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Abstract. In the setting of multi-instance learning, each object is represented by a bag composed of

multiple instances instead of by a single instance in traditional learning setting. Previous works in

this area only concern multi-instance prediction problems where each bag is associated with a binary

(classification) or real-valued (regression) label. However, unsupervised multi-instance learning where

bags are without labels have not been studied. In this paper, the problem of unsupervised multi-

instance learning is addressed where a multi-instance clustering algorithm named Bamic is proposed.

Briefly, by regarding bags as atomic data items and using some form of distance metric to measure

distances between bags, Bamic adapts the popular k-Medoids algorithm to partition the unlabeled

training bags into k disjoint groups of bags. Furthermore, based on the clustering results, a novel

multi-instance prediction algorithm named Bartmip is developed. Firstly, each bag is re-represented

by a k -dimensional feature vector, where the value of the i -th feature is set to be the distance between

the bag and the medoid of the i -th group. After that, bags are transformed into feature vectors so that

common supervised learners are used to learn from the transformed feature vectors each associated

with the original bag’s label. Extensive experiments show that Bamic could effectively discover the

underlying structure of the data set and Bartmip works quite well on various kinds of multi-instance

prediction problems.

1 Introduction

Multi-instance learning originated from the study of drug activity prediction problem. The goal is

to endow learning systems with the ability of predicting that whether a new molecule could be used

to make some drug, through analyzing a collection of known molecules. The qualification of the

molecule to make some drug is determined by some of its shapes with low energy. The main difficulty

lies in that each molecule may have many alternative low-energy shapes while biochemists only know

that whether a known molecule is qualified to make some drug instead of knowing that which of its

alternative shapes is responsible for the qualification. In order to solve this problem, Dietterich et

al. [1] proposed the notion of multi-instance learning, where the training set is composed of many bags

each containing many instances.

Previous works on multi-instance learning only deal with prediction tasks where each bag is as-
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sociated with a binary or real-valued label. Dietterich et al. [1] studied the standard multi-instance

prediction (StdMIP) problem where a bag is positively labeled if it contains at least one positive in-

stance; otherwise, it is labeled as a negative bag. The task is to learn some concept from the training

set for correctly labeling unseen bags. Recently, in addition to the above definition of StdMIP, two

kinds of generalized multi-instance prediction (GenMIP) problems are formalized by Weidmann et

al. [2] and Scott et al. [3], respectively. In GenMIP problems, a bag is qualified to be positive iff

instances in the bag satisfy some sophisticated constraints other than simply having at least one posi-

tive instance. Moreover, besides the above multi-instance classification problems with discrete-valued

(in particular, binary) outputs, multi-instance regression (MIR) problems with real-valued outputs

have also been investigated [4–6].

However, unsupervised multi-instance learning where training bags are without labels have not

been thoroughly studied even though it should not be considered less important than multi-instance

prediction, i.e. supervised multi-instance learning. There are two main reasons for the necessity of

unsupervised multi-instance learning. Firstly, in some cases, it is hard or costly to obtain labels for

the bags. For instance, biochemists may easily design various drug molecules each represented by a

bag whose instances correspond to the low-energy shapes of the molecule [1], while it is quite costly

to conduct biochemical experiments in order to determine the functionality (label) of the molecule

(bag). Therefore, unsupervised multi-instance learning may help the biochemists identify similar

molecules which may have similar properties so as to facilitate the drug design process. Secondly, it is

well-known that unsupervised learning could help find the inherent structure of a data set. Therefore,

even for multi-instance prediction tasks where bags are with labels, it is instructive to initially perform

unsupervised multi-instance learning. In this way, some useful information about the data set may be

acquired which could benefit the following prediction procedure.

Cluster analysis (clustering) is one of the most popular unsupervised learning methods, which is

the process of grouping a set of physical or abstract objects into classes of similar objects [49]. A

good clustering will produce high quality clusters with high intra-class similarity and low inter-class

similarity. It can be used as a stand-alone tool to gain insight into the distribution of data or to serve

as a preprocessing step for other tasks. In this paper, the problem of unsupervised multi-instance

learning is directly investigated where a multi-instance clustering algorithm named Bamic, i.e. BAg-

level Multi-Instance Clustering, is proposed. Concretely, Bamic tries to partition the unlabeled

training bags into k disjoint groups of bags, where several forms of Hausdorff metric [7] is utilized to

measure distances between bags with which the popular k-Medoids algorithm is adapted to fulfill the

clustering task. Experimental results show that Bamic could effectively reveal the inherent structure
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of the multi-instance data set.

In addition, based on the clustering results of Bamic, a novel multi-instance prediction algorithm

named Bartmip, i.e. BAg-level Representation Transformation for Multi-Instance Prediction, is also

developed. Specifically, Bartmip performs representation transformation by converting each bag into

a corresponding k-dimensional feature vector whose i-th feature equals the distance between the bag

and the medoid of the i-th group. Consequently, bags are transformed into feature vectors meaning

that the original task of multi-instance prediction is reduced to the task of traditional supervised

learning. In this paper, support vector machines are employed to learn from the reduced learning

problems. Extensive experiments show that the performance of Bartmip is highly competitive to

those of other multi-instance prediction algorithms on various multi-instance prediction problems,

such as StdMIP, MIR and two kinds of GenMIP models1.

The rest of this paper is organized as follows. Section 2 briefly reviews previous literatures on

multi-instance learning. Section 3 presents Bamic and reports its experimental results on real-world

and artificial data sets. Section 4 presents Bartmip and reports its experimental results on various

multi-instance prediction problems. Section 5 discusses the relationships between Bartmip and other

related works. Finally, Section 6 concludes and raises several issues for future work.

2 Literature Review

Multi-instance learning originates from the research of drug activity prediction [1], where the Pac-

learnability of this learning framework has been studied by many researchers. Long and Tan [8] showed

that if the instances in the bags are independently drawn from product distribution, then the Apr

(Axis-Parallel Rectangle) proposed by Dietterich et al. [1] is Pac-learnable. Auer et al. [9] showed that

if the instances in the bags are not independent then Apr learning under the multi-instance learning

framework is NP-hard. Moreover, they presented a theoretical algorithm that does not require product

distribution, which has been transformed to a practical algorithm named Multinst [10]. Blum and

Kalai [11] described a reduction from Pac-learning under the multi-instance learning framework to

Pac-learning with one-sided or two-sided random classification noise. They also presented a theoretical

algorithm with smaller sample complexity than that of the algorithm of Auer et al. [9]. Goldman et

al. [12] presented an efficient on-line agnostic multi-instance learning algorithm for learning the class

of constant-dimension geometric patterns, which tolerated both noise and concept shift. Later, this

algorithm was extended so that it could deal with real-valued output [13].

Many practical StdMIP algorithms have been developed during the past years, such as Apr algo-

rithms [1], Diverse Density [14] and its variants [15,16], multi-instance lazy learning algorithms [17],
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multi-instance tree learners [18–20], multi-instance rule inducer [19], multi-instance logistic regression

methods [21], multi-instance neural networks [22–26], multi-instance kernel methods [27–29], and

multi-instance ensembles [21, 30–33], etc. StdMIP techniques have already been applied to diverse

applications including content-based image retrieval [34–38], scene classification [16, 39], stock selec-

tion [14], landmark matching [12,13], computer security [18], subgoal discovery [40], web mining [41],

etc.

In the early years of the research of multi-instance learning, most works were on multi-instance

classification with discrete-valued outputs. Later, multi-instance regression with real-valued outputs

caught the attention of many researchers [4–6].

Besides the StdMIP and MIR problems as introduced above, two kinds of GenMIP models

have also been formalized recently. Firstly, Weidmann et al. [2] indicated that through employing

different assumptions of how the instances’ classifications determine their bag’s label, different kinds

of multi-instance prediction problems could be defined. Formally, let X denote the instance space and

Ω = {0, 1} denote the set of class labels. A multi-instance concept is a function νMI : 2X → Ω. In

StdMIP, this function is defined as Eq.(1), where cI ∈ C is a specific concept from a concept space

C defined over X , and X ⊆ X is a set of instances.

νMI(X) ⇔ ∃x ∈ X : cI(x) (1)

Based on this characterization, Weidmann et al. [2] defined three kinds of GenMIP problems, i.e.

presence-based MI 2, threshold-based MI, and count-based MI. Presence-based MI is defined in terms

of the presence of instances of each concept in a bag, as shown in Eq.(2); threshold-based MI requires

a certain number of instances of each concept to be present simultaneously, as defined in Eq.(3);

count-based MI requires a maximum as well as a minimum number of instances of a certain concept

in a bag, as defined in Eq.(4).

νPB(X) ⇔ ∀ci ∈ C : ∆(X, ci) ≥ 1 (2)

νTB(X) ⇔ ∀ci ∈ C : ∆(X, ci) ≥ ti (3)

νCB(X) ⇔ ∀ci ∈ C : ti ≤ ∆(X, ci) ≤ zi (4)

In Eqs.(2) to (4), νPB , νTB and νCB are functions defined on 2X → Ω, C ⊂ C is a given set of

concepts, ∆ is a counting function ∆ : 2X × C → N which counts the number of a given concept in a

bag, ti ∈ N and zi ∈ N are respectively the lower and upper threshold for concept ci. Two algorithms

have been proposed for this kind of GenMIP model (GenMIP Model I), i.e. Tlc [2] and Cce [42],

both of which could also work well in solving StdMIP problems.
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Independently of Weidmann et al. [2], Scott et al. [3] defined another GenMIP model where the

target concept is defined by two sets of points. Specifically, they defined their concepts by a set of

q ‘attraction’ points C = {c1, . . . , cq} and a set of q′ ‘repulsion’ points C̄ = {c̄1, . . . , c̄q′}. Then the

label for a bag X = {x1, . . . , xp} is positive iff there is a subset of r points C ′ ⊆ C ∪ C̄ such that each

attraction point ci ∈ C ′ is near some point in X and each repulsion point c̄j ∈ C ′ is not near any

point in X. In other words, if one boolean attribute aci is defined for each attraction point ci ∈ C

which takes the value of 1 iff there exists some point x ∈ X near it, and another boolean attribute

āc̄j
is defined for each repulsion point c̄j ∈ C̄ which takes the value of 1 iff there is no point from

X near it, then the bag’s label is an r-of-(q + q′) threshold function over these attributes. Several

algorithms have been specially designed for this kind of GenMIP model (GenMIP Model II), such

as Gmil-1 [3], Gmil-2 [43], k∧ [44] and kmin [45]. The same as Tlc [2] and Cce [42], these GenMIP

algorithms could also be utilized to solve StdMIP problems. In addition, GenMIP Model II has also

been applied to applications such as robot vision, content-based image retrieval, binding affinity, and

biological sequence analysis [3].

