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Abstract

In survival analysis, subjects often face com-
peting risks; for example, individuals with
cancer may also suffer from heart disease or
other illnesses, which can jointly influence the
prognosis of risks and censoring. Traditional
survival analysis methods often treat compet-
ing risks as independent and fail to accommo-
date the dependencies between different con-
ditions. In this paper, we introduce HACSurv,
a survival analysis method that learns Hier-
archical Archimedean Copulas structures and
cause-specific survival functions from data
with competing risks. HACSurv employs a
flexible dependency structure using hierar-
chical Archimedean copulas to represent the
relationships between competing risks and
censoring. By capturing the dependencies be-
tween risks and censoring, HACSurv improves
the accuracy of survival predictions and of-
fers insights into risk interactions. Experi-
ments on synthetic dataset demonstrate that
our method can accurately identify the com-
plex dependency structure and precisely pre-
dict survival distributions, whereas the com-
pared methods exhibit significant deviations
between their predictions and the true distri-
butions. Experiments on multiple real-world
datasets also demonstrate that our method
achieves better survival prediction compared
to previous state-of-the-art methods.

1 INTRODUCTION

Survival analysis is a statistical methodology for pre-
dicting the time until an event of interest occurs. It
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plays a significant role in fields such as medicine (Fried-
man et al., 2015; Yeh et al., 2016), reliability test-
ing (Peña and Hollander, 2004), and finance (Caselli
et al., 2021; Bosco Sabuhoro et al., 2006). For exam-
ple, in healthcare survival analysis has been utilized to
predict the relapse/death time of cancer; in reliability
engineering, it has been adopted to study the mainte-
nance life of manufacturing equipment. The objective
of survival analysis is to estimate the probability of an
event happening at a specific time and the event time,
providing insights into the associated risk.

Compared to standard regression problems, the key
challenge in survival analysis is the handling of censor-
ing (Wang and Sun, 2022; Gharari et al., 2023; Emura
and Chen, 2018) and competing risks (Lee et al., 2018;
Li et al., 2023). In healthcare, censoring occurs when a
subject loses contact or experiences other risks before
the event of interest. In the latter case, the situation is
termed as competing risks where patients may have mul-
tiple diseases simultaneously, but only the occurrence
time of one disease can be observed. For example, a
patient with cancer may also have other comorbidities,
such as heart disease (Li et al., 2023).

Uncovering the dependencies between competing risks
through a data-driven approach is of great practical
importance, as it not only enables more accurate sur-
vival predictions but also helps answer questions such
as: “Are individuals with arteriosclerosis more likely
to die from pneumonia than those without a heart
condition?” raised by Tsiatis (1975). Addressing such
questions is essential because mutual influences among
multiple diseases are common in real-world scenarios.
Most existing methods for survival analysis under com-
peting risks directly optimize the Cumulative Incidence
Function (CIF) (Lee et al., 2018; Nagpal et al., 2021;
Jeanselme et al., 2023); these methods neglect atten-
tion to the dependency structure or are based on the
assumption of independent competing risks. Moreover,
existing methods are all based on the independent cen-
soring assumption, which is often violated in practice.
Additionally, these CIF-based methods cannot provide
predictions of the marginal distributions, which are
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also very important objectives in survival analysis.

To address these limitations, copulas can be used as
powerful statistical tools for modeling dependencies
among random variables (Okhrin et al., 2017). Re-
cently, researchers in the statistical community have
used copulas to model the relationships between two
competing events and censoring to obtain better sur-
vival estimates (Li et al., 2023). However, their meth-
ods rely on the Cox Proportional Hazards (CoxPH)
assumption (Cox, 1972), which is a strong and often
violated assumption in practice. In addition, their
method requires users to specify the copula family, and
a wrong copula type can increase the predictive bias.

The recently introduced DCSurvival method (Zhang
et al., 2024), which uses the ACNet (Ling et al., 2020),
has demonstrated effectiveness in handling the depen-
dencies in single-risk scenarios. However, using a single
Archimedean copula can only characterize symmetric
dependency relationships (Okhrin et al., 2017), and
thus is not sufficient for competing risks as the rela-
tionships among risks and censoring are often flexible
and asymmetric (Li et al., 2023; Li and Lu, 2019; Lo
et al., 2020). For example, a study on breast cancer
survivors found that the dependency between the time
to relapse/second cancer (RSC) and the time to car-
diovascular disease (CVD), and their dependencies on
informative censoring time are different (Li et al., 2023;
Davis et al., 2014).

In this paper, we introduce HACSurv, a survival
analysis framework designed to learn hierarchical
Archimedean copulas (HACs) and the marginal sur-
vival distributions of competing events and censoring
from right-censored survival data. HACSurv uses HAC
to flexibly model asymmetric dependency structures.
To the best of our knowledge, HACSurv is the first
data-driven survival analysis method that models the
dependency among competing risks and censoring. Our
contributions are summarized as follows:

• We propose HACSurv, a novel survival analysis
method that captures the asymmetric dependency
structure among competing risks and censoring
using HAC. We also introduce HACSurv (Sym-
metry), a simplified version that employs a sin-
gle Archimedean copula to model the dependency
structure, which allows for end-to-end training.

• We revisit the survival prediction objective in
the context of dependent competing risks and
censoring. Unlike previous methods that rely
solely on marginal survival functions for predic-
tions (Gharari et al., 2023; Zhang et al., 2024),
our approach introduces a novel method to predict
the conditional cause-specific cumulative incidence

function (CIF) for dependent competing risks.

• Our experiments on synthetic datasets demon-
strate that HACSurv significantly reduces bias
in predicting the marginal survival distributions.
Our methods achieve state-of-the-art results in
survival outcome prediction on multiple real-world
datasets. Furthermore, the copulas learned by
HACSurv among competing events can poten-
tially aid practitioners in better understanding
the associations between diseases. Codebase:
https://github.com/Raymvp/HACSurv.

2 PRELIMINARIES

2.1 Survival Data and likelihood

A sample in the survival dataset D = {(xi, ti, ei)}Ni=1

typically consists of three components: (1) a D-
dimensional covariate x, (2) the observed event time
t, and (3) an event indicator e. For a survival dataset
with K competing risks, the event indicator e ranges
over K = {0, 1, · · · ,K}, where e = 0 represents censor-
ing. In competing events scenarios, we consider that
only one event can be observed, and the observed time
ti is the minimum of the potential occurrence times of
all events and censoring. In the single-risk case, e is a
binary indicator.

