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A.1 Proof of Proposition 1.
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A.2 Derivation of Proposition 2.

We first consider the gradient of LDIRK with respect to a logit value δi, which is denoted as:
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where ∂Si(x)/∂δi = Si(x)(1− Si(x)) and ∂Sj(x)/∂δi = −Si(x)Sj(x). Then we have
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where S ′′ = Y/S/S ′ could be an empty set or satisfies that Si(x) − T̃i(x) > 0 for i ∈ S ′′. Then We obtain the simplified
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A.3 The pseudo-code of DIRK.
We summarize the pseudo-code of our DIRK method in Algorithm 1.

Algorithm 1: Pseudo-code of DIRK (one epoch).
Input: The PLL training set D; Initial parameters θT , θS of the teacher mdoel and the student model.

1 for iter = 1, 2, ..., do
2 Sample a mini-batch B = {xi,Si}ni=1 from D
3 Obtain the teacher’s rectificated label confidence T̃(xi) and student’s output S(xi)
4 Caculate the rectificated distillation loss Eq. (5)
5 Update the student network’s parameters θS via gradient descent
6 Update the teacher network’s parameters θT via exponential momentum average
7 end

Output: The student model’s parameters θS .

A.4 The pseudo-code and achitecture illustration of DIRK-REF.
We provide the pseudo-code of our DIRK-REF method in Algorithm 2. Additionally, for clarity and ease of understanding,
Figure 1 illustrates the details of DIRK-REF, encompassing both the label distillation module and the representation refinement
module.

Algorithm 2: Pseudo-code of DIRK-REF (one epoch).
Input: The PLL training set D; Encoder network fT(·), fS(·); Projection network gT(·), gS(·); Classifier hT(·), hS(·); An

embedding queue E and a label confidence queue I; Three different data augmentations Aug1(·),Aug2(·),Aug3(·).
1 for iter = 1, 2, ..., do
2 Sample a mini-batch B = {xi,Si}ni=1 from D;
3 // embeddings generation
4 BE

T = {gT(fT(Aug1(xi))) |xi ∈ B}, BE
S = {gS(fS(Aug2(xi))) |xi ∈ B};

5 E = BE
T ∪ BE

S ∪E;
6 // rectificated label confidences generation
7 BL

T = {Rectification(hT(fT(Aug3(xi)))) |xi ∈ B}
8 I = BL

T ∪ BL
T ∪ I

9 Set T̃(·) = Rectification(hT(fT(Aug3(·))))
10 // index set of instances generation
11 for xi ∈ B do
12 ỹi = argmaxj∈Si

hT(fT(Aug3(xi)))
13 P (xi) = {k| argmaxk Ik = ỹi,Sk ∩ Si ̸= ∅}
14 E(xi) = {k|Ek ̸= zi}
15 end
16 // representation refinement loss calculation

17 wj =
exp(sim(T̃(xi),Ij)/τ1)∑

k∈P (xi)
exp(sim(T̃(xi),Ik)/τ1)

18 LREF(f, g; τ1, τ2,BE
S ) =

1

|BE
S |

∑
zi∈BE

S

{
−
∑

j∈P (xi)
wj log

exp(sim(zi,Ej)/τ2)∑
k∈E(xi)

exp(sim(zi,Ek))/τ2)

}
,

19 // label distillation loss calculation
20 LDIRK(f, h;B) = 1

|B|
∑

xi∈B

∑c
j=1 −T̃(xi) log hS(fS(Aug3(xi)))

21 // network updating
22 Minimize loss LDIRK-REF = LDIRK + λLREF

23 Update the student network’s parameters via gradient descent
24 Update the teacher network’s parameters via exponential momentum average
25 Update the Embedding pool E and label distribution pool I
26 end
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Figure 1: Illustration of DIRK-REF. DIRK-REF consists of two modules: label distillation and representation refinement. The
label distillation module transfers the teacher’s rectificated label confidence to the student. The representation refinement mod-
ule computes similarity in label space using the teacher’s rectificated outputs and confidence queue. This similarity knowledge
then refines embedding features in the representation space.