Note that none of these two GenMIP models is more expressive than the other one. For instance,

by setting ti ≥ 2 (i ∈ {1, . . . q}) for each attraction point, then both the threshold-based MI and

count-based MI models of Weidmann et al. [2] will not be possible to be represented by the GenMIP

model of Scott et al. [3]. On the other hand, as indicated by Tao et al. [44], when r < q + q′, the

representational ability of Scott et al.’s model will go beyond the generalization scope of Weidmann

et al.’s. It is also worth noting that these two GenMIP models do overlap with each other under

certain circumstances. For instance, by setting ti = zi = 1 (i ∈ {1, . . . q}) for each attraction point

and setting tj = zj = 0 (j ∈ {1, . . . , q′}) for each repulsion point, then the count-based MI model of

Weidmann et al. is just the one of Scott et al. with r = q + q′.

It is worth mentioning that multi-instance learning has also attracted the attention of the Inductive

Logic Programming (Ilp) community. De Raedt [46] suggested that multi-instance problems could be

regarded as a bias on inductive logic programming, and the multi-instance paradigm could be the key

between the propositional and relational representations, being more expressive than the former, and

much easier to learn than the latter. Recently, Alphonse and Matwin [47] successfully employed multi-

instance learning to help relational learning, where the expressive power of relational representation

and the ease of feature selection on propositional representation are gracefully combined. It is also

worth noting that although multi-instance learning was proposed initially based on propositional

representation, a recent modification developed by McGovern and Jensen [48] allows multi-instance

techniques to be used on relational representation. These works confirm that multi-instance learning
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can really act as a bridge between propositional and relational learning.

All the works reviewed in this section concern supervised multi-instance learning where bags are

associated with labels (discrete-valued or real-valued). In the next section, unsupervised multi-instance

learning problem where bags are without labels is addressed by the first multi-instance clustering

algorithm Bamic.

3 Multi-Instance Clustering

3.1 BAMIC

Previous works show that multi-instance representation, i.e. bag of multiple instances, seems a natural

and appropriate form for object description in many real-world problems. For instance, in drug activity

prediction, due to rotations of internal bonds an drug molecule usually have many low-energy shapes

each can be represented by an instance [1]; Another example is scene classification, where an image

usually contains multiple regions each of which can be represented as an instance [16,39]; Web mining

is a further example, where each of the links in the web page can be regarded as an instance [41].

However, although it is relatively easy to represent a large number of available objects (e.g. images

in databases) by bags of instances via pre-defined bag generation process, obtaining labels for these

objects will be a rather costly and tedious work. In this case, unsupervised multi-instance learning

techniques could properly manifest its capability to summarize some useful information from unlabeled

training bags which could be utilized for further analysis.

As introduced in Section 1, clustering is one of the most popular strategies for unsupervised

learning. Traditional clustering schemes include partitioning methods (e.g. k-Medoids), hierarchical

methods (e.g. Agnes), density-based methods (e.g. Dbscan), grid-based methods (e.g. Sting),

model-based methods (e.g. Som), etc [49]. In this paper, Bamic adapts the popular k-Medoids

algorithm to complete the desired multi-instance clustering task due to its simplicity and efficiency.

Note that at the first glance, multi-instance clustering may be regarded as merely a simple extension

of traditional clustering task where the objects to be clustered are now sets of instances instead of single

instances. However, the task of clustering multi-instance bags has its own characteristics. Specifically,

in order to cluster objects described by sets of instances, the most intuitive strategy is to let the

instances contained in one set contribute equally to the clustering process. While for multi-instance

clustering, this kind of strategy may not be appropriate since the instances comprising the bag usually

exhibit different functionalities. For example, only one or few of the low-energy shapes describing one

molecule would be responsible for its qualification to make certain drugs. Similarly, only one or few of

the regions describing one image would be useful for certain applications such as scene classification.
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[Groups, Medoids] = Bamic(U , k, Bag dist)

Inputs:

U — unlabeled multi-instance training set {X1, X2, ..., XN} (Xi ⊆ X )

k — number of clustered groups

Bag dist — distance metric used to calculate distances between bags, which could take the

form of maximal, minimal or average Hausdorff distance in this paper

Outputs:

Groups — clustering outputs {G1, G2, . . . , Gk} (
⋃k

i=1 Gi = U , Gi

⋂
i 6=j Gj = ∅)

Medoids — Medoids of clustered groups

Process:

(1) Randomly select k training bags as the initial medoids Cj (1 ≤ j ≤ k);

(2) repeat

(3) for j ∈ {1, 2, . . . , k} do

(4) Gj = {Cj};
(5) for i ∈ {1, 2, . . . , N} do

(6) index = arg minj∈{1,2,...,k} Bag dist(Xi, Cj);

(7) Gindex = Gindex

⋃{Xi};
(8) for j ∈ {1, 2, . . . , k} do

(9) Cj = arg min
A∈Gj

(∑
B∈Gj

Bag dist(A,B)/|Gj |
)
;

(10) until {the clustering results do not change};
(11) Groups = {Gj |1 ≤ j ≤ k}; Medoids = {Cj |1 ≤ j ≤ k};

Figure 1: Pseudo-code describing the Bamic algorithm.

Therefore, although in multi-instance clustering the labels of the bags are missing, the bags should not

be regarded as simple collections of independent instances while the idiosyncrasies and relationships

of the instances in the bags should be carefully investigated.

Let X denote the domain of instances. Suppose the training set U is composed of N unlabeled

bags, i.e. U = {X1, X2, . . . , XN} where Xi ⊆ X is a set of instances. Bamic clusters all the

training bags into k disjoint groups Gi (1 ≤ i ≤ k) each containing a number of training bags,

i.e.
⋃k

i=1 Gi = {X1, X2 . . . , XN} and Gi

⋂
i 6=j Gj = ∅. By regarding each bag as an atomic object,

the popular k-Medoids algorithm can be easily adapted to fulfill the desired clustering task provided
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that some kind of distance function is used to measure the distances between bags. Actually, there

have been two types of such distances, i.e. maximal Hausdorff distance [7] and minimal Hausdorff

distance [17]. Formally, given two bags of instances A = {a1, . . . , am} and B = {b1, . . . , bn}, the

maximal and minimal Hausdorff distances are defined as Eq.(5) and Eq.(6) respectively, where ‖a−b‖
measures the distance between instances a and b which usually takes the form of Euclidean distance.

maxH(A,B) = max{max
a∈A

min
b∈B

‖a− b‖,max
b∈B

min
a∈A

‖b− a‖} (5)

minH(A,B) = min
a∈A,b∈B

‖a− b‖ (6)

Both maximal and minimal Hausdorff distances have been successfully applied to the StdMIP prob-

lems [17] and MIR problems [4]. However, in our preliminary experiments, it was found that neither of

these two distances could work well on the GenMIP problems. The reason that maximal Hausdorff

distance did not work well may be its sensitivity to outlying points [17], while the reason for the

unsatisfactory performance of minimal Hausdorff distance may be that it only considers the distance

between the nearest pair of instances in A and B. Therefore, in this paper, another distance called

average Hausdorff distance3 is proposed to measure the distance between two bags:

aveH(A,B) =

∑
a∈A

min
b∈B

‖a− b‖+
∑

b∈B

min
a∈A

‖b− a‖

|A|+ |B| (7)

where | · | measures the cardinality of a set. In words, aveH(·, ·) averages the distances between

each instance in one bag and its nearest instance in the other bag. Conceptually speaking, average

Hausdorff distance takes more geometric relationships between two bags of instances into consideration

than those of maximal and minimal Hausdorff distances.

Fig. 1 illustrates the complete description of Bamic. Based on some specific form of Hausdorff

distance (maximal, minimal or average), Bamic partitions the unlabeled training set into k disjoint

groups each containing a number of training bags. The medoid of each group is the one which has

the minimum average distance to the other bags in the same group.

3.2 Experiments

3.2.1 Experimental Setup

To the best of the authors’ knowledge, Bamic is the first work on unsupervised multi-instance learn-

ing, and there is no benchmark data set for the evaluation of unsupervised multi-instance learning

algorithms. In this paper, several supervised multi-instance data sets are employed instead to test

the effectiveness of Bamic. Traditionally, the quality of the clustering results is usually measured

by various cluster validation indices [50], where the desired grouping properties such as the labeling
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information are not available. However, for the experiments reported in this subsection, the labels as-

sociated with the bags are known, which can be utilized to give more realistic estimate of the clustering

quality other than using cluster validation indices.

Considering that no other multi-instance clustering methods are available for comparative studies,

the performance of Bamic is evaluated against two traditional clustering methods, i.e. the partitioning

method k-Medoids and the hierarchical method Agnes (AGglomerative NESting, also known as the

single-linkage clustering) [49].

Let S be a set of N binary labeled bags, i.e. S = {(X1, BLX1), (X2, BLX2), . . . , (XN , BLXN
)}

where Xi ⊆ X is a set of instances and BLXi
∈ {0, 1} is the binary label associated with Xi. As

shown in Fig. 1, given parameters k (number of clustered groups) and Bag dist(·, ·) (distance metric

between bags), Bamic will partition the set of unlabeled bags {X1, X2, . . . , XN} into k disjoint groups

Gj each containing a number of bags. However, as for k-Medoids and Agnes, both of which cluster

the data set at the level of instances instead of at the level of bags. In this way, the bag Xi may be

broken into several parts each belonging to different group when the clustering process is completed.

In order to account for the effect of fractional bags, each instance in the bag Xi is now assigned

with a weight 1
|Xi| . By doing this, instances from small bags will have higher weights than instances

from large bags while bags are considered to be of equal importance (i.e. with weight 1). Note that

this kind of weighting strategy has been shown to be reasonable for multi-instance learning as in the

literatures [2, 20].

For each group Gj (1 ≤ j ≤ k), let W l
j (l ∈ {0, 1}) denote the sum of weights of those instances

in Gj which are coming from bags (may be fractional for k-Medoids and Agnes) with label l.