We extend the likelihood from Gharari et al. (2023) and
Zhang et al. (2024) to the case with competing risks.
For a sample (x, t, e) in survival data, the likelihood
can be expressed as:

L =

K∏
k=0

[Pr(Tk = t, {Ti > t}i̸=k|x)]1{e=k} (1)

where 1{e=k} is an indicator function.

In this paper, we denote the marginal distributions for
competing events or censoring time as STk|X(t | x) =
Pr(Tk > t | x). The corresponding density function

can be written as fTk|X(t | x) = −∂STk|X(t|x)
∂t .

If the events and censoring are assumed to be indepen-
dent, Equation 1 simplifies to:

LIndep =

K∏
k=0

fk(t)∏
i ̸=k

Si(t)

1{e=k}

. (2)

However, in reality, events and censoring are often
dependent (Li and Lu, 2019). In this paper, we use
copulas to model their dependencies under the following
assumption:

https://github.com/Raymvp/HACSurv
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Assumption 1. We assume that the copula C used
to describe the dependency structure among competing
risks and censoring does not depend on covariates x.

In some medical contexts, such as gender differences
affecting the dependency between diseases A and B,
the copula might depend on x, but such cases may
not be common or the variation in the copula may
not be significant. We leave research on relaxing this
assumption for future endeavours.

2.2 Copulas and Archimedean Copulas

Copula is a powerful statistical tool for modeling the de-
pendence structure between multivariate random vari-
ables, which can be viewed as a multivariate cumulative
distribution function (CDF) with uniform [0, 1] margins.
Sklar’s theorem ensures that any d-dimensional contin-
uous CDF can be uniquely expressed as a composition
of its univariate margins and a copula.

Theorem 1 (Sklar’s theorem). For a d-variate cu-
mulative distribution function F , with j-th univariate
margin Fj, the copula associated with F is a cumula-
tive distribution function C : [0, 1]d → [0, 1] with U(0, 1)
margins satisfying:

F (x1, · · · , xd) = C (F1 (x1) , · · · , Fd (xd)) , (3)

where (x1, · · · , xd) ∈ Rd. If F is continuous, then C is
unique.

Due to its flexibility, non-parametric copulas are diffi-
cult to characterize.

Archimedean Copulas Most recent works focus
on Archimedean copulas (Ling et al., 2020; Ng et al.,
2021; Zhang et al., 2024; Gharari et al., 2023), a widely
used family of copulas that can represent different tail
dependencies using a one-dimensional generator:

C(u) = φ
(
φ−1 (u1) + · · ·+ φ−1 (ud)

)
, (4)

where φ : [0,∞) → [0, 1] is the generator of the
Archimedean copula. To ensure that C is a valid cop-
ula, the generator must be completely monotone, i.e.,
(−1)kφ(k) ≥ 0 for all k ∈ {0, 1, 2, · · · }.

2.3 Hierarchical Archimedean Copulas

A significant limitation of Archimedean copulas, which
are defined by a single generation, is their inability
to model asymmetric dependency structures (Okhrin
et al., 2017). However, in real-world scenarios, the
dependencies among events and censoring are rarely
symmetric (Li and Lu, 2019). For example, the depen-
dence between the time to relapse or a second cancer
and cardiovascular disease may differ significantly from
their dependence on censoring (Li et al., 2023).

Hierarchical Archimedean Copulas (HACs) address
these limitations by allowing more complex and flexi-
ble dependency structures (Joe, 1997).To illustrate the
idea of HAC, we consider a three-dimensional example
as shown in Figure 1. This approach can be easily
extended to higher-dimensional cases with more inner
copulas. The HAC for a three-dimensional scenario is
expressed as:

C (u1, u2, u3) = φ0

(
φ−1
0 (u1)+

φ−1
0 ◦ φ1

(
φ−1
1 (u2) + φ−1

1 (u3)
))
.
(5)

For an HAC to be a valid copula, the sufficient nest-
ing conditions (Joe, 1997; McNeil, 2008) are required,
which state that:

• φj for all j ∈ {0, 1, . . . , j} are completely mono-
tone,

•
(
φ−1
0 ◦ φj

)′
for j ∈ {1, . . . , j} are completely

monotone.

The latter criterion, i.e.,
(
φ−1
0 ◦ φj

)′
is completely

monotone, is discussed in detail in (Hering et al., 2010).
In brief, for a given outer generator φ0, the inner gener-
ator φj can be constructed using the Laplace exponent
ψj of a Lévy subordinator and the outer generator φ0,
such that φj(x) = (φ0 ◦ ψj)(x). The Laplace exponent
ψj has the following expression:

ψj(x) = µjx+ βj
(
1− φMj

(x)
)

(6)

= µjx+ βj

(
1−

∫ ∞

0

e−xsdFMj (s)

)
, (7)

where M1 is a positive random variable with Laplace
transform φM1

, and µ1 > 0 and β1 > 0. The derivation
of ψ1 is rather complex, so we only present the final
form of ψ1 here. The detailed mathematical derivation
is provided in the supplementary material following Her-
ing et al. (2010).

3 METHODS

In order to reduce estimation bias caused by inde-
pendent or symmetric dependencies, HACSurv utilizes
hierarchical Archimedean copula to model the asymmet-
ric dependency structure among competing risks and
censoring, and learns the corresponding cause-specific
marginal survival functions with neural network. Fig-
ure 1 illustrates the model architecture of HACSurv in
the setting of 2 competing risks.
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Figure 1: Overview of our HACSurv for the two competing risks scenario. We abbreviate STk|X as Sk, for
k = 0, 1, 2. The copula (out) can be represented by the outer generator φ0. The inner generator φ1 corresponding
to copula (in) is constructed from the Laplace exponent ψ1 and the outer generator φ0.

In this section, we first derive the likelihood under de-
pendent competing risks and censoring, and introduce
the first method proposed in this paper, which uses a
single Archimedean copula to characterize the overall
dependency of the competing risks. Next, we present
how neural networks can be used to model HAC and
the marginal survival distributions. The final part of
this section explores how to compute the conditional
cause-specific cumulative incidence function (CIF) us-
ing HACSurv in the presence of dependencies, which
is an alternative survival prediction method to directly
use the marginal survival distribution.

