∗ d dimensional) of the part of input features in PM

← false Assign 0 to the element in the corresponding position in the matrix.
K the logical matrix (N/2× q ∗ d dimensional) where each position of 1 represents the position

of the element to be crossed
S the logical matrix (N/2× q ∗ d dimensional) where each position of 1 represents the position

of the element to be mutated
P1(K) Take the element of P1 in the corresponding position of 1 in the logical matrix K.
O1(K) Take the element of O1 in the corresponding position of 1 in the logical matrix K.
ON the encoding matrix (N/2× q(d+ 1) dimensional) of the offspring of the dominance-based

subpopulation
OM the encoding matrix (N/2× q(d+ 1) dimensional) of the offspring of the decomposition-based

subpopulation
ON = [O1;O2] Stack two matrices O1 and O2 into one whole matrix ON by rows.
ON (S) = ∼ ON (S) Inverse the elements of the matrix ON that correspond to the positions in the logical matrix

S where the element is 1.
O the overall offspring population matrix (N × q(d+ 1) dimensional) where each row represents

the encoding of a solution
xBest the encoding of the best solution on the Pareto front with the smallest f2
Pareto front the set of solutions where no objective can be improved without compromising at least one

other objective (the front with the smallest number among the fronts assigned to all solutions)
f1 One of the objectives to be optimized, i.e., the ratio of selected features (calculated by

the number of input features selected dividing q ∗ d for each solution)
f2 One of the objectives to be optimized, i.e., 1−Hamming Score (calculated by Eq. (4))
PN ∪ON Combine all solutions in populations PN and ON .
PA the encoding matrix (N × q(d+ 1) dimensional) with all solutions for two subpopulations

PN and PM together
vIndex the vector (1×N dimensional) containing the numbers of the fronts where all the solutions in the

population are located, where all the solutions are sorted by their numbers from smallest to largest
a the encoding solution in the population
b the encoding solution in the population
g the aggregation function in the Tchebycheff method
u the encoding solution in the population
λ the two-dimensional weight vector with preferences for f1 and f2
Z∗ the ideal point
Ω the set of all solutions in the population
S the test set
l the ECCO predictive model: X 7→ Y
xi the feature vector of the i-th sample
yi the class vector of the i-th sample
yij the ground-truth labels for the j-th dimension of the i-th test sample
ŷij the predicted labels for the j-th dimension of the i-th test sample
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3 Further Analysis for Performance Differences Across Datasets

In order to understand the specific reasons for the performance differences in the compared algorithms,
we performed an analysis of the performance variations across datasets.

First, at the dataset level, the differences in #Dim and #Labels/Dim across different datasets directly
affects the complexity of MDC problems. For example, the Oes97 dataset has 5 times more class dimen-
sions than the Flare1 dataset. Therefore, all algorithms have significantly lower experimental metrics on
the Oes97 dataset than on the Flare1 dataset. Second, the effect of optimization can vary across datasets
with different strengths of class dependencies. For example, in datasets with strong class dependencies
(e.g., Enb, WaterQuality, BeLaE), chain-order optimization may improve performance metrics more sig-
nificantly. Third, the noise level and feature relevance of the dataset also affect the adaptation of the
proposed algorithm ECCO. The performance of the metrics is improved after feature selection on some
datasets for all class dimensions with significant redundant features. However, for datasets with strong
interaction between features, the effect after feature selection may not be significant, especially if the
number of features is small.

Overall, there are three main reasons for the performance differences of ECCO on different MDC
datasets: the class and label dimensions of the dataset, the strength of class dependencies, and feature
relevance.

4 Further Analysis of Ablation Experiments

In this section, we conduct experiments to verify the effectiveness of the two parts of the proposed chain
order optimization and dimension-feature selection. For this purpose, two variants of the algorithms
ECCO-RC and ECCO-AF are designed with random chain order and with all features, respectively. The
results of the recorded experiments are shown in Tables S-II, S-III, S-IV and S-V. According to the results
of Wilxcon rank-sum test and Friedman test, the performance of the algorithm decreases significantly
when these two strategies are eliminated respectively. Therefore, these two strategies can improve the
performance of the algorithm in solving the MDC problem. Better classification metrics are obtained
when combining the two together. This is due to the fact that dimension-features are more discriminative
than all features. Moreover, the optimized chain order is more consistent with the true class dependency.

Table S-II: Mean results of ECCO and two variant algorithms in terms of HS on seven representative
datasets.