Furthermore, let Wj denote the sum of weights of all the instances in Gj , i.e. Wj = W 0
j + W 1

j . It is

easy to see that
∑k

j=1 Wj = N . Based on this, the following two criteria are defined in this paper to

assess the quality of the clustering results:

avgpurity({G1, G2, . . . , Gk}) =
k∑

j=1

Wj

N
· max{W 0

j ,W 1
j }

Wj
(8)

avgentropy({G1, G2, . . . , Gk}) =
k∑

j=1

Wj

N
·

 ∑

l∈{0,1}
−W l

j

Wj
log2

W l
j

Wj


 (9)

The first criterion avgpurity(·) measures the weighted average purity of the clustering results.

Here, purity of Gj refers to the ratio of the weights of (fractional) bags belonging to the dominating

class in Gj to the total weights of (fractional) bags in Gj , which is then weighted by Wj

N . The

performance is perfect when avgpurity({G1, G2, . . . , Gk}) = 1. The bigger the value of this criterion,

the better the performance of the clustering algorithm; The second criterion avgentropy(·) measures
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the average entropy of the clustering results, i.e. the information needed to correctly classify all

the (fractional) bags in the clustered groups. It resembles the entropy definition used in traditional

decision tree building [51]. The performance is perfect when avgentropy({G1, G2, . . . , Gk}) = 0. The

smaller the value of this criterion, the better the performance of the clustering algorithm.

Experimental results on several StdMIP and GenMIP data sets are reported in the following two

subsections respectively.

3.2.2 STDMIP Data Sets

Musk data is a real-world benchmark test data for StdMIP algorithms, which was generated in the

research of drug activity prediction [1]. Here each molecule is regarded as a bag, and its alternative

low-energy shapes are regarded as the instances in the bag. A positive bag corresponds to a molecule

qualified to make a certain drug, that is, at least one of its low-energy shapes could tightly bind to the

target area of some larger protein molecules such as enzymes and cell-surface receptors. A negative

bag corresponds to a molecule unqualified to make a certain drug, that is, none of its low-energy

shapes could tightly bind to the target area. In order to represent the shapes, a molecule was placed

at a standard position and orientation and then a set of 162 rays emanating from the origin was

constructed so that the molecule surface was sampled approximately uniformly. There were also four

features representing the position of an oxygen atom on the molecular surface. Therefore each instance

in the bags was represented by 166 continuous attributes.

There are two data sets, i.e. Musk1 and Musk2, both publicly available at the UCI machine

learning repository [52]. Musk1 contains 47 positive bags and 45 negative bags, and the number of

instances contained in each bag ranges from 2 to 40. Musk2 contains 39 positive bags and 63 negative

bags, and the number of instances contained in each bag ranges from 1 to 1,044. Detailed information

on the Musk data is tabulated in Table 1.

Table 1: The Musk data (72 molecules are shared in both data sets).

Bags Instances per Bag
Data Set Dim.

Total Musk Non-Musk
Instances

Min Max Ave.

Musk1 166 92 47 45 476 2 40 5.17
Musk2 166 102 39 63 6,598 1 1,044 64.69

Figs. 2 and 3 show how the performance of each clustering algorithm on the Musk data changes as

the number of clustered groups increasing in terms of average purity and average entropy respectively.

The number of clustered groups ranges from 5 to 90 on Musk1 while from 5 to 100 on Musk2,

both with an interval of 5. Bamic-w-minH denotes the version of Bamic when minimal Hausdorff
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Figure 2: The average purity of the clustering algorithm changes as the number of clustered groups
increasing. (a) Musk1; (b) Musk2.
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Figure 3: The average entropy of the clustering algorithm changes as the number of clustered groups
increasing. (a) Musk1; (b) Musk2.

distance is used to measure distance between bags. The same naming rule goes for Bamic-w-maxH

and Bamic-w-aveH. For each of the five clustering algorithms, when the number of clustered groups

is fixed, experiments are repeated for ten times where the averaged evaluation value out of ten runs

is depicted as a point in the figure. The concrete experimental results of each clustering algorithm in

terms of average purity and average entropy are also reported in Tables 2 and 3 respectively, where

the number of clustered groups ranges from 5 to 80 with an interval of 15. The value following ‘±’

gives the standard deviation and the best result out of the five clustering algorithms on each number

of clustered groups is shown in bold face.

Fig. 2 and Table 2 show that in terms of average purity, on both Musk1 and Musk2, all the three

versions of Bamic significantly and consistently outperform k-Medoids and Agnes. Furthermore,
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Table 2: Experimental results of each clustering algorithm (mean±std) on Musk1 and Musk2 with
different number of clustered groups in terms of average purity.

Data Clustering Number of Clustered Groups

Set Algorithm k = 5 k = 20 k = 35 k = 50 k = 65 k = 80

Bamic-w-minH .613±.043 .815±.029 .867±.016 .926±.022 .964±.019 .980±.014

Bamic-w-maxH .644±.038 .828±.036 .869±.028 .905±.017 .945±.020 .974±.013

Musk1 Bamic-w-aveH .587±.016 .812±.050 .867±.027 .902±.026 .942±.015 .978±.013

k -Medoids .611±.030 .729±.025 .757±.015 .796±.025 .818±.020 .828±.019

Agnes .571±.000 .666±.000 .746±.000 .767±.000 .771±.000 .795±.000

Bamic-w-minH .657±.032 .786±.026 .838±.014 .897±.017 .920±.030 .953±.008

Bamic-w-maxH .649±.020 .777±.022 .846±.021 .901±.022 .923±.017 .960±.019

Musk2 Bamic-w-aveH .637±.013 .769±.012 .800±.012 .850±.037 .884±.020 .930±.018

k -Medoids .621±.010 .686±.027 .725±.020 .735±.020 .751±.019 .767±.012

Agnes .618±.000 .618±.000 .665±.000 .678±.000 .731±.000 .733±.000

Table 3: Experimental results of each clustering algorithm (mean±std) on Musk1 and Musk2 with
different number of clustered groups in terms of average entropy.

Data Clustering Number of Clustered Groups

Set Algorithm k = 5 k = 20 k = 35 k = 50 k = 65 k = 80

Bamic-w-minH .928±.054 .530±.049 .350±.034 .187±.044 .080±.038 .042±.032

Bamic-w-maxH .886±.060 .481±.082 .341±.067 .236±.047 .127±.045 .056±.026

Musk1 Bamic-w-aveH .953±.034 .513±.088 .369±.062 .245±.056 .141±.041 .050±.030

k -Medoids .943±.035 .729±.028 .652±.020 .571±.066 .506±.038 .467±.029

Agnes .935±.000 .816±.000 .667±.000 .626±.000 .618±.000 .579±.000

Bamic-w-minH .854±.044 .587±.068 .427±.027 .251±.032 .188±.072 .107±.019

Bamic-w-maxH .897±.018 .578±.053 .395±.045 .251±.046 .187±.038 .091±.037

Musk2 Bamic-w-aveH .899±.031 .667±.027 .542±.021 .393±.070 .296±.030 .178±.036

k -Medoids .933±.016 .803±.040 .731±.023 .710±.029 .677±.027 .652±.028

Agnes .910±.000 .810±.000 .773±.000 .743±.000 .665±.000 .651±.000

there is no significant difference among the performance of the three versions of Bamic on Musk1,

while the performance of Bamic-w-aveH is slightly inferior to those of Bamic-w-minH and Bamic-

w-maxH on Musk2. Fig. 3 and Table 3 reveal the same phenomena as shown above when the

performance of clustering algorithm is evaluated in terms of average entropy. The above results

indicate that Bamic could work well on the real-world Musk data.

3.2.3 GENMIP Data Sets

In addition to the above StdMIP data sets, several GenMIP data sets are employed to further

evaluate the performance of each clustering algorithm. Specifically, the presence-based MI of GenMIP

Model I proposed by Weidmann et al. [2] is used.

In generating presence-based MI data sets, |C| concepts were used. To generate a positive bag,
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Figure 4: The average purity of the clustering algorithm changes as the number of clustered groups
increasing. (a) 2-5-5; (b) 2-10-0; (c) 3-5-5; (d) 3-5-10.

the number of instances in a concept ci was chosen randomly from {1, . . . , 10} for each concept. The

number of random instances was selected with equal probability from {10|C|, . . . , 10|C|+10}. To form

a negative bag, they replaced all instances of a concept ci by random instances. Hence the minimal

bag size in this data set was |C|+ 10|C| and the maximal bag size was 20|C|+ 10. It is obvious that

StdMIP problem is just a special case of presence-based MI by using only one underlying concept

(i.e. |C| = 1). Therefore, learning from presence-based MI data sets would be inevitably more difficult

than learning from StdMIP data sets such as the Musk data.

In this paper, four presence-based MI data sets are used, i.e. 2-5-5, 2-10-0, 3-5-5, 3-5-10. Here

the name of the data set ‘2-5-5’ means it was generated with 2 concepts, 5 relevant and 5 irrelevant

attributes. The same naming rule goes for the other data sets. In each data set, there are five different

training sets containing 50 positive bags and 50 negative bags, and a big test set containing 5,000

positive bags and 5,000 negative bags. When the data set is used to evaluate the performance of a

supervised multi-instance algorithm (as shown in Subsection 4.2.4), the average test set accuracy of
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Figure 5: The average entropy of the clustering algorithm changes as the number of clustered groups
increasing. (a) 2-5-5; (b) 2-10-0; (c) 3-5-5; (d) 3-5-10.

the classifiers trained on each of these five training sets is recorded as the predictive accuracy of the

tested algorithm on that data set. In this subsection, however, only the five training sets contained

in each data set are used to evaluated the performance of the unsupervised multi-instance clustering

algorithms.

Figs. 4 and 5 show how the performance of each clustering algorithm on the presence-based MI

data sets changes as the number of clustered groups increasing in terms of average purity and average

entropy respectively. The number of clustered groups ranges from 5 to 100 with an interval of 5 on all

data sets. When the number of clustered groups and the clustering algorithm are fixed, the averaged

evaluation value out of five training sets is depicted as a point in the figure. The concrete experimental

results of each clustering algorithm in terms of average purity and average entropy are also reported

in Tables 4 and 5 respectively, where the number of clustered groups ranges from 5 to 80 with an

interval of 15. The value following ‘±’ gives the standard deviation and the best result out of the five

clustering algorithms on each number of clustered groups is shown in bold face.
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Table 4: Experimental results of each clustering algorithm (mean±std) on presence-based MI data
sets with different number of clustered groups in terms of average purity.