3.1 Survival Likelihood with Dependent
Competing Risks

We begin by extending the survival likelihood with
dependent censoring described in Zhang et al. (2024)
to the HAC-based survival likelihood with dependent
competing risks. Using Sklar’s theorem, we obtain the
joint probability function for K competing risks:

Pr(T0 > t, · · · , TK > t | x) =
C
(
ST0|X(t | x), · · · , STK |X(t | x)

)
.

(8)

Incorporating the above equation into the survival like-
lihood in Equation 1 (we omit covariates x for brevity),
we can get:

L =

K∏
k=0

{
fTk

(t)
∂

∂uk
C(u0, . . . , uK)

}1{e=k}

, (9)

where each ui = STi
(t) for all i = 0, . . . ,K. A simple

approach to represent C(u0, . . . , uK) is by using a single
Archimedean copula according to Equation 4. This
survival analysis method based on a single copula is
referred to in this paper as HACSurv (Symmetry),
which is an extension of DCSurvival (Zhang et al., 2024)
in the competing risks setting. Although it cannot
capture complex asymmetric structures, it remains a
practical approach. Later experiments demonstrate its
superiority over the independent copula. Furthermore,
a key advantage of HACSurv(Symmetry) is that it can
be trained in an end-to-end manner.

A more flexible modeling approach is to represent
C(u0, . . . , uK) using a hierarchical Archimedean copula
where ∂

∂uk
C(u0, · · · , uK) can be calculated based on

the HAC structure and the chain rule of derivatives.
For the example shown in Figure 1, when k = 1, this
can be specifically expressed as:

∂

∂u1
C(u0, u1, u2) =

∂C(u0, u1, u2)

∂Cin(u1, u2)
· ∂Cin(u1, u2)

∂u1

∣∣∣∣∣∣∣∣u0=ST0
(t)

u1=ST1
(t)

u2=ST2
(t)

,
(10)

where Cin = φ1

(
φ−1
1 (u1) + φ−1

1 (u2)
)
. Under this

HAC structure, Cin can capture diverse forms of de-
pendency between competing events. Moreover, the
outer copula can describe the dependencies between
competing events and censoring.

3.2 Learning Archimedean Copula from
Survival Data

As discussed in Section 2.2, we need a completely mono-
tone generator φ to construct a valid Archimedean
copula. The Bernstein-Widder characterization theo-
rem (Bernstein, 1929; Widder, 2015), states that any
completely monotone function can be characterized by
the Laplace transform of a positive random variable:

Theorem 2 (Bernstein-Widder). A function φ is com-
pletely monotone and φ(0) = 1 if and only if φ is
the Laplace transform of a positive random variable.
Specifically, φ(x) can be represented as:

φ(x) =

∫ ∞

0

e−xs dFM (s), (11)

where M > 0 is a positive random variable with the
Laplace transform φ.

We represent the generator φ of Archimedean copula
using the method proposed by Ng et al. (2021). Specif-
ically, we define a generative neural network G(·; θ)
parameterized by θ. We let M be the output of this
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neural network such that samples M ∼ FM are com-
puted as M = G(ϵ; θ), where ϵ is a source of random-
ness and serve as the input to the neural network. We
then approximate the Laplace transform φ(x) by its
empirical version, using L samples of M from G(·; θ):

φ(x) =

∫ ∞

0

e−xs dFM (s) = E[e−Mx] ≈ 1

L

L∑
l=1

e−Mlx,

(12)
To compute Equation 4, we need to compute the in-
verse of φ(x). Following previous works (Ling et al.,
2020; Ng et al., 2021), we employ Newton’s method
to achieve this. Additionally, by differentiating with
respect to uk = Sk(t), we can derive ∂

∂uk
C(u0, . . . , uK)

in Equation 9. During the optimization of the survival
likelihood, the parameters of the generative neural net-
work G(·; θ) are updated via gradient descent.

3.3 Learning HAC with the Re-generation
Trick

3.3.1 Determine the Structure of HAC

The ideal Hierarchical Archimedean Copula (HAC)
structure should closely resemble the true dependency
structure among competing events and censoring. For
survival data with only one event or censoring observa-
tion time, it is theoretically not guaranteed to deter-
mine the true marginal distribution and copula without
making any assumptions (Tsiatis, 1975). However, this
unidentifiability does not make the estimation pointless.
As we will demonstrate in the experiments, accounting
for the dependency among events substantially reduces
estimation bias, despite the unidentifiable results.

In this paper, we first capture the copulas between
each pair of competing events and censoring. The ap-
proach is similar to DCSurvival proposed by Zhang
et al. (2024) for determining the copula between events
and censoring, but we replace ACNet (Ling et al., 2020)
with Gen-AC (Ng et al., 2021) to represent the genera-
tor φ which enhances computational efficiency. When
determining the HAC structure, we follow the principle
that the dependency strength of inner (lower-level) cop-
ulas should be stronger than that of outer (higher-level)
copulas (Okhrin et al., 2017; Li and Lu, 2019). Thus,
the basic idea for constructing the HAC structure is
to group the competing events and censoring based on
their dependencies: strong dependencies within groups
are modeled by lower-level inner copulas, while weaker
dependencies between groups are captured by higher-
level outer copulas. In the experimental section, we
provide examples with 2, 3, and 5 competing risks to
specifically demonstrate how to determine the HAC
structure.

3.3.2 Training inner generator with
Re-generation Trick

For the inner generator φj , we define it using the com-
position φj(x) = (φ0 ◦ ψj)(x), following the approach
proposed in Ng et al. (2021). We configure the param-
eters µ and β in Equation 7 as trainable parameters,
applying an exp(·) output activation to ensure positiv-
ity. Mj is set as the output from G(·, θj) with param-
eters θj and exp(·) output activation. We proceed by
computing the Laplace transform φMj

as outlined in
Equation 12.

Although Ng et al. (2021) presents a method for train-
ing the inner generator with fully observed data, their
approach does not apply to partially observed survival
data. To address competing risks, this paper introduces
a two-stage training strategy tailored for survival data:

1. The first stage involves generating a collection of
bivariate data points, denoted as U, each repre-
sented by coordinates (U1, U2) ∼ C. These data
points are sampled from the selected copula, iden-
tified in Section 3.3.1 as the inner copula from
among several candidates. This dataset is then
utilized to train the inner generator φj of the HAC.

2. The second stage focuses on training φj using Max-
imum Likelihood Estimation (MLE) based on the
dataset generated in the first stage. To compute
the MLE, we specifically require the second-order
derivatives of the inner generator, φ′′

j . Just as
in Ling et al. (2020), we utilize PyTorch (Paszke
et al., 2017) for automatic differentiation.