DataSets
HS

ECCO ECCO-RC ECCO-AF

Edm 0.738 0.734 0.688
Jura 0.641 0.563 0.622
Enb 0.790 0.783 0.782
WQanimals 0.663 0.662 0.662
BeLaE 0.481 0.468 0.473
Voice 0.940 0.935 0.906
Pain 0.960 0.959 0.960

Friedman’s rank 1.071 2.500 2.429
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Table S-III: Mean results of ECCO and two variant algorithms in terms of EM on seven representative
datasets.

DataSets
EM

ECCO ECCO-RC ECCO-AF

Edm 0.481 0.469 0.438
Jura 0.411 0.306 0.405
Enb 0.581 0.565 0.565
WQanimals 0.096 0.093 0.093
BeLaE 0.055 0.054 0.044
Voice 0.883 0.871 0.816
Pain 0.798 0.795 0.796

Friedman’s rank 1.000 2.429 2.571

Table S-IV: Mean results of ECCO and two variant algorithms in terms of SEM on seven representative
datasets.

DataSets
SEM

ECCO ECCO-RC ECCO-AF

Edm 0.994 1.000 0.938
Jura 0.872 0.819 0.838
Enb 1.000 1.000 1.000
WQanimals 0.281 0.276 0.280
BeLaE 0.196 0.178 0.196
Voice 0.997 0.997 0.997
Pain 0.896 0.894 0.896
Friedman’s rank 1.571 2.429 2.000

Table S-V: Summary of the Wilcoxon signed-ranks test for ECCO against its variants in terms of each
evaluation metric at 0.05 significance level. The p-values are shown in the brackets.

ECCO against HS EM SEM

ECCO-RC win[1.22E-02] win[1.04E-02] tie[1.76E-01]
ECCO-AF win[1.78E-02] win[1.42E-02] tie[1.08E-01]

5 Further Analysis of Parameter Sensitivity

To explore the sensitivity of the parameters used in this paper, we conduct experiments to verify the
appropriateness of the population size settings. The performance metrics of ECCO and ECCO-P100
with population sizes of 200 and 100 on six representative datasets are recorded in Table S-VI. From
the experimental results and the Wilcoxon signed-ranks test with significance of 0.05(p-value), it can be
found that a population size of 200 has better convergence results. This setting provides a better trade-off
between convergence and cost.
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Table S-VI: Mean results of ECCO with different population size in terms of HS/EM/SEM on 6 datasets.

DataSets HS EM SEM

ECCO ECCO-P100 ECCO ECCO-P100 ECCO ECCO-P100

Jura 0.641 0.635 0.411 0.419 0.872 0.851
Enb 0.790 0.782 0.581 0.565 1.000 1.000
WQanimals 0.663 0.660 0.096 0.089 0.281 0.276
WQplants 0.706 0.706 0.172 0.174 0.400 0.399
WaterQuality 0.692 0.691 0.031 0.033 0.110 0.108
Voice 0.940 0.906 0.883 0.817 0.997 0.995

[p-value] - win[3.10E-02] - tie[3.89E-01] - win[2.56E-02]

6 Computational complexity analysis

The computational cost of the proposed method ECCO mainly comes from the nondominated sorting
operation, environmental selection, and fitness evaluation. First, the computational complexity of the
parent selection and reproduction operators is O(N/2) in each subpopulation, respectively. N is the
population size. Second, environmental selection is performed by a neighborhood-based Tchebycheff
method in PM. Its computational complexity is O(N/2 · T ·M), where T and M are the neighborhood
size and the number of objectives, respectively. Third, the computational complexity of the nondominated
sorting operation in PN and the merged population PA are O(M · (N/2)2) and O(M ·N2), respectively.
The computational complexity of the crowding distance metric in PN is O(M ·N/2·log(N/2)). Finally, the
maximum computational complexity in evaluating the fitness of each solution is 2 ·O(N/2 · (D+S ·dim)).
Among them, D is the total number of features, S is the number of samples in the training set, and dim is
the number of class dimensions. Thus, the overall complexity of the proposed ECCO in each generation is:
2·2·O(N/2)+O(N/2·T ·M)+O(M ·(N/2)2)+O(M ·N/2·log(N/2))+O(M ·N2)+2·O(N/2·(D+S ·dim)) =
max

{
O(M ·N2), O(N · (D + S · dim))

}
.
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