Data Clustering Number of Clustered Groups

Set Algorithm k = 5 k = 20 k = 35 k = 50 k = 65 k = 80

Bamic-w-minH .564±.021 .658±.042 .716±.027 .796±.024 .856±.023 .900±.007

Bamic-w-maxH .538±.019 .636±.013 .690±.012 .768±.016 .842±.008 .906±.006

2-5-5 Bamic-w-aveH .622±.048 .772±.042 .838±.051 .876±.015 .906±.020 .954±.017

k -Medoids .548±.008 .542±.012 .556±.001 .566±.008 .569±.005 .577±.009

Agnes .503±.001 .509±.001 .513±.001 .520±.003 .524±.004 .530±.004

Bamic-w-minH .540±.021 .630±.017 .702±.049 .782±.028 .830±.017 .908±.008

Bamic-w-maxH .558±.026 .656±.025 .700±.014 .794±.020 .854±.018 .908±.005

2-10-0 Bamic-w-aveH .672±.062 .764±.051 .830±.020 .870±.027 .902±.025 .952±.013

k -Medoids .538±.021 .595±.007 .597±.007 .601±.007 .602±.009 .607±.007

Agnes .501±.001 .507±.001 .531±.027 .558±.010 .561±.011 .563±.010

Bamic-w-minH .532±.008 .624±.017 .688±.013 .762±.008 .832±.013 .908±.008

Bamic-w-maxH .542±.015 .634±.018 .710±.022 .778±.016 .844±.021 .918±.015

3-5-5 Bamic-w-aveH .628±.043 .736±.011 .812±.024 .842±.039 .878±.023 .930±.016

k -Medoids .519±.026 .533±.016 .551±.014 .557±.007 .559±.011 .561±.008

Agnes .501±.001 .506±.001 .511±.001 .516±.002 .521±.001 .526±.002

Bamic-w-minH .590±.024 .674±.034 .730±.036 .798±.022 .848±.026 .912±.016

Bamic-w-maxH .554±.017 .618±.018 .720±.026 .770±.024 .862±.034 .924±.027

3-5-10 Bamic-w-aveH .590±.024 .712±.046 .784±.049 .844±.032 .884±.033 .922±.018

k -Medoids .531±.011 .548±.010 .548±.006 .560±.003 .562±.007 .565±.006

Agnes .501±.000 .503±.001 .504±.001 .506±.001 .507±.001 .509±.000

As shown by Figs. 4 and 5 together with Tables 4 and 5, on all data sets and evaluation criteria,

all the three versions of Bamic significantly and consistently outperform k-Medoids and Agnes.

Specifically, both k-Medoids and Agnes totally fail to find the inherent structure of the concerned

GenMIP data. Furthermore, on all data sets and evaluation criteria, the performance of Bamic-

w-aveH is superior to those of Bamic-w-minH and Bamic-w-maxH, while there is no significant

difference between the performance of the latter two versions of Bamic. The above results show that

in addition to the StdMIP data as shown in Subsection 3.2.2, Bamic (especially Bamic-w-aveH)

could also work well on the more complicated GenMIP data.

4 Applications to Multi-Instance Prediction

4.1 BARTMIP

The difficulty of multi-instance prediction (whether StdMIP, MIR or GenMIP) mainly lies in that

although the training bags are labeled, the labels of their instances are unknown. Actually, a bag cor-

responds to a real-world object while the instances correspond to feature vectors describing the object.
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Table 5: Experimental results of each clustering algorithm (mean±std) on presence-based MI data
sets with different number of clustered groups in terms of average entropy.

Data Clustering Number of Clustered Groups

Set Algorithm k = 5 k = 20 k = 35 k = 50 k = 65 k = 80

Bamic-w-minH .955±.021 .793±.042 .646±.027 .492±.024 .346±.023 .217±.007

Bamic-w-maxH .961±.019 .799±.013 .661±.012 .502±.016 .358±.008 .206±.006

2-5-5 Bamic-w-aveH .935±.048 .608±.042 .443±.051 .336±.015 .219±.020 .097±.017

k -Medoids .991±.008 .990±.012 .984±.001 .977±.008 .972±.005 .968±.009

Agnes .999±.001 .994±.001 .991±.001 .985±.003 .981±.004 .977±.004

Bamic-w-minH .959±.021 .786±.017 .653±.049 .492±.028 .361±.017 .207±.008

Bamic-w-maxH .956±.026 .790±.025 .668±.014 .487±.020 .341±.018 .211±.005

2-10-0 Bamic-w-aveH .837±.062 .655±.051 .447±.020 .335±.027 .232±.025 .105±.013

k -Medoids .994±.021 .963±.007 .958±.007 .953±.007 .950±.009 .946±.007

Agnes .999±.001 .996±.001 .981±.027 .967±.010 .964±.011 .961±.010

Bamic-w-minH .966±.008 .809±.017 .662±.013 .508±.008 .362±.013 .207±.008

Bamic-w-maxH .954±.015 .776±.018 .611±.022 .483±.016 .339±.021 .182±.015

3-5-5 Bamic-w-aveH .935±.043 .695±.011 .501±.024 .402±.039 .292±.023 .160±.016

k -Medoids .997±.026 .992±.016 .986±.014 .983±.007 .980±.011 .978±.008

Agnes .999±.001 .996±.001 .994±.001 .991±.002 .988±.001 .985±.002

Bamic-w-minH .952±.024 .824±.034 .665±.036 .514±.022 .389±.026 .221±.016

Bamic-w-maxH .964±.017 .826±.018 .640±.026 .528±.024 .320±.034 .182±.027

3-5-10 Bamic-w-aveH .968±.024 .742±.046 .545±.049 .394±.032 .274±.033 .165±.018

k -Medoids .996±.011 .991±.010 .990±.006 .985±.003 .983±.007 .980±.006

Agnes .999±.000 .996±.001 .993±.001 .990±.001 .987±.001 .984±.000

In contrast to typical machine learning settings where an object is represented by one feature vector,

in multi-instance learning an object is represented by a set of feature vectors. Therefore, common

supervised machine learning methods can hardly be applied. In fact, Dietterich et al. [1] showed that

learning algorithms ignoring the characteristics of multi-instance problems, such as popular decision

trees and neural networks, could not work well in this scenario4.

Until now, there are two distinct strategies to deal with the representation difficulty encountered

in multi-instance prediction [42]. The most straightforward strategy is to modify supervised learning

algorithms to meet the representation of feature vector sets. Actually, Zhou and Zhang [30] showed

that supervised learning algorithms could be adapted to multi-instance prediction as long as their

focuses are shifted from the discrimination on the instances to the discrimination on the bags. Most

current multi-instance prediction algorithms, especially those for solving StdMIP and MIR problems,

can be viewed as going along this way. On the other hand, the opposite strategy, i.e. transforming

the representation to meet the requirement of common supervised learning algorithms, can also be

considered. In fact, several multi-instance prediction algorithms, especially those for solving GenMIP

problems, have been proposed along this way.
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In this paper, with the help of Bamic, a new solution to the problem of multi-instance prediction

named Bartmip is proposed along the second strategy. In detail, training bags are firstly clustered

into k disjoint groups of bags using Bamic as introduced in Section 3. Intuitively, since clustering

could help find the inherent structure of a data set, the clustered k groups might implicitly encode

some information on the spacial distribution of different bags. Therefore, Bartmip then tries to

re-represent the bags based on the clustering results. Specifically, each bag is re-represented by a

k -dimensional feature vector whose i -th feature corresponds to the distance between the bag and the

medoid of the i -th group. When all the bags are transformed into the k-dimensional feature vectors,

common supervised learners could be used to train on the generated feature vectors to distinguish the

bags.

When an unseen bag is given for prediction, Bartmip firstly re-represents it by querying the

clustering results, then feeds the generated feature vector to the trained predictor to obtain the

predicted label. This means the clustering results, at least the medoids of each clustered groups, should

be stored for prediction so that the unseen bag can be transformed into the corresponding feature

vector through measuring its distance to different group medoids. However, although Bartmip is not

so efficient as multi-instance prediction algorithms that do not query on training bags in prediction,

such as Relic [18], it is more efficient than algorithms that require storing and querying all the

training bags in prediction, such as Citation-knn and Bayesian-knn [17]. As will be shown in

the next subsection, a prominent advantage of Bartmip is that it can be easily applied to MIR

problems by simply replacing the binary classifier built on the transformed feature vectors with a

regression estimator, and applied to GenMIP problems without any modification, while most current

multi-instance prediction algorithms can not.

Let D be the set of labeled training bags, i.e. D = {(X1, LX1), (X2, LX2), . . . , (XN , LXN
)} where

Xi ⊆ X is a set of instances and LXi
is the label (binary or real-valued) associated with Xi. The

complete description of Bartmip is illustrated in Fig. 6. Based on Bamic, steps (1) to (2) cluster

the training set into k disjoint groups5. After that, steps (3) to (8) firstly convert each training bag

into one feature vector associated with the bag’s label, and then use the given learning algorithm

to train a predictor from the transformed feature vectors. Note that many algorithms can be used

to implement the learning algorithm. Finally, steps (9) to (11) output the label for the test bag by

feeding the generated feature vector to the learned predictor.

Note that although Bartmip is designed along one existing strategy, i.e. performing representation

transformation to meet the requirement of traditional supervised learning algorithms, it has its own

characteristics. Firstly, for all the other multi-instance prediction algorithms based on representation
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Label = Bartmip(D, k, Bag dist, TBag, Learner)

Inputs:

D — labeled multi-instance training set {(X1, LX1), (X2, LX2), ..., (XN , LXN
)}

(Xi ⊆ X , LXi
∈ {0, 1} or [0, 1])

k — number of clustered groups

Bag dist — distance metric used to calculate distances between bags, which could take the

form of maximal, minimal or average Hausdorff distance in this paper

TBag — test bag (TBag ⊆ X )

Learner — common supervised learner for the transformed feature vectors

Outputs:

Label — predicted label for the test bag (Label ∈ {0, 1} or [0, 1])

Process:

(1) Set U = {X1, X2, . . . , XN};
(2) [{G1, G2, . . . , Gk}, {C1, C2, . . . , Ck}] = Bamic(U , k, Bag dist);

(3) Set Tr = ∅;
(4) for i ∈ {1, 2, . . . , N} do

(5) for j ∈ {1, 2, . . . , k} do

(6) yi
j = Bag dist(Xi, Cj);

(7) Tr = Tr
⋃{(< yi

1, y
i
2, . . . , y

i
k >,LXi

)};
(8) Predictor(·) = Learner(Tr);

(9) for j ∈ {1, 2, . . . , k} do

(10) yj = Bag dist(TBag, Cj);

(11) Label = Predictor(< y1, y2, . . . , yk >);

Figure 6: Pseudo-code describing the Bartmip algorithm.

transformation [2,3,42–45], the bags are transformed into corresponding feature vectors by structuring

the input space at the level of instances. While for Bartmip, through unsupervised clustering of

training bags, representation transformation is performed by structuring the input space at the level

of bags, which seems more pertinent to the original representation of multi-instance learning. On the

other hand, most existing multi-instance prediction algorithms have only been applied to one or two

kinds of multi-instance prediction problems. In this paper, Bartmip is utilized to solve various kinds
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of multi-instance prediction problems, including StdMIP, MIR and two kinds of GenMIP problems.