During this process, we keep the outer generator φ0

fixed, following Ng et al. (2021)

3.3.3 Using a Specified HAC

In addition to the data-driven approach for determin-
ing the parameters of the HAC described above, some
practitioners might be interested in specifying a known
copula according to their prior knowledge. Based
on our HACSurv framework, using a specified HAC
for survival analysis is also feasible. Specifically, one
can either employ the state-of-the-art HACopula Tool-
box (Górecki et al., 2017) to generate multidimensional
samples U ∼ C from the specified HAC, or generate
a set of bivariate samples for each specified outer and
inner copula. Then, using these samples, the outer
copula parameters can be estimated via maximum like-
lihood estimation. For the inner copula, the training
method described in the second stage above can be
applied directly.
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3.4 Survival Analysis via HACSurv

3.4.1 Learning Marginal Distributions

Once the HAC that describes the dependency structure
among competing events and censoring is obtained, our
goal is to learn their survival distributions. First, we
set up a shared embedding network to extract features
from the covariates x. We use monotonic neural den-
sity estimators (MONDE) (Chilinski and Silva, 2020)
to model Sk|X for all k from 0 to K following DCSur-
vival (Zhang et al., 2024) and SuMo-net (Rindt et al.,
2022). MONDE consists of two parts: the first part is
a fully connected network that processes the covariates,
and the processed covariates along with the time input
t are then concatenated and fed into the second part
of the network. In this second part, all weights of the
successor nodes of the time input t are non-negative.
The final layer output of the MONDE network is trans-
formed into the survival function through the sigmoid
function. The corresponding density functions fk|X
can be computed using PyTorch’s automatic differenti-
ation (Paszke et al., 2017).

After both the HAC and the marginals are instanti-
ated, Equation 9 can be computed based on the HAC
structure and the chain rule of differentiation, and the
parameters of the marginals can be optimized using
stochastic gradient descent. It is worth noting that
during the estimation of the final parameters of the
marginals, we freeze the parameters of the HAC.

3.4.2 Predicting Cause-Specific CIF

Previous copula-based survival analysis methods
(Zhang et al., 2024; Gharari et al., 2023) employ
marginal survival distribution for prediction. How-
ever, as the dependency within the true copula of event
and censoring increases, Gharari et al. (2023) have
shown that the Integrated Brier Score (IBS) obtained
from the ground-truth marginal survival function also
increases, and thus IBS is not suitable for dependent
censoring.

Moreover, we posit that the observed survival data
represent the joint probability of the event ei occurring
at time ti and other events not occurring at that time
rather than simply marginal probability. To better
account for the dependencies among competing events
and censoring, we argue that predicting the conditional
Cause-Specific Cumulative Incidence Function (CIF)
offers a superior approach compared to predicting the
marginal. To this end, we extend the original CIF (Fine
and Gray, 1999; Lee et al., 2018) to accommodate sce-
narios with dependent competing risks and censoring:

Fk∗ (t
∗ | x∗) = Pr(Tk∗ < t∗ | {Ti > t∗}i ̸=k∗ ,x∗) (13)

= 1− C({ui}i=0,...,K)

C({ui}i ̸=k∗)
, (14)

where each ui = STi|X(t∗ | x∗) for all i = 0, . . . ,K.

4 DISCUSSION ON
IDENTIFIABILITY

Tsiatis (1975) has shown that, even when survival
data are generated from a ground-truth joint probabil-
ity distribution (Equation 8) representing dependent
competing risks and censoring, there exists an inde-
pendent copula CIndep and corresponding marginal sur-
vival functions GTk|X(t | x) for all k ∈ {0, . . . ,K} that
can produce the same observed data. In fact, there
are infinite combinations of copulas and correspond-
ing marginal distributions that can represent this joint
probability. Most survival methods that do not rely
on copulas only optimise the cause-specific cumulative
incidence function (CIF) corresponding to this joint
probability, without considering the marginal distri-
bution or assuming competing risks and censoring are
mutually independent (Lee et al., 2018; Nagpal et al.,
2021; Danks and Yau, 2022; Jeanselme et al., 2023).

However, the unidentifiability result does not render
efforts to estimate the copula among competing events
futile. The greater the difference between the estimated
copula and the ground truth copula, the greater the
disparity between the obtained and true marginal dis-
tributions. In other words, if the competing risks are
dependent, existing methods will exhibit significant
bias since they inherently assume an independent cop-
ula. Although it is impossible to uniquely identify the
ground-truth copula, our method can closely approxi-
mate it given the available data. As we demonstrated
in the experiments, under metrics that compared the
estimated survival marginals to the ground truth distri-
butions (Survival-l1) (Gharari et al., 2023), HACSurv
significantly reduces estimation biases when compared
to methods that assume independence; under metrics
that do not require access to the ground truth (e.g.,
Ctd-index (Antolini et al., 2005) and IBS (Graf et al.,
1999)), HACSurv also performs significantly better.

5 EXPERIMENTS

In this section, we evaluate HACSurv’s ability to cap-
ture the dependencies among competing risks and cen-
soring, as well as the model’s predictive ability for the
marginal survival distribution and survival outcomes.
Since the true dependencies are not known in the real
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Figure 2: The blue samples are generated from the
HAC learned on the synthetic dataset. The samples
drawn from the ground truth copulas are in black. The
results are presented in a mirrored format.

world, we first construct a synthetic dataset with three
competing risks based on a known HAC. In addition,
we further compare against baselines using three real-
world datasets to evaluate HACSurv’s ability to predict
patient survival time. We pick the following baselines
for comparison: DeepHit (Lee et al., 2018), DSM (Nag-
pal et al., 2021), DeSurv (Danks and Yau, 2022), and
NeuralFG (Jeanselme et al., 2023). We also present
the results of HACSurv with an independent copula
and a single Archimedean copula.

Due to the complexity of the survival analysis problem,
we chose whether to use the marginal survival function
or CIF for prediction based on the average Ctd-index
of all risks in the validation set.