A.5 Experiments Details of datasets.
We conduct experiments on seven benchmark datasets: Fashion-MNIST (Xiao, Rasul, and Vollgraf 2017), Kuzushiji-MNIST
(Clanuwat et al. 2018), CIFAR-10 (Krizhevsky, Hinton et al. 2009), CIFAR-100 (Krizhevsky, Hinton et al. 2009), CUB-200
(Welinder et al. 2010), Flower (Nilsback and Zisserman 2008) and Oxford-IIIT Pet (Parkhi et al. 2012). To construct IDPLL
datasets, we manually corrupt these benchmarks using an instance-dependent generation process (Xu et al. 2021), where the
“rate” parameter controls the ambiguity level in code and its size is determined by the class space. Specifically, Table 1 presents
the variable “rate” settings and corresponding average number of candidate labels (avg.#CLs). As an example, the PyTorch
code for the generation process is as follows (Xu et al. 2021):

Several real-world partially labeled datasets have been collected across diverse tasks and domains, including Lost (Cour,



Dataset #Train #Test #Dims #Labels avg. #CLs

Fashion-MNIST 60,000 10,000 28×28 10 7.40 (rate = 1.00)

Kuzushiji-MNIST 60,000 10,000 28×28 10 7.95 (rate = 0.90)

CIFAR-10 50,000 10,000 32×32 10 5.89 (rate = 1.00)

CIFAR-100 50,000 10,000 32×32 100 9.40 (rate = 0.10)

CUB-200 5,994 5,794 224×224 200 6.17 (rate = 0.03)

Flower 1,020 6,149 224×224 102 5.49 (rate = 0.05)

Oxford-IIIT Pet 3,680 3,669 224×224 37 3.73 (rate = 0.10)

Table 1: Characteristic of the benchmark data sets corrupted instance-dependently.

Sapp, and Taskar 2011), Soccer Player (Zeng et al. 2013), Yahoo! News (Guillaumin, Verbeek, and Schmid 2010) from auto-
matic face naming, MSRCv2 (Liu and Dietterich 2012) from object classification, BirdSong (Briggs, Fern, and Raich 2012)
from bird song classification. Table 2 summarizes the characteristics of these real-world partial label datasets. For the automatic
face naming task, faces cropped from an image are represented as instances while names extracted from the associated captions
or subtitles are regarded as the corresponding candidate labels. For the task of object classification, image segmentations are
regarded as instances while objects appearing within the same image are the corresponding candidate labels. For the bird song
classification, singing syllables of the birds are represented as instances while bird species jointly singing during a 10-seconds
period are regarded as candidate labels.

Dataset #Train #Test #Dims #Labels avg. #CLs†

Lost 898 224 108 16 2.23

MSRCv2 1,406 352 48 23 3.16

BirdSong 3,998 1,000 38 13 2.18

Soccer Player 13,978 3,494 79 171 2.09

Yahoo! News 18,393 4,598 163 219 1.91

Table 2: Characteristic of the real-world experimental data sets.

A.6 Ablation Experiment
Impact of the scaling factor γ of DIRK. We study the scaling factor γ, which dynamically combines two components into
the rectificated label confidence to satisfy the assumption partial label knowledge. Table 3 and Figure 2 report performance
with fixed γ ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. On the whole, larger γ generally improves accuracy on Fashion-MNIST and CIFAR-
10 datasets, but this trend does not always hold for Kuzushiji-MNIST and CIFAR-100 datasets. Importantly, fixed γ risks
overfitting to false positives, as evidenced in Figures 2. For instance, γ = 0.5 or 0.7 can overfit Fashion-MNIST and CIFAR10.
Therefore, it is crucial to carefully select the optimal γ for each dataset, avoiding such overfitting. The adaptive γ in our method
addresses this through dynamic adjustment during training.

Fashion-MNIST Kuzushiji-MNIST CIFAR-10 CIFAR-100

γ = 0.1 0.04 ± 0.01% 0.18 ± 0.04% 0.03 ± 0.04% 69.12 ± 0.54%
γ = 0.3 0.45 ± 0.12% 0.49 ± 0.02% 0.14 ± 0.02% 50.26 ± 1.26%
γ = 0.5 8.27 ± 0.54% 2.98 ± 0.43% 16.42 ± 1.46% 62.45 ± 1.03%
γ = 0.7 31.83 ± 3.23% 97.84 ± 0.72% 71.28 ± 1.34% 68.02 ± 1.28%
γ = 0.9 90.14 ± 0.23% 95.23 ± 1.34% 89.28 ± 0.12% 63.81 ± 1.13%

Table 3: Accuracy comparison (mean ± std) with different fixed γ values on four benchmark datasets with low ambiguity level.
The best result in each column is underlined.