4.2 Experiments

4.2.1 Experimental Setup

As shown in Fig. 6, several parameters should be determined in advance to make Bartmip be a

concrete prediction algorithm. In this subsection, support vector machines (SVM)6, backpropagation

neural networks (BNN) and K-nearest neighbors (KNN) are used respectively as the base learners

to learn from the transformed feature vectors. Considering that after representation transformation,

different multi-instance learning problems will give rise to different common supervised learning prob-

lems, thus the parameters used by each base learner are coarsely tuned for different data sets to yield

comparable performance. For SVM, gaussian kernels are used with γ-parameter set to be 0.25 and

C-parameter set to be 3. For BNN, the number of hidden neurons is set to be the number of input

neurons. For KNN, the number neighbors considered is set to be 3. The following experiments (as

shown in Table 6) on the Musk data, whose detailed characteristics have already been introduced in

Subsection 3.2.2, are performed to determine other parameters of Bartmip.

Ten times of leave-one-bag-out tests are performed on both Musk1 and Musk2, where the pa-

rameter k (i.e. the number of clustered groups) ranges from 20% to 100% of |D| (i.e. the number of

training bags) with an interval of 20%. Bartmip-SVM-minH denotes the version of Bartmip where

SVM is employed to learn from the transformed feature vectors and minimal Hausdorff distance is

used to measure distance between bags. The same naming rule goes for the other algorithms. The

value following ‘±’ gives the standard deviation and the best result out of three different distance

measures on each number of clustered groups is shown in bold face.

Table 6 shows that the number of clustered groups does not significantly affect the performance

of each prediction algorithm. When the base learner is fixed, in most cases better performance is

achieved when average Hausdorff distance is used as the bag distance metric (except Bartmip-KNN

on Musk1 and Bartmip-BNN on Musk2). Furthermore, when the bag distance metric is fixed, in

all cases better performance is achieved when SVM is used as the base learner. Therefore, in the rest

of this paper, the reported results of Bartmip are all obtained with µ set to be the moderate value

of 60%, where SVM is employed to learn from the transformed feature vectors and average Hausdorff

distance is utilized to measure distance between bags.

Experimental results of Bartmip on all kinds of multi-instance prediction formalizations, including

StdMIP, MIR and GenMIP, are reported sequentially in the following subsections. Note that the

performance of different algorithms have been reported on different data sets. For each data set used
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Table 6: Experimental results of Bartmip (mean±std) on the Musk data with different base learners,
different number of clustered groups and different bag distance metrics.

Data Prediction Number of Clustered Groups (= µ×Number of Training Bags)

Set Algorithm µ = 20% µ = 40% µ = 60% µ = 80% µ = 100%

Bartmip-SVM-minH 91.1±0.9 91.2±1.5 90.4±0.9 88.7±1.7 90.2±0.0

Bartmip-SVM-maxH 85.3±1.6 85.1±2.4 84.4±1.3 82.0±2.5 81.5±0.0

Bartmip-SVM-aveH 92.6±1.0 94.7±1.0 94.1±1.0 92.0±1.4 90.2±0.0

Bartmip-BNN-minH 77.2±3.7 76.5±2.7 80.8±1.7 76.5±1.3 79.7±0.0

Musk1 Bartmip-BNN-maxH 74.6±1.7 77.9±1.3 79.0±4.1 76.8±3.8 77.5±0.0

Bartmip-BNN-aveH 79.7±4.1 78.9±4.4 84.4±1.7 78.6±3.5 80.8±0.0

Bartmip-KNN-minH 87.4±1.8 88.9±2.0 86.7±1.8 87.3±1.7 89.1±0.0

Bartmip-KNN-maxH 81.1±2.7 80.0±2.4 80.8±2.1 81.0±2.2 81.5±0.0

Bartmip-KNN-aveH 85.7±3.2 86.3±2.8 86.9±1.5 87.3±1.3 88.0±0.0

Bartmip-SVM-minH 86.7±2.4 88.0±1.1 86.6±1.9 82.6±1.5 82.4±0.0

Bartmip-SVM-maxH 85.9±1.9 88.2±1.7 87.6±1.2 85.4±1.3 83.3±0.0

Bartmip-SVM-aveH 90.7±1.7 91.2±1.0 89.8±1.2 87.3±1.4 88.2±0.0

Bartmip-BNN-minH 74.2±2.8 76.5±2.6 76.8±3.7 78.1±3.2 74.8±0.0

Musk2 Bartmip-BNN-maxH 76.5±2.9 79.4±2.5 82.0±3.2 79.1±4.4 80.4±0.0

Bartmip-BNN-aveH 69.9±2.3 73.2±3.8 75.5±1.0 75.8±3.3 73.9±0.0

Bartmip-KNN-minH 83.0±1.5 84.6±0.6 83.0±1.5 82.0±0.6 81.4±0.0

Bartmip-KNN-maxH 80.7±3.2 82.7±0.6 82.0±1.5 81.1±2.0 81.4±0.0

Bartmip-KNN-aveH 84.6±3.2 84.6±1.5 85.3±1.7 86.6±2.0 85.3±0.0

in this paper, the experimental results of other algorithms ever reported on that data set are included

for comparative studies. Furthermore, in Subsection 4.2.3, time complexities of Bartmip and some

other algorithms are also compared. All the algorithms studied in this paper take the propositional

(i.e. attribute-value) representation language.

4.2.2 STDMIP Data Sets

Experimental results on the most widely used StdMIP data sets, i.e. the Musk data, are shown

in this subsection. The performance of Bartmip (γ=0.25, C=3) are presented in the first part of

Table 7. The first part also contains the results of those algorithms designed for GenMIP Model I

(i.e. Tlc [2] and Cce [42]) and GenMIP Model II (i.e. k∧ [44] and kmin [45]), which can also work

on the Musk data. The second part contains the results of other learning algorithms designed for

the StdMIP problems. Note that Zhou and Zhang [30] have shown that ensembles of multi-instance

learners could achieve better results than single multi-instance learners. However, considering that

Bartmip is a single multi-instance learner, the performance of ensembles of multi-instance learners

are not included in Table 7 for fair comparison. The empirical results shown in Table 7 have been

obtained by multiple runs of tenfold cross-validation (10CV), by 1,000 runs of randomly leaving out
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Table 7: Comparison of the performance (%correct ± std) of each multi-instance prediction algorithm
on the Musk data.

Prediction Algorithm Musk1 Eval. Prediction Algorithm Musk2 Eval.

Bartmip 94.1±1.0 LOO Bartmip 89.8±1.2 LOO
Cce [42] 92.4 LOO Cce [42] 87.3 LOO
Tlc [2] 88.7±1.6 10CV Tlc [2] 83.1±3.2 10CV
k∧ [44] 82.4 10CV k∧ [44] 77.3 10CV
kmin [45] 82.4 10CV kmin [45] 77.3 10CV
Id apr [1] 92.4 10CV Dd-svm [16] 91.3 10CV
Citation-knn [17] 92.4 LOO Id apr [1] 89.2 10CV
Boosting [32] 92.0 10CV Miti [20] 88.2 10CV
Gfs kde apr [1] 91.3 10CV MI Svm [27] 88.0±1.0 10out

Bag unit-based rbf [25] 90.3 10CV Rbf-mip [26] 88.0±3.5 LOO
Gfs ec apr [1] 90.2 10CV Relic [18] 87.3 10CV
Bayesian-knn [17] 90.2 LOO Boosting [32] 87.1 10CV
Rbf-mip [26] 90.2±2.6 LOO Bag unit-based rbf [25] 86.6 10CV
Diverse Density [14] 88.9 10CV Citation-knn [17] 86.3 LOO
Mi-nn [22] 88.0 N/A Em-dd [15] 84.9 10CV
Ripper-mi [19] 88.0 N/A Mi-svm [28] 84.3 10CV
Bp-mip-pca [24] 88.0 LOO MILogRegArith [21] 84.1±1.3 10CV
MIBoosting [21] 87.9±2.0 10CV Multinst [10] 84.0±3.7 10CV
mi-Svm [28] 87.4 10CV MIBoosting [21] 84.0±1.3 10CV
MILogRegArith [21] 86.7±1.8 10CV mi-Svm [28] 83.6 10CV
MI Svm [27] 86.4±1.1 10out Bp-mip-pca [24] 83.3 LOO
MILogRegGeom [21] 85.9±2.2 10CV Diverse Density [14] 82.5 10CV
Bp-mip-dd [24] 85.9 LOO Bayesian-knn [17] 82.4 LOO
Dd-svm [16] 85.8 10CV MILogRegGeom [21] 82.3±1.2 10CV
Em-dd [15] 84.8 10CV Mi-nn [22] 82.0 N/A
Miti [20] 83.7 10CV Bp-mip [23] 80.4 LOO
Relic [18] 83.7 10CV Bp-mip-dd [24] 80.4 LOO
Bp-mip [23] 83.7 LOO Gfs kde apr [1] 80.4 10CV
Mi-svm [28] 77.9 10CV Ripper-mi [19] 77.0 N/A
Multinst [10] 76.7±4.3 10CV Gfs ec apr [1] 75.7 10CV

10 bags and training on the remaining ones (10out), or by leave-one-bag-out test (LOO)7.