Synthetic Dataset Following the approach pro-
posed by Gharari et al. (2023) for constructing a single-
risk synthetic dataset with dependent censoring, we
develop a synthetic dataset with three competing risks.
The marginal distributions of competing events and
censoring are modeled using a CoxPH model where the
events and censoring risks are specified by Weibull dis-
tributions where the hazards are linear functions of co-
variates. The dependency structure is characterized by
a known four-variate hierarchical Archimedean copula
Cφ0

(Cφ1
(u1, u2) , Cφ2

(u3, u4)). The samples of the
known copula are generated using the HACopula Tool-
box (Górecki et al., 2017). Specifically, Cφ0 , Cφ1 , Cφ2

are Clayton copulas with their θ parameters set to 1,

(e)(d)

(a) (b) (c)

(f)

Figure 3: Copulas learned by HACSurv from Framing-
ham and MIMIC-III dataset. (a), (b) and (c) are the
copulas between Risk 1 and Risk 2, Risk 1 and cen-
soring, and Risk 2 and censoring on the Framingham
dataset. (d), (e) and (f) are the copulas between Risk 1
and Risk 3, Risk 3 and Risk 5, and Risk 2 and Risk 4
on MIMIC-III, respectively.

3, and 8, respectively.

Real-World Datasets Framingham: This is a co-
hort study gathering 18 longitudinal measurements on
male patients over 20 years (Kannel and McGee, 1979).
We consider death from cardiovascular disease (CVD)
as Risk 2, and death from other causes as Risk 1.

SEER: The Surveillance, Epidemiology, and End Re-
sults Program (SEER) dataset (Howlader et al., 2010)
is an authoritative database in the U.S. that provides
survival information for breast cancer patients. We
select information on breast cancer patients during
2000–2020. Among a total of 113,561 patients, the per-
centages of censored, died due to cardiovascular disease
(Risk 1), and died due to breast cancer (Risk 2) are
approximately 70.9%, 6%, and 23.1%, respectively.

MIMIC-III : We extract survival data of 2,279 pa-
tients from the MIMIC-III database (Tang et al.,
2021). Among them, 1,353 patients (59.37%) are
right-censored; 517 patients (22.68%) died of sepsis
(Risk 1); 65 patients (2.85%) died of cerebral hemor-
rhage (Risk 2); 238 patients (10.44%) died of acute
respiratory failure (Risk 3); 62 patients (2.72%) died
of subendocardial acute myocardial infarction (Risk 4);
and 44 patients (1.93%) died of pneumonia (Risk 5).

Qualitative Results As shown in Figure 2, the de-
pendency structure learned by HACSurv from the syn-
thetic dataset is almost identical to the true HAC. The
results demonstrate that our model can learn complex
dependency structures from partially observed compet-
ing risks survival data. The results from Figure 3 on
the Framingham dataset show that HACSurv found a
positive dependency between Risk 1 and Risk 2, while
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Table 1: Overall performance comparison on four datasets. We report the mean of the metrics for all risks. The
results for each specific risk are provided in the supplementary materials.

Metric Model Synthetic Framingham SEER MIMIC-III

Ctd-index

DeepHit 0.611± 0.008 0.699± 0.019 0.791± 0.000 0.765± 0.015
DSM 0.603± 0.009 0.734± 0.016 0.781± 0.006 0.752± 0.018
DeSurv 0.617± 0.007 0.674± 0.022 0.787± 0.005 0.755± 0.021
NeuralFG 0.549± 0.019 0.746± 0.010 0.779± 0.004 0.760± 0.026
HACSurv (I) 0.635± 0.005 0.748± 0.009 0.797± 0.003 0.764± 0.018
HACSurv (S) 0.636± 0.006 0.746± 0.013 0.797± 0.003 0.760± 0.016
HACSurv 0.643± 0.007 0.747± 0.012 0.798± 0.002 0.768± 0.018

IBS

DeepHit 0.151± 0.003 0.089± 0.003 0.074± 0.001 0.264± 0.083
DSM 0.086± 0.003 0.088± 0.004 0.069± 0.000 0.226± 0.080
DeSurv 0.143± 0.002 0.104± 0.004 0.068± 0.001 0.268± 0.085
NeuralFG 0.173± 0.016 0.091± 0.003 0.068± 0.001 0.276± 0.097
HACSurv (I) 0.077± 0.002 0.092± 0.005 0.067± 0.001 0.169± 0.049
HACSurv (S) 0.078± 0.004 0.091± 0.006 0.067± 0.001 0.131± 0.021
HACSurv 0.100± 0.008 0.085± 0.003 0.067± 0.001 0.163± 0.068

Table 2: Performance comparison of survival models
on synthetic dataset (Survival-L1). In all tables, HAC-
Surv (I) and HACSurv (S) respectively correspond to
HACSurv with an independent copula and a single
symmetry copula.

Method Risk 1 Risk 2 Risk 3

DeepHit 0.375±0.015 0.382±0.015 0.152±0.012

DSM 0.243±0.008 0.289±0.005 0.067±0.005

DeSurv 0.362±0.013 0.371±0.012 0.133±0.007

NeuralFG 0.354±0.012 0.359±0.012 0.157±0.004

HACSurv (I) 0.204±0.006 0.230±0.015 0.067±0.001

HACSurv (S) 0.039±0.005 0.096±0.008 0.013±0.000

HACSurv 0.023±0.004 0.012±0.002 0.008±0.002

Table 3: Comparison of training time (per 100 epochs)
and GPU memory usage on SEER dataset

Method Dim Batch Size Time (s) Memory (MB)

HACSurv 2D 20000 19.5 2890
DCSurvival 2D 20000 255.36 21700
HACSurv 3D 10000 38.05 3914
DCSurvival 3D 10000 450.77 22356

both risks are independent of censoring.

We present some of the dependency structures discov-
ered in the MIMIC-III. Our model found strong pos-
itive dependencies between sepsis (Risk 1) and acute
respiratory failure (Risk 3), as well as between acute
respiratory failure (Risk 3) and pneumonia (Risk 5),
and found a moderate positive dependency between
cerebral hemorrhage (Risk 2) and subendocardial acute
myocardial infarction (Risk 4). This is consistent with
medical knowledge, demonstrating that HACSurv may
uncover the interactions between diseases from partially
observed data.

Quantitative Results The results in Table 2 show
that after identifying the dependency structure among
events and censoring, HACSurv significantly reduces
the estimation bias of the marginal survival distribu-
tions. Notably, even though only a single copula is
used to capture the dependency, HACSurv (Symme-
try) estimates the marginal survival distributions much
better than HACSurv (Independent). DSM achieves
better predictions than other existing methods due to
its use of a parametric structure (Weibull) consistent
with the true marginal distributions. However, since
it trains and predicts based on CIF only and does not
model the dependency structure, it is less effective than
HACSurv.