Influence of mini-batch size of DIRK-REF. Figure 3 presents how mini-batch size impacts DIRK-REF training over epochs.
We observe smaller batches of 64-128 samples yield optimal results. In the crucial early training stage with fewer epochs, these
delicate batch sizes outperform larger batches. We posit this stems from providing fewer yet more accurate and informative
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Figure 2: (a-b): Performance of DIRK with varing fixed γ values. The vertical axis on the left displays the accuracies of Fashion-
MNIST, Kuzushiji-MNIST, and CIFAR-10, while the vertical axis on the right shows the accuracies of CIFAR-100.

knowledge-based positive pairs at each iteration. The limited samples prevent overfitting and allow the model to extract useful
similarities. As training progresses with more epochs, performance gaps between different batch sizes decrease. This implies
the representation benefits less from carefully chosen pairs as it matures. Overall, deliberate mini-batch sizes offer advantages
in early training, while the effect diminishes with more epochs as the model converges.
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(a) Fashion-MNIST.
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Figure 3: Performance of DIRK-REF with differenet mini-batch size and training epoch on Fahison-MNIST, Kuzushiji-MNIST,
CIFAR-10, CIFAR-100 datasets.

A.7 Uncertainty quantification of DIRK.
Figures 4 and Figure 5 present reliability histograms illustrating model calibration on Fashion-MNIST, Kuzushiji-MNIST, and
CIFAR-10 datasets. We observe differing tendencies between methods. PRODEN and RC exhibit significant overconfidence,
which we attribute to their likely over-dependence on pseudo-labels from self-training strategies. Without sufficient regulariza-
tion, they accumulate errors that lead to over-estimating output confidence. In contrast, CC shows underfitting tendencies, pos-
sibly because transition matrix-based methods emphasize holistic dataset consistency rather than relying heavily on individual
pseudo-labeled samples. This more conservative approach prevents overconfidence but underestimates certainty. Additionally,
while ABLE is overconfident, PICO is not. We hypothesize this results from PICO’s use of similarity comparisons between
learned embeddings and prototypical features during training and inference. This intrinsic technique may provide enhanced
robustness against error accumulation and overconfidence. The prototypes serve as stable anchors to calibrate predictions.

A.8 Computation cost of DIRK.
Compared to other SOTA PLL methods, DIRK only involves label distillation, which is more efficient. As shown in Table 4,
DIRK has the shortest mean runtimes compared to other PLL methods.

DIRK POP IDGP ABLE VALEN CR-DPLL PICO

CIFAR10 5.805.805.80 16.99 6.10 11.39 6.12 26.23 26.93

CIFAR100 5.705.705.70 16.59 6.85 13.35 10.57 19.03 26.88

CUB-200 20.9820.9820.98 39.25 21.33 21.01 26.53 29.80 25.66

Table 4: Comparison of mean runtime (in hours) on datasets, with the shortest time among each row highlighted in bold.



A.9 Complete experiments of DIRK-REF.
Complete comparison results of DIRK-REF on all benchmark datasets and real-world datasets are presented in Table 5. Con-
sistent with the conclusions in the main text, DIRK-REF equipped with the knowledge-based representation refinement module
demonstrates the best performance overall. Notably, the real-world PLL datasets used in our experiments do not contain natural
features like those found in images. Therefore, the representation refinement module can only offer limited improvements on
these datasets. This is validated by the results in Table 6 which shows DIRK-REF yields only slight gains over DIRK on these
datasets.