Table 7 shows that, among the algorithms shown in the first part, Bartmip is comparable to

Cce but apparently better than Tlc, k∧ and kmin on both Musk1 and Musk2. Compared with

those algorithms shown in the second part, Bartmip is comparable to Id Apr, Citation-knn and

Boosting but apparently better than the other algorithms on Musk1, while it is comparable to

Dd-svm, Id-apr, Miti, MI Svm and Rbf-mip but apparently better than the other algorithms on

Musk2. These observations show that Bartmip works quite well on the StdMIP problems.
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4.2.3 MIR Data Sets

In 2001, Amar et al. [4] presented a method for creating artificial MIR data, which was further studied

by Dooly et al. [6] in 2002. This method generates an artificial receptor (target point) t at first. Then,

artificial molecules (denoted as Xi) with 3-5 instances per bag are generated, with each feature value

considered as the distance from the origin to the molecular surface when all molecules are in the same

orientation. Let Xij denote the j-th instance of Xi and Xijk denote the value of the k-th feature of

Xij . Each feature has a scale factor sk ∈ [0, 1] to represent its importance in the binding process. The

binding energy EXi
of Xi to t is calculated as:

EXi
= max

Xij∈Xi

{
n∑

k=1

sk · V (tk −Xijk)

}
(10)

where n is the number of features and

V (u) = 4ε

((σ

u

)12

−
(σ

u

)6
)

(11)

is called the Lennard-Jones potential [53] for intermolecular interactions with parameters ε (the depth

of the potential well) and σ (the distance at which V (u) = 0), and u is the distance between the bag

instances and the target point on a specific feature (they assumed that u > σ which means V (u) < 0).

Based on this, the real-valued label RLXi
∈ [0, 1] for molecule Xi is the ratio of EXi

to the maximum

possible binding energy Emax:

RLXi =
EXi

Emax
= max

Xij∈Xi

{∑n
k=1 sk · V (tk −Xijk)

Emax

}
(12)

where Emax = −ε ·∑n
k=1 sk. Thresholding at 1/2 converts RLXi

to a binary label BLXi
.

The artificial data sets are named as LJ-r.f.s where r is the number of relevant features, f is the

number of features, and s is the number of different scale factors used for the relevant features. To

partially mimic the Musk data, some data sets only use labels that are not near 1/2 (indicated by the

‘S’ suffix) and all scale factors for the relevant features are randomly selected between [0.9, 1]. Note

that these data sets are mainly designed for multi-instance regression, but they can also be used for

multi-instance classification through rounding the real-valued label to 0 or 1.

Leave-one-bag-out test is performed on four artificial data sets, i.e. LJ-80.166.1, LJ-80.166.1-S,

LJ-160.166.1 and LJ-160.166.1-S. Each data set contains 92 bags. The performance of Bartmip (γ=1,

C=1) is compared with those of Bp-mip, Rbf-mip, Diverse Density and Citation-knn, where the

performance of Bp-mip, Rbf-mip and those of Diverse Density and Citation-knn are reported

in the literatures [23], [26] and [4] respectively. Table 8 and Table 9 gives the predictive error and

squared loss of each comparing algorithm.
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Table 8: Comparison of the predictive error of each multi-instance prediction algorithm on the MIR
data sets.

Data Set Bartmip Bp-mip Rbf-mip Diverse Density Citation-knn

LJ-80.166.1 3.3 18.5 6.6 N/A 8.6
LJ-80.166.1-S 0.0 18.5 18.5 53.3 0.0
LJ-160.166.1 5.4 16.3 5.1 23.9 4.3
LJ-160.166.1-S 0.0 18.5 1.1 0.0 0.0

Table 9: Comparison of the squared loss of each multi-instance prediction algorithm on the MIR data
sets.

Data Set Bartmip Bp-mip Rbf-mip Diverse Density Citation-knn

LJ-80.166.1 0.0102 0.0487 0.0167 N/A 0.0109
LJ-80.166.1-S 0.0075 0.0752 0.0448 0.1116 0.0025
LJ-160.166.1 0.0051 0.0398 0.0108 0.0852 0.0014
LJ-160.166.1-S 0.0039 0.0731 0.0075 0.0052 0.0022

Table 10: Comparison of the training time (mean±std, measured in seconds) of each multi-instance
prediction algorithm on the StdMIP and MIR data sets.

Data Set Bartmip Bp-mip Rbf-mip Diverse Density Citation-knn

Musk1 1.5±0.4 359.5±93.3 1.9±0.6 1183.1±225.7 0.0±0.0
Musk2 88.2±5.5 209.1±14.2 78.1±4.2 44817.7±680.9 0.0±0.0

LJ-80.166.1 0.6±0.1 215.4±11.2 1.1±0.2 492.3±44.4 0.0±0.0
LJ-80.166.1-S 0.6±0.1 154.0±44.3 1.1±0.1 526.4±84.1 0.0±0.0
LJ-160.166.1 0.6±0.1 182.5±27.0 1.1±0.1 403.8±57.5 0.0±0.0
LJ-160.166.1-S 0.8±0.3 214.9±152.5 1.6±0.7 688.7±73.1 0.0±0.0

Table 11: Comparison of the testing time (mean±std, measured in seconds) of each multi-instance
prediction algorithm on the StdMIP and MIR data sets.

Data Set Bartmip Bp-mip Rbf-mip Diverse Density Citation-knn

Musk1 0.008±0.005 0.006±0.006 0.002±0.005 0.036±0.037 1.428±0.238
Musk2 0.344±0.044 0.591±0.058 0.546±0.086 0.102±0.011 88.555±0.564

LJ-80.166.1 0.006±0.006 0.008±0.005 0.004±0.006 0.008±0.005 0.431±0.007
LJ-80.166.1-S 0.006±0.006 0.008±0.005 0.004±0.003 0.004±0.005 0.431±0.007
LJ-160.166.1 0.006±0.006 0.004±0.006 0.004±0.003 0.008±0.005 0.427±0.008
LJ-160.166.1-S 0.008±0.008 0.010±0.007 0.006±0.003 0.012±0.005 0.741±0.012

In terms of predictive error (as shown in Table 8), Bartmip is comparable to Rbf-mip and

Citation-knn but significantly outperforms Bp-mip and Diverse Density on all data sets. In

terms of squared loss (as shown in Table 9), Bartmip is comparable to Citation-knn on LJ-80.166.1
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and is worse than Citation-knn on LJ-80.166.1-S, LJ-160.166.1 and LJ-160.166.1-S, but significantly

outperforms Bp-mip, Rbf-mip and Diverse Density on all data sets. These results indicate that,

in addition to StdMIP problems, Bartmip could also work well on MIR problems.

In addition, Table 10 and Table 11 report respectively the training time and testing time of those

algorithms studied in this subsection on both StdMIP and MIR (thresholding real-valued label into

binary one) data sets. Experiments are conducted on an HP server equipped with 4G RAM and four

Intel XeronTM CPUs each running at 2.80GHz. As shown in Table 10, the training complexity of

Bartmip is comparable to that of Rbf-mip while much smaller than that of Bp-mip and Diverse

Density (As a lazy learning style algorithm, Citation-knn takes no training phase and thus leads to

the null training complexity). As shown in Table 11, the testing complexity of Bartmip is comparable

to that of Bp-mip, Rbf-mip and Diverse Density while much smaller than that of Citation-knn.

The above results show that Bartmip is quite efficient in both training phase and testing phase

compared to other multi-instance prediction algorithms.

4.2.4 GENMIP Model I

Weidmann et al. [2] designed some methods for artificially generating data sets of GenMIP Model

I. In each data set they generated, there are five different training sets containing 50 positive bags

and 50 negative bags, and a big test set containing 5,000 positive bags and 5,000 negative bags. The

average test set accuracy of the classifiers trained on each of these five training sets is recorded as the

predictive accuracy of a tested learning algorithm on that data set. Note that in this subsection, the

results of MI Svm and the Tlc algorithms are from the literature [2], while the results of Cce are

from the literature [42].

The way on how to generate presence-based MI data sets has already been introduced in Subsection

3.2.3. Experimental results on this kind of data sets are shown in Table 12, here the name of the data

set ‘2-10-5’ means this data set was generated with 2 concepts, 10 relevant and 5 irrelevant attributes.

In generating threshold-based MI data sets, Weidmann et al. [2] also used |C| concepts. They

chose thresholds t1 = 4 and t2 = 2 for data sets with |C| = 2, and t1 = 2, t2 = 7 and t3 = 5 for data

sets with |C| = 3. For positive bags, the number of instances of concept ci was chosen randomly from

{ti, . . . , 10}. To form a negative bag, they replaced at least (∆(X, ci)− ti + 1) instances of a concept

ci in a positive bag X by random instances. The minimal bag size in this data set is
∑

i ti +10|C|, the

maximal size is 20|C|+ 10. In this paper, four threshold-based MI data sets are used. The results are

shown in Table 13, here the name of the data set ‘42-10-5’ means this data set has at least 4 instances

of the first concept and 2 instances of the second concept in a positive bag, with 10 relevant and 5
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Table 12: Comparison of the performance (%correct ± std) of each multi-instance prediction algorithm
on presence-based MI data sets.

Data Set Bartmip Bartmip-AS MI Svm Cce Tlc Tlc-AS
2-10-5 92.53±0.81 96.51±1.89 82.00±1.53 88.95±0.31 85.18±10.07 96.67±1.58
2-10-10 87.30±3.17 97.07±1.27 80.74±0.79 87.67±0.79 86.63± 8.69 94.45±4.54
3-10-0 96.72±1.08 94.58±1.66 84.39±1.25 88.39±0.97 95.68± 3.78 94.73±2.91
3-10-5 84.66±1.01 91.96±5.14 84.27±1.44 84.93±0.90 78.07± 0.91 87.41±6.24

Table 13: Comparison of the performance (%correct ± std) of each multi-instance prediction algorithm
on threshold-based MI data sets.

Data Set Bartmip Bartmip-AS MI Svm Cce Tlc Tlc-AS
42-10-5 90.05±2.28 90.38±0.91 85.36±0.92 87.64±1.34 88.65±10.12 96.58±1.91
42-10-10 87.84±0.50 88.71±0.91 83.93±0.36 88.04±0.38 84.59± 8.08 95.89±2.05
275-5-10 77.87±1.90 84.68±1.35 82.73±0.85 79.59±0.26 86.42± 5.39 93.75±6.63
275-10-5 88.22±0.34 88.36±1.55 87.05±0.75 84.39±0.65 86.92± 6.56 90.44±4.63

Table 14: Comparison of the performance (%correct ± std) of each multi-instance prediction algorithm
on count-based MI data sets.