According to Table 1, HACSurv significantly outper-
forms existing methods in terms of the Ctd-index metric.
For IBS, HACSurv also achieves results superior to ex-
isting state-of-the-art methods. However, it sometimes
performs worse than HACSurv (Independent).

Table 3 shows the computational efficiency comparison
between HACSurv and DCSurvival in the case of a sin-
gle copula. The training time of HACSurv is only about
8% of that of DCSurvival, with 17% of the GPU mem-
ory usage. Thus, in the single-risk setting, HACSurv
also represents an improvement over DCSurvival.

IBS is Not a Proper Scoring Rule It is worth men-
tioning that although HACSurv achieves near-perfect
survival marginal predictions on the synthetic dataset,
its IBS is not as good as its version based on an in-
dependent copula. Moreover, on real-world datasets,
HACSurv does not achieve the best results.

When dependent censoring exists, IBS may not be a
reliable metric because its calculation uses Inverse Prob-
ability of Censoring Weighting (IPCW) (Kvamme and
Borgan, 2023), which relies on the independent censor-
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Figure 4: The HAC hierarchy determined using the HACSurv framework: (a) Framingham and SEER datasets,
(b) synthetic dataset, and (c) MIMIC-III dataset.

Table 4: Results of HACSurv using misspecified copula,
denoted as HACSurv (M). Only the Ctd-index results
are reported.

Model Framingham MIMIC-III

HACSurv 0.747± 0.012 0.768± 0.018
HACSurv (I) 0.748± 0.009 0.764± 0.018
HACSurv (M) 0.744± 0.012 0.717± 0.024

ing assumption. In our experiments, for the synthetic
and MIMIC-III data sets, there are complex dependen-
cies between censoring and competing risks, making
IBS potentially unreliable. However, for the Framing-
ham and SEER datasets, we observed that censoring is
almost independent of competing risks, aligning with
the independent censoring assumption. In this case,
HACSurv achieves relatively better performance.

Determining the Hierarchical Structure of HAC
The determination of the HAC’s hierarchical structure
should be flexible. Sometimes, medical knowledge can
also serve as a reference. As shown in Figure 4, we
present the hierarchical structure in our experiments
as an example for practitioners.

In our experiments on the Framingham and SEER
datasets, we found dependencies between the two com-
peting risks, while the correlations between risks and
censoring were nearly independent. Therefore, we se-
lected the copula between competing risks as inner. For
the MIMIC-III dataset, we observed strong pairwise
correlations between risk 1, risk 2, and risk 5, which
are related to the respiratory system. Thus, we set up
an inner copula to capture their dependencies. Fur-
thermore, the copula between risk 2 and risk 4 also
exhibited a strong correlation, so we chose it as the sec-
ond inner copula. We used the weakest copula between
risks and censoring as the outer copula.

Impact of Misspecified Copula We caution that
misspecifying the copula may lead to worse results. In
Table 4, for the Framingham experiment, we deliber-
ately misspecify the copula in Figure 3 (a) as the outer

copula between competing events and censoring, while
setting the inner copula between competing events to
one with stronger dependency. For the MIMIC-III
experiment, we use a copula with strong dependency,
similar to the one in Figure 3 (f), to model symmetric
dependency. The results in Table 4 show that using an
obviously incorrect copula to model dependencies leads
to survival prediction performance that is much worse
than either assuming independent risks or using the
asymmetric dependencies identified by our method.

We provide detailed experimental settings, additional
qualitative results, and an analysis of the differences
in predictions using marginal distributions and CIF in
the supplementary materials.

6 CONCLUSION

In this paper, we propose HACSurv, a survival analysis
method capable of modeling the dependency structure
among competing risks and censoring. Our method
directly uses the survival likelihood for training, with-
out relying on the independent censoring assumption
or the independent competing risks assumption. We
use hierarchical Archimedean copulas (HACs) to flexi-
bly model asymmetric dependency structures. HAC-
Surv first learns the structure and parameters of the
HAC from partially observed survival data and then
learns the marginal survival distributions. This pa-
per also explores the prediction objective under the
survival analysis setting, extending the use of survival
marginal for prediction in single-risk scenarios to us-
ing conditional cause-specific CIF to better model the
interactions among competing risks. Empirically, we
demonstrate that HACSurv can closely approximate
the dependency structures in survival data and signifi-
cantly reduce survival estimation bias.

However, there are some limitations in our proposed
HACSurv. Although HACs are capable of characteriz-
ing most dependencies in the real world, there are cer-
tain dependency structures that cannot be accurately
represented by HACs. A possible future direction is to
explore vine copulas that are more flexible than HAC.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes]

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Yes]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Yes]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes]

(c) Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to re-
produce the main experimental results (either
in the supplemental material or as a URL).
[Yes]

(b) All the training details (e.g., data splits,
hyperparameters, how they were chosen).
[Yes/No/Not Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Yes]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Yes]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses
existing assets. [Yes]

(b) The license information of the assets, if appli-
cable. [Yes]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Yes]

(d) Information about consent from data
providers/curators. [Yes]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board (IRB)
approvals if applicable. [Not Applicable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partici-
pant compensation. [Not Applicable]
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Supplementary Materials

A DERIVATION OF SURVIVAL LIKELIHOOD

We omit covariates x for brevity. We start with the likelihood function:

L =

K∏
k=0

[Pr(Tk = t, {Ti > t}i ̸=k)]1{e=k} (15)

(Initial likelihood expression)

Applying the definition of the survival function and the relationship between probability density and survival
functions, we rewrite the probability as:

L =

K∏
k=0

− d

dy
Pr(Tk > y, {Ti > t}i ̸=k)

∣∣∣∣∣
y=t

1{e=k}

(16)

(Definition of Survival Function)

Using Sklar’s Theorem to express the joint survival function in terms of a copula function C(u0, . . . , uK), where
uk = STk

(y) and ui = STi(t) for i ̸= k, we have:

L =

K∏
k=0

− d

dy
C(u0, . . . , uK)

∣∣∣∣∣ uk=STk
(y)

y=t
ui=STi

(t), i ̸=k


1{e=k}

(17)

(Sklar’s Theorem)

Applying the Chain Rule of differentiation, we obtain:

L =

K∏
k=0

fTk
(t) · ∂

∂uk
C(u0, . . . , uK)

∣∣∣∣∣
ui=STi

(t)

1{e=k}

(18)

(Chain Rule of derivative)

B DERIVATION OF THE CONDITIONAL CIF

We omit covariates x∗ and derive the cause-specific conditional cumulative incidence function (CIF):