Fashion-MNIST Kuzushiji-MNIST CIFAR-10 CIFAR-100 CUB-200 Flower Oxford-IIIT Pet

λ = 0 (DIRK) 91.48 ± 0.21% 96.80 ± 0.52% 90.87 ± 0.25% 68.77 ± 0.49% 49.29 ± 1.00% 44.03 ± 0.02% 64.95 ± 2.11%
λ = 0.1 92.01 ± 0.24% 98.31 ± 0.20%98.31 ± 0.20%98.31 ± 0.20% 93.50 ± 0.16% 70.94 ± 1.17% 50.91 ± 0.24% 47.66 ± 0.74% 68.28 ± 0.14%
λ = 0.3 92.10 ± 0.08%92.10 ± 0.08%92.10 ± 0.08% 98.14 ± 0.20% 94.00 ± 0.13% 70.72 ± 0.54% 52.78 ± 0.15% 50.24 ± 0.31% 68.80 ± 0.33%
λ = 0.5 91.88 ± 0.32% 98.09 ± 0.17% 94.24 ± 0.03% 71.53 ± 1.35% 51.89 ± 0.11% 52.18 ± 0.28%52.18 ± 0.28%52.18 ± 0.28% 68.27 ± 0.13%
λ = 0.7 92.03 ± 0.58% 97.84 ± 0.18% 94.25 ± 0.26%94.25 ± 0.26%94.25 ± 0.26% 71.72 ± 0.63%71.72 ± 0.63%71.72 ± 0.63% 52.91 ± 0.24% 48.06 ± 0.16% 68.95 ± 0.12%68.95 ± 0.12%68.95 ± 0.12%
λ = 1.0 91.88 ± 0.36% 97.58 ± 0.32% 93.73 ± 0.31% 70.61 ± 0.85% 52.93 ± 0.31%52.93 ± 0.31%52.93 ± 0.31% 48.26 ± 0.38% 68.78 ± 0.42%

Table 5: Accuracy comparison (mean ± std) with diffrent λ of the representation refinement module.

Method Lost BirdSong MSRCv2 Soccer Player Yahoo!News

DIRK 79.24 ± 0.63% 74.52 ± 0.23% 48.59 ± 0.28% 55.83 ± 0.35% 67.65 ± 0.32%
DIRK-REF 79.24 ± 0.72%79.24 ± 0.72%79.24 ± 0.72% 74.55 ± 0.13%74.55 ± 0.13%74.55 ± 0.13% 49.91 ± 0.15%49.91 ± 0.15%49.91 ± 0.15% 55.92 ± 0.30%55.92 ± 0.30%55.92 ± 0.30% 67.69 ± 0.28%67.69 ± 0.28%67.69 ± 0.28%

Table 6: Accuracy comparison (mean ± std) on real-world partial label datasets.

A.10 Differences with decoupled knowledge distillation (DKD) (Zhao et al. 2022)
Although the decoupling stage in our method looks similar to that in DKD (Zhao et al. 2022), the motivations and imple-
mentations are distinct. Our primary goal for decoupling is to obtain reliable label confidences in instance-dependent partial
label learning, which comply with partial label knowledge illustrated in pilot experiments. In the implementation, our method
decouples the original confidence into candidate and non-candidate distributions, respectively. These distributions are then
recombined using an adaptive scaling factor γ. In contrast, DKD separates classical knowledge distillation into target classifi-
cation knowledge distillation (TCKD) and non-target classification knowledge distillation (NCKD). Then, TCKD and NCKD
are reformulated by a fixed coefficient.

A.11 Limitation
In this work, we explored the instance-dependent PLL scenario. However, real-world data contains a mixture of false positive
label types, including instance-dependent, class-dependent, and open-set noise. For instance, occlusion can cause instance-
specific errors. Handling such composite noise remains an open challenge. Developing more robust models to address diverse
false positives requires an integrative approach combining techniques like adaptive ensembling, meta-learning and open-set
recognition.
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Figure 4: Reliability diagram and expected calibration error. The reliability diagrams for each dataset are presented, with the
top row (a-d) showing Fashion-MNIST, mid row (e-j) showing Kuzushiji-MNIST, and bottom row (k-o) showing CIFAR-10.
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Figure 5: Reliability diagram and expected calibration error. The reliability diagrams for each dataset are presented, with the
top row (a-c) showing Fashion-MNIST, mid row (d-f) showing Kuzushiji-MNIST, and bottom row (g-i) showing CIFAR-10.
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