Data Set Bartmip Bartmip-AS MI Svm Cce Tlc Tlc-AS
42-10-5 84.06±1.49 84.17±1.76 54.62±0.50 58.30±1.18 57.80±8.55 92.78± 2.45
42-10-10 78.56±3.09 81.28±2.72 55.59±2.81 57.79±1.72 51.05±1.60 65.10±20.35
275-5-10 52.58±0.63 56.55±1.89 52.34±0.50 52.74±0.81 50.33±0.72 56.94±11.64
275-10-5 76.45±0.92 77.01±2.02 54.50±1.81 56.64±1.94 54.11±4.79 83.50±17.88

irrelevant attributes. The same naming rule goes for the other data sets.

In generating count-based MI data sets, Weidmann et al. [2] still used |C| concepts. They used

the same value for both threshold ti and zi. Hence, the number of instances of concept ci is exactly

zi in a positive bag. They set z1 = 4 and z2 = 2 for data sets with |C| = 2, and z1 = 2, z2 = 7

and z3 = 5 for data sets with |C| = 3. A negative bag could be created by either increasing or

decreasing the required number zi of instances for a particular ci. They chose a new number from

{0, . . . , zi− 1}⋃{zi + 1, . . . , 10} with equal probability. If this number was less than zi, they replaced

instances of concept ci by random instances; if it was greater, they replaced random instances by

instances of concept ci. The minimal bag size in this data set is
∑

i zi + 10|C|, and the maximal

possible bag size is
∑

i zi + 10|C| + 10. In this paper, four count-based MI data sets are used. The

results are shown in Table 14, here the name of the data set ‘42-10-5’ means this data set requires

exactly 4 instances of the first concept and 2 instances of the second concept in a positive bag, with

10 relevant and 5 irrelevant attributes. The same naming rule goes for the other data sets.
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For these GenMIP data sets, the γ-parameter and the C-parameter are coarsely tuned to be 10

and 5 respectively for the Gaussian kernel SVM. Considering that attributed selection (AS) has been

applied to refine the Tlc algorithm [2], for fair comparison, this strategy has also been adopted to

improve the performance of Bartmip. In detail, backward attribute selection [54] was used. It starts

with all attributes and in each round eliminating one attribute where the remaining attribute subset

will mostly improve the performance of the algorithm. The effectiveness of a given subset of attributes

is evaluated by tenfold cross-validation on the training set using this subset, and the attribute selection

process terminates when eliminating attributes will no longer improve the algorithm’s performance

or there is only one attribute remaining. Of course, this method is computationally expensive and

increases the runtime of Bartmip considerably.

On presence-based MI data sets (as shown in Table 12), the performance of Bartmip is better or

at least comparable to those of MI Svm, Cce and Tlc, while the performance of Bartmip with AS

(i.e. Bartmip-AS) is also better or at least comparable to that of Tlc with AS (i.e. Tlc-AS) when

the strategy of attribute selection is incorporated. On threshold-based MI data sets (as shown in

Table 13), the performance of Bartmip is better or at least comparable to those of MI Svm, Cce and

Tlc except on ‘275-5-10’, while the performance of Bartmip with AS is not so good as that of Tlc

with AS as attribute selection has not significantly enhanced the generalization ability of Bartmip.

On count-based MI data sets (as shown in Table 14), the performance of Bartmip is significantly

better than those of MI Svm, Cce and Tlc on ‘42-10-5’, ‘42-10-10’ and ‘275-10-5’ except on ‘275-5-10’

where all the algorithms fail due to the very high ratio of irrelevant attributes, while Bartmip with

AS performs better on ‘42-10-10’ but worse on ‘42-10-5’ and ‘275-10-5’ than Tlc with AS. It is worth

noting that, although the Tlc algorithms (with and without AS) achieve high average accuracies on

almost all these data sets of GenMIP Model I, the variance of their results are higher or much higher

than those of Bartmip (with and without AS), MI Svm and Cce in most cases. The experimental

results show that Bartmip could also work well on GenMIP Model I as well as on StdMIP and

MIR problems, even though it is not a specially designed learner of GenMIP Model I such as Tlc

and Cce.

4.2.5 GENMIP Model II

In presenting GenMIP Model II, Scott et al. [3] also designed an algorithm (referred to here as

Gmil-1) for their model and successfully applied it to various areas such as robot vision, content-

based image retrieval, biological sequence analysis and molecular binding. However, this algorithm

requires explicitly enumerating all axis-parallel boxes in the discrete space {0, . . . , s}d (where d is the
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dimensionality and s is the number of discrete values in each dimension), where each box is assigned

with a boolean attribute. This inevitably causes the time complexity of Gmil-1 to be exponential in

d and prohibits its applicability to high dimensional learning problems (e.g. the Musk data as shown

in Subsection 4.2.2). Later on, Tao and Scott [43] developed some heuristics to significantly speed up

Gmil-1 in certain circumstances, yielding the algorithm named Gmil-2. Unfortunately, Gmil-2 still

has exponential time complexity and cannot scale well to higher dimensions.

In order to overcome the above problem of exponential time complexity, Tao et al. [44] reformulated

Gmil-1 using a kernel that can be used with a support vector machine to efficiently learn geometric

multi-instance concepts (i.e. an r-of-(q + q′) threshold function as shown in Section 2). They showed

that computing such a kernel on two bags X1 and X2 is equivalent to count the number of axis-parallel

boxes in a discrete, bounded space that contain at least one point from each of X1 and X2. They proved

that the counting problem is #P-complete and gave a fully polynomial randomized approximation

scheme (FPRAS) for it. Later, this kernel is further generalized along the line of Weidmann et al.’s

count-based MI [45]. In addition to the widely used Musk data, they also tested their kernels (i.e.

k∧ [44] and kmin [45]) on content-based image retrieval data [3], protein superfamily identification

data [55] and multi-site drug binding affinity data [3]. In this paper, two of these data sets, i.e. the

protein superfamily identification data and multi-site drug binding affinity data are used to further

evaluate the effectiveness of Bartmip8. The γ-parameter and the C-parameter are coarsely tuned to

be 1 and 10 respectively for the Gaussian kernel SVM, the results of other comparing algorithms are

all from the literatures [44] and [45].

The protein superfamily identification data9 deals with the problem of identifying new Trx-fold

(Thioredoxin-fold) proteins based on each protein’s primary sequence. However, the low conservation

of primary sequence in the Trx-fold superfamily makes conventional modeling methods such as Hidden

Markov Models (HMMs) difficult to use. Therefore, Wang et al. [55] proposed to using multi-instance

learning techniques for identification of new Trx-fold proteins. They mapped each protein’s primary

sequence to a bag in the following way: Firstly, they found the primary sequence motif (typically CxxC)

in each (positive and negative) sequence that is known to exist in all Trx-fold proteins. Secondly, they

extracted a window of size 204 around it (20 residues upstream, 180 downstream, which is a region

known to contain the entire Trx-fold) and aligned these windows around the motif. Finally, they

mapped all sequences to 8-dimensional profiles based on the numeric properties of Kim et al. [56] and

used them as inputs to the multi-instance learning algorithms.

The resulting data set contains 193 bags out of which 180 bags (20 positive and 160 negative) have

been studied by Wang et al. [55] and Tao et al. [44,45]. In this paper, the same experimental setup is
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Table 15: Performance of each comparing algorithm on the protein superfamily identification data in
terms of predictive error, false positive rate and false negative rate.

Evaluation Criterion Bartmip k∧ kmin Gmil-1 Gmil-2 Emdd DD
Predictive Error 0.235 0.218 0.215 N/A 0.250 0.365 0.664
False Positive Rate 0.235 0.218 0.215 N/A 0.250 0.365 0.668
False Negative Rate 0.244 0.169 0.144 N/A 0.250 0.360 0.125

Table 16: Predictive error of each comparing algorithm on the multi-site drug binding affinity data.

Data Set Bartmip k∧ kmin Gmil-1 Gmil-2 Emdd DD
5-dim 0.190 0.205 N/A 0.212 0.218 0.191 0.196

10-dim 0.178 0.175 N/A N/A N/A 0.223 0.216
20-dim 0.195 0.207 N/A N/A N/A 0.268 0.255

used to evaluate the performance of Bartmip on this data set. In detail, 20-fold cross-validation on 20

positive bags and 8-fold cross-validation on 160 negative bags are performed. In each round, Bartmip

is trained on 19 positive proteins plus one of 8 sets of negative proteins, and then tested on the held-

out positive protein plus the remaining 7 sets of negative proteins. The above process is repeated

for each positive protein and each of the 8 sets of negative proteins. The average predictive error,

false positive rate and false negative rate of Bartmip over 160 (20×8) times of runs are compared

with those of other multi-instance prediction algorithms as shown in Table 15 (Diverse Density is

abbreviated as DD).

The second data studied in this subsection, i.e. the multi-site drug binding affinity data, is a

generalization of the synthetic data of Amar et al. [4] and Dooly et al. [6] which has been introduced

in Subsection 3.2.3. The purpose of generalization is to reflect the notion of ‘antagonist’ drugs [1]

where a molecule must bind at multiple sites to be labeled positive. Adopting the same notation as

used in Subsection 3.2.3, in the generalized case, there is a set of target points T (‘subtargets’) instead

of a single target point. A bag Xi is qualified to be positive iff each target point t ∈ T must bind to

some instance in Xi. In other words, similar to Eq.(12), the label of Xi is determined by thresholding

the following generalized real-valued label GRLXi
at 1/2:

GRLXi
= min

t∈T

{
max

Xij∈Xi

{∑n
k=1 sk · V (tk −Xijk)

Emax

}}
(13)

Using the above generalized data generator, Scott et al. [3] build ten 5-dimensional data sets (200

training bags and 200 testing bags) each with 4 subtargets and tested their algorithm Gmil-1 on them.

Tao et al. [44] also generated data with dimension 10 and 20, each with 5 subtargets, to further evaluate

how well their algorithm k∧ handles higher-dimensional data. As with the 5-dimensional data, ten
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sets were generated, each containing 200 training bags and 200 testing bags. The average predictive

errors of Bartmip on these data sets (with dimensionality of 5, 10 and 20) are compared with those

of other multi-instance learning algorithms as shown Table 16 (Diverse Density is abbreviated as

DD).