Fk∗(t
∗) = Pr(Tk∗ < t∗ | {Ti > t∗}i ̸=k∗). (19)

(Initial definition)

By definition of conditional probability, it can be rewritten as:

Fk∗(t
∗) =

Pr(Tk∗ < t∗, {Ti > t∗}i ̸=k∗)
Pr({Ti > t∗}i ̸=k∗)

. (20)

(Conditional probability)

Using Sklar’s theorem, express the joint survival function in terms of copula:

Pr({Ti > t∗}i=0,...,K) = C(u0, . . . , uK), Pr({Ti > t∗}i ̸=k∗) = C({ui}i ̸=k∗). (21)

(Sklar’s theorem)
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The joint probability Pr(Tk∗ < t∗, {Ti > t∗}i ̸=k∗) is given by:

Pr(Tk∗ < t∗, {Ti > t∗}i ̸=k∗) = C({ui}i ̸=k∗)− C(u0, . . . , uK). (22)

Substituting into the conditional probability formula and simplifying yields:

Fk∗(t
∗) = 1− C({ui}i=0,...,K)

C({ui}i ̸=k∗)
. (23)

where each ui = STi|X(t∗ | x∗) for all i = 0, . . . ,K. (Final simplified result)

C USING LÉVY SUBORDINATORS TO CONSTRUCT INNER GENERATORS
OF HIERARCHICAL ARCHIMEDEAN COPULAS

The criterion that the derivative
(
φ−1
0 ◦ φj

)′
are completely monotone, is addressed in Hering et al. (2010), using

Lévy Subordinators, i.e. non-decreasing Lévy processes such as the compound Poisson process, by recognizing
that the Laplace transform of Lévy subordinators at a given ‘time’ t ≥ 0 have the form e−tψj , where the Laplace
exponent ψj has completely monotone derivative. For more background on Lévy processes, we refer the reader
to the books Ken-Iti (1999); Tankov (2003). Here we restate the method proposed by Hering et al. (2010) and
utilized in Ng et al. (2021).

For a given outer generator φ0, a compatible inner generator φj can be constructed by composing the outer
generator with the Laplace exponent ψj of a Lévy subordinator:

φj(x) = (φ0 ◦ ψj)(x) (24)

where the Laplace exponent ψj : [0,∞) → [0,∞) of a Lévy subordinator has a convenient representation with
drift µj ≥ 0 and Lévy measure νj on (0,∞) due to the Lévy-Khintchine theorem Ken-Iti (1999):

ψj(x) = µjx+

∫ ∞

0

(
1− e−xs

)
νj(ds) (25)

A popular Lévy subordinator is the compound Poisson process with drift µj ≥ 0, jump intensity βj > 0, and
jump size distribution determined by its Laplace transform φMj

. In this case, the Laplace exponent has the
following expression:

ψj(x) = µjx+ βj
(
1− φMj

(x)
)

= µjx+ βj

(
1−

∫ ∞

0

e−xs dFMj
(s)

)
(26)

where Mj > 0 is a positive random variable with Laplace transform φMj
characterizing the jump sizes of the

compound Poisson process. In addition, we choose µj > 0 to satisfy the condition φj(∞) = (φ0 ◦ ψj) (∞) = 0
such that φj is a valid generator of an Archimedean copula. For the sampling algorithm of HACs, we refer the
reader to Hering et al. (2010).

D ADDITIONAL EXPERIMENTS

D.1 Comparison of Marginal Survival Function and CIF

Table 5 presents the results of using marginal survival functions and CIF for predictions across four datasets. For
the model based on the independent copula, there is no difference between using marginal survival functions and
CIF for predictions. However, for the HAC-based model, whether marginal survival functions or CIF yield better
performance varies across different datasets. We believe this may be due to the complexity of survival analysis
tasks and differences in data collection across datasets. Therefore, we suggest that the final choice of whether to
use the marginal survival function or CIF for prediction should be based on the results on the validation set.
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Table 5: Comparison of Marginal Survival Function and CIF on Four Datasets. SF corresponds to predictions
using the marginal survival function. CIF corresponds to predictions using the cause-specific conditional CIF.

Metric Model Synthetic Framingham SEER MIMIC-III

Ctd-index

HACSurv + SF 0.5987± 0.005 0.7467± 0.011 0.7962± 0.002 0.7682± 0.018
HACSurv + CIF 0.6426± 0.007 0.7415± 0.012 0.7975± 0.002 0.7506± 0.017
HACSurv (I) + SF 0.6350± 0.005 0.7478± 0.009 0.7972± 0.003 0.7635± 0.018
HACSurv (I) + CIF 0.6350± 0.005 0.7478± 0.009 0.7972± 0.003 0.7635± 0.018

IBS

HACSurv + SF 0.1205± 0.005 0.0850± 0.003 0.0669± 0.000 0.1629± 0.068
HACSurv + CIF 0.0999± 0.008 0.0930± 0.003 0.0670± 0.000 0.1540± 0.058
HACSurv (I) + SF 0.0773± 0.002 0.0922± 0.004 0.0668± 0.000 0.1690± 0.049
HACSurv (I) + CIF 0.0773± 0.002 0.0922± 0.004 0.0668± 0.000 0.1690± 0.049

(a) (b) (c)

(d) (e) (f)

Figure 5: Inner Copulas Learned by HACsurv. (a), (b) and (c) are the copulas learned in the first stage. (d), (e)
and (f) are the corresponding inner copulas learned in the second stage using the Re-generation Trick

D.2 Additional Qualitative Results

As shown in Figure 5, the inner copulas learned using the Re-generation trick proposed in this paper are very
close to the copulas learned in the first stage. This confirms that HACSurv can effectively learn the inner copulas
of HACs.

D.3 Risk-Specific Results

According to Table 6, HACSurv achieves the best c-index metric across all risks on the synthetic dataset. HACSurv
(Independent) obtained the best IBS, indicating that IBS is not a strictly proper evaluation metric. According
to Table 7, NeuralFG, which also uses sumo-net as the survival marginal, achieves competitive results with
HACSurv (Independent) and HACSurv (Symmetry). However, their results are inferior to HACSurv because they
fail to accurately capture the dependency structure among the two risks and censoring. For the SEER dataset,

Table 6: Model Performance Comparison on Synthetic Dataset.

Model Risk 1 Risk 2 Risk 3

Ctd-index IBS Ctd-index IBS Ctd-index IBS

DeepHit 0.548± 0.011 0.196± 0.003 0.618± 0.008 0.153± 0.004 0.668± 0.006 0.105± 0.002
DSM 0.552± 0.009 0.080± 0.002 0.593± 0.015 0.085± 0.004 0.665± 0.004 0.092± 0.003
DeSurv 0.534± 0.010 0.196± 0.002 0.648± 0.006 0.131± 0.003 0.670± 0.004 0.102± 0.002
NeuralFG 0.510± 0.004 0.211± 0.007 0.470± 0.048 0.194± 0.039 0.668± 0.004 0.115± 0.003
HACSurv (I) 0.590± 0.005 0.069± 0.001 0.644± 0.008 0.073± 0.002 0.671± 0.003 0.090± 0.003
HACSurv (S) 0.590± 0.006 0.085± 0.003 0.650± 0.008 0.085± 0.006 0.669± 0.004 0.095± 0.004
HACSurv 0.598± 0.011 0.088± 0.011 0.659± 0.007 0.085± 0.011 0.671± 0.004 0.126± 0.003
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Table 7: Model Performance Comparison on Framingham and SEER Datasets.

Dataset Model
Risk 1 Risk 2

Ctd-index IBS Ctd-index IBS

Framingham

DeepHit 0.668± 0.028 0.079± 0.003 0.730± 0.011 0.099± 0.003

DSM 0.708± 0.016 0.078± 0.003 0.761± 0.017 0.097± 0.004

DeSurv 0.599± 0.040 0.092± 0.006 0.748± 0.004 0.115± 0.001

NeuralFG 0.719± 0.015 0.083± 0.003 0.774± 0.005 0.098± 0.003

HACSurv (I) 0.720± 0.011 0.081± 0.003 0.776± 0.007 0.103± 0.006

HACSurv (S) 0.718± 0.017 0.081± 0.004 0.773± 0.008 0.101± 0.008

HACSurv 0.720± 0.015 0.076± 0.002 0.774± 0.008 0.094± 0.004

SEER

DeepHit 0.746± 0.000 0.043± 0.000 0.835± 0.000 0.104± 0.001

DSM 0.735± 0.009 0.044± 0.000 0.827± 0.002 0.093± 0.000

DeSurv 0.739± 0.003 0.045± 0.000 0.834± 0.007 0.090± 0.002

NeuralFG 0.725± 0.005 0.045± 0.000 0.833± 0.002 0.091± 0.001

HACSurv (I) 0.749± 0.005 0.043± 0.000 0.846± 0.001 0.091± 0.001

HACSurv (S) 0.749± 0.004 0.043± 0.001 0.846± 0.001 0.091± 0.001

HACSurv 0.749± 0.003 0.043± 0.000 0.847± 0.002 0.091± 0.000

Table 8: Model Performance Comparison on MIMIC-III Dataset.

Metric Model Risk 1 Risk 2 Risk 3 Risk 4 Risk 5

Ctd-index

DeepHit 0.759± 0.006 0.844± 0.018 0.693± 0.018 0.768± 0.013 0.760± 0.017
DSM 0.724± 0.013 0.829± 0.016 0.693± 0.021 0.768± 0.016 0.745± 0.026

DeSurv 0.751± 0.004 0.859± 0.028 0.696± 0.017 0.742± 0.035 0.729± 0.023
NeuralFG 0.759± 0.010 0.845± 0.031 0.711± 0.015 0.757± 0.031 0.730± 0.042

HACSurv (I) 0.756± 0.010 0.851± 0.026 0.695± 0.017 0.764± 0.020 0.752± 0.018
HACSurv (S) 0.752± 0.010 0.848± 0.017 0.680± 0.020 0.736± 0.019 0.786± 0.015
HACSurv 0.752± 0.008 0.856± 0.021 0.690± 0.018 0.777± 0.012 0.767± 0.034

IBS

DeepHit 0.219± 0.008 0.232± 0.088 0.324± 0.073 0.269± 0.127 0.275± 0.120
DSM 0.146± 0.025 0.221± 0.104 0.228± 0.020 0.255± 0.128 0.279± 0.123

DeSurv 0.188± 0.027 0.245± 0.096 0.332± 0.053 0.281± 0.124 0.295± 0.128
NeuralFG 0.255± 0.029 0.238± 0.102 0.355± 0.092 0.278± 0.143 0.253± 0.120

HACSurv (I) 0.138± 0.034 0.130± 0.049 0.204± 0.012 0.205± 0.082 0.169± 0.067
HACSurv (S) 0.103± 0.007 0.095± 0.006 0.183± 0.044 0.189± 0.045 0.084± 0.004
HACSurv 0.137± 0.057 0.105± 0.059 0.237± 0.095 0.151± 0.064 0.184± 0.081

we found that the learned dependency was relatively weak, hence the three versions of HACSurv performed
similarly. As shown in Table 8 and the overall results in the main text, HACSurv achieves the best overall
C-index. HACSurv (Symmetry) obtained the best IBS. Modeling the dependency structure of survival data with
six dimensions (including censoring) is challenging. HACSurv (Symmetry), using an Archimedean copula to
capture their dependencies, surpasses all existing methods in predicting survival outcomes.

E EXPERIMENTAL DETAILS

All experiments are conducted with a single NVIDIA RTX3090 GPU. We utilize the AdamW optimizer Loshchilov
and Hutter (2018) for training. HACSurv employs the same network architecture across all datasets. Both the
shared embedding network and the cause-specific embedding networks consist of two layers with 100 neurons.
The monotonic neural networks are composed of three fully connected layers, each containing 100 neurons. For
the inner and outer generators of HAC, we use the same network architecture as Ng et al. (2021). For more
details, please refer to our code.

The split between the training and testing sets for all datasets is 8:2. 20% of the data in the training set is used
as a validation set. Experiments across all datasets are conducted in five batches, using 41, 42, 43, 44, and 45 as
the random seeds for splitting the datasets. For all comparative methods, a grid search is conducted to select
hyperparameters. To ensure a fair comparison, all methods use the same time grid for computing metrics during
testing.
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For the implementation of the compared algorithms, we use the PyCox library Kvamme et al. (2019), which
implements DeepHit. The code for NeuralFG, DeSurv, and DSM can be found at https://github.com/

Jeanselme/NeuralFineGray.

https://github.com/Jeanselme/NeuralFineGray
https://github.com/Jeanselme/NeuralFineGray
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