On the protein superfamily identification data (as shown in Table 15), in terms of all evaluation

criteria, the performance of Bartmip is worse than those of k∧ and kmin, but significantly better than

those of Gmil-2 and Emdd. Furthermore, Diverse Density significantly outperforms all the other

comparing algorithms in terms of false negative rate. On the multi-site drug binding affinity data (as

shown in Table 16), the performance of Bartmip is comparable, and in most cases superior to the

those of k∧, Gmil-1, Gmil-2, Emdd and Diverse Density. These experimental results show that

Bartmip could also work well on GenMIP Model II as well as on StdMIP and MIR problems, even

though it is not a specially designed learner of GenMIP Model II such as Gmil-1, Gmil-2, k∧ and

kmin.

5 Discussion

As mentioned in Subsection 4.1, Bartmip solves multi-instance prediction problems by transforming

the representation to meet the requirement of traditional supervised learning algorithms. Actually,

several algorithms, especially those for GenMIP problems, such as Tlc [2], Cce [42], Gmil-1 [3],

Gmil-2 [43], k∧ [44] and kmin [45] have also been designed along this way. In this section, the

relationships between Bartmip and those algorithms are discussed in more detail.

Weidmann et al. [2] proposed Tlc to tackle GenMIP Model I problems, which constructs a meta-

instance for each bag and then passes the meta-instance and the class label of the corresponding bag to

a common classifier. Tlc uses a standard decision tree for imposing a structure on the instance space,

which is trained on the set of all instances contained in all bags where the instances are labeled with

their bag’s class label, so that a meta-instance is generated for each bag. However, simply labeling

the instances with their bag’s class label for decision tree building may be misleading. For instance,

in StdMIP problems (special case of presence-based MI problems with |C| = 1), not all the instances

in a positive bag should also be labeled positive. In contrast to Tlc, Bartmip performs unsupervised

clustering at the level of bags for representation transformation, where the label of each bag is not

necessarily shared by its instances.

Scott et al. [3] proposed Gmil-1 to tackle GenMIP Model II problems, which operates in a

discretized feature space X = {0, . . . , s}d (as shown in Subsection 4.2.5). Gmil-1 works by enu-

merating the set of all possible axis-parallel boxes BX (including degenerate ones) in X (so that
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|BX | =
((

s+1
2

)
+ (s + 1)

)d
=

(
s+2
2

)d
), and then creating two boolean attributes ab and āb (āb = 1−ab)

for each box b ∈ BX . Given a bag X = (x1, . . . , xp), the algorithm set ab = 1 if some point from X

lies in b and ab = 0 otherwise. Using the above remapping of each bag to 2|BX | boolean attributes,

the target concept defined by some C, C̄ and r (as shown in Section 2) can be represented by an

r-of-(q + q′) threshold function over the attributes aci
for ci ∈ C and āc̄j

for c̄j ∈ C̄. As shown in

the literature [3], such a threshold function can be easily learned by Winnow [57] while making only

O(r(q+q′)d log s) mistakes in an online learning setting. Unfortunately, the time complexity of Gmil-

1 is exponential in both log s and d. Although Tao and Scott [43] have developed some heuristics

(Gmil-2) to significantly improve the computation efficiency of Gmil-1 in certain situations, Gmil-2

still has exponential time complexity which limits its application to problems with higher dimensions.

In contrast to Gmil-1 and Gmil-2, Bartmip could scale quite well to learning problems with higher

dimensions, such as those problems shown in Subsections 4.2.2 and 4.2.3.

For those algorithms mentioned above, i.e. Tlc [2], Gmil-1 [3] and Gmil-2 [43], together with

k∧ [44] and kmin [45] (kernel reformulations of Gmil-1), bags are transformed into corresponding

feature vectors in a supervised way. That is, the boolean label of each bag is essential for the process

of representation transformation. While for Bartmip, this process is accomplished in an unsupervised

way by unsupervised clustering at the level of bags. One advantage of unsupervised clustering is that

Bartmip could be easily adapted to solve MIR problems with real-valued outputs, which is much more

difficult for Tlc, Gmil-1, Gmil-2, k∧ and kmin to do so. Another advantage of unsupervised clustering

is that additional unlabeled bags, if available, could be incorporated with the labeled training bags

in the clustering process. For instance, in the problem of content-based image retrieval using multi-

instance learning techniques [35,36], only a few images (bags) will be labeled by the users while plenty

of unlabeled images are available in the database which could be combined with the labeled ones to

get more reliable clustering results.

Cce [42] also performs representation transformation in an unsupervised way. Firstly, all the

instances contained in all the bags are collected, and the popular clustering algorithm k-Means [58] is

employed to cluster the instances into d groups. Secondly, each bag is transformed into a d-dimensional

feature vector, where if the bag has some instances being clustered to the i-th group, then the value of

the i-th feature is set to 1 and 0 otherwise. They also use support vector machines to build a classifier

on the transformed feature vectors. Finally, considering that there is no criterion available for judging

which kind of clustering result is the best for re-representation of the bags, the above procedures are

repeated with different values of d where an ensemble of m classifiers are produced and their outputs

are combined by majority voting when making predictions for unseen bags. Although in this way Cce
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could utilize the power of ensemble learning [59] to achieve strong generalization ability, experimental

results reported in Subsection 4.2.4 show that its generalization ability is still worse than that of

Bartmip, which is only a single multi-instance learner. The superiority of Bartmip may attribute

to the clustering results obtained by Bamic which successfully reveal the underlying distribution of

training bags.

As already mentioned several times, a unique characteristic of Bartmip is that it performs repre-

sentation transformation by structuring the input space at the level of bags instead of at the level of

instances. Specifically, Tlc [2] structures the input space by building a decision tree from the set of all

instances contained in all bags by sharing the bag’s class label to its component instances; Gmil-1 [3],

Gmil-2 [43], k∧ [44] and kmin [45] structures the input space by enumerating all the axis-parallel boxes

at instance level and then constructing boolean attributes from those boxes; Cce [42] structures the

input space by dividing the instances into many disjoint regions using the popular k-Means clustering

algorithm. However, Bartmip structures the input space at the level of bags by clustering the training

bags into several disjoint groups of bags. We suppose that this kind of representation transformation

strategy is more pertinent to the original representation of multi-instance learning, i.e. each object

represented by a bag (a set of feature vectors) instead of one feature vector.

6 Conclusion

In this paper, the problem of unsupervised multi-instance learning is addressed where a novel multi-

instance clustering algorithm named Bamic is proposed. Bamic seeks to cluster training bags into

a number of disjoint groups of bags, where the popular k-Medoids algorithm is adapted by using

some form of distance metric to measure distance between bags. Based on the information provided

by the clustering results of Bamic, a novel multi-instance prediction algorithm named Bartmip is

proposed. Bartmip re-represents each bag by a feature vector whose feature values are set to be the

distances between the bag and the medoids of clustered groups. Therefore, the bags are transformed

into feature vectors so that common supervised learners (support vector machines in this paper) are

used to learn from the induced data set. Extensive experiments show that Bamic could effectively

reveal the underlying structure of multi-instance data sets while Bartmip is highly comparable to

other multi-instance prediction algorithms on a wide range of multi-instance prediction problems,

including StdMIP, MIR and two kinds of GenMIP models.

Bamic is the first work toward unsupervised multi-instance learning, it is obvious that investigating

other kinds of unsupervised multi-instance learning methods to yield better learning ability is an

important and interesting issue worth further study.
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For Bamic, there will exist some clusters containing only one bag when the number of clustered

groups is large. Investigating some appropriate methods to eliminate these ‘trivial’ clusters is an

important issue for future work. Further evaluating the performance of Bartmip on more available

multi-instance data sets will be another interesting future work.

In addition to several well-established algorithms [2,3,42–45], the success of Bartmip further shows

the feasibility of solving multi-instance prediction problems through representation transformation.

Actually, there are many possible ways for this purpose. For examples, referring to Fig. 6, each bag can

be transformed into a feature vector whose i-th feature equals the average distance of it to all the bags

in Gi instead of the distance of it to the medoid of Gi. Furthermore, besides support vector machines,

other supervised learning methods such as neural networks can also be used as the classifier training

algorithms. Exploring other schemes for modifying the representation of multi-instance prediction

problems is also an interesting issue for future work.
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with axis-parallel rectangles. Artificial Intelligence, 39(1-2):31–71, 1997.

[2] N. Weidmann, E. Frank, and B. Pfahringer. A two-level learning method for generalized multi-
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Footnotes:

1. In this paper, the generalized multi-instance prediction model proposed by Weidmann et al. [2] is denoted
as GenMIP Model I; Accordingly, the other generalized multi-instance prediction model proposed by
Scott et al. [3] is denoted as GenMIP Model II.

2. Here multi-instance is abbreviated as MI.

3. Actually, aveH(·, ·) doesn’t satisfy the triangle inequality and thus can not be regarded as a metric
distance [62]. For instance, let A = {1}, B = {2} and C = {1, 2}, then aveH(A, C) + aveH(C, B) =
2
3

< 1 = aveH(A, C). However, considering that minH(·, ·) is neither a metric distance (minH(A, C) +
minH(C, B) = 0 < 1 = minH(A, C)) but is still called as minimal Hausdorff distance in the literature
[17]. Following the same naming style, aveH(·, ·) is called as average Hausdorff distance in this paper.

4. Recently, Ray and Craven [61] empirically studied the relationship between traditional supervised learn-
ing and multi-instance learning. They considered four multi-instance algorithms and their supervised
counterparts by simply sharing the bag’s label to all the instances in the bag. Experiments on 12 multi-
instance data sets show that, in most cases (8 out of 12 data sets), the best performance is obtained
with the multi-instance algorithm rather than the traditional supervised learner.

5. In our experiments reported in the next subsection, the clustering process converges within 5 rounds in
most cases.

6. Specifically, the Matlab R© version of Libsvm [60] is used, where the Matlab code is available at http://www
.ece.osu.edu/˜maj/osu svm/ or http://www.csie.ntu.edu.tw/˜cjlin/libsvm/.

7. As pointed out by Andrews et al. [28], the Em-dd algorithm [15] seems to use the test data to select
the optimal solution obtained from multiple runs of the algorithm. Thus, the experimental results of
Em-dd shown in Table 7 are those given by Andrews et al. [28].

8. Unfortunately, due to intellectual property restriction, the content-based image retrieval data [3] used
by Tao et al. [44,45] (from Corel image Suite and www.webshots.com) are not publicly available.

9. Data set publicly available at http://cse.unl.edu/˜qtao/datasets/mil dataset Trx protein.html.
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