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Abstract

In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework

where an example is described by multiple instances and associated with multiple class

labels. Compared to traditional learning frameworks, the MIML framework is more con-

venient and natural for representing complicated objects which have multiple semantic

meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm

algorithms based on a simple degeneration strategy, and experiments show that solving

problems involving complicated objects with multiple semantic meanings in the MIML

framework can lead to good performance. Considering that the degeneration process may

lose information, we propose the D-MimlSvm algorithm which tackles MIML problems

directly in a regularization framework. Moreover, we show that even when we do not

have access to the real objects and thus cannot capture more information from real ob-

jects by using the MIML representation, MIML is still useful. We propose the InsDif

and SubCod algorithms. InsDif works by transforming single-instances into the MIML

representation for learning, while SubCod works by transforming single-label examples

into the MIML representation for learning. Experiments show that in some tasks they

are able to achieve better performance than learning the single-instances or single-label

examples directly.
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1 Introduction

In traditional supervised learning, an object is represented by an instance, i.e., a

feature vector, and associated with a class label. Formally, let X denote the instance

space (or feature space) and Y the set of class labels. The task is to learn a function

f : X → Y from a given data set {(x1, y1), (x2, y2), · · · , (xm, ym)}, where xi ∈ X
is an instance and yi ∈ Y is the known label of xi. Although this formalization

is prevailing and successful, there are many real-world problems which do not fit

in this framework well. In particular, each object in this framework belongs to

only one concept and therefore the corresponding instance is associated with a

single class label. However, many real-world objects are complicated, which may

belong to multiple concepts simultaneously. For example, an image can belong to

several classes simultaneously, e.g., grasslands, lions, Africa, etc.; a text document

can be classified to several categories if it is viewed from different aspects, e.g.,

scientific novel, Jules Verne’s writing or even books on traveling ; a web page can be

recognized as news page, sports page, soccer page, etc. In a specific real task, maybe

only one of the multiple concepts is the right semantic meaning. For example, in

image retrieval when a user is interested in an image with lions, s/he may be only

interested in the concept lions instead of the other concepts grasslands and Africa

associated with that image. The difficulty here is caused by those objects that

involve multiple concepts. To choose the right semantic meaning for such objects

for a specific scenario is the fundamental difficulty of many tasks. In contrast to

starting from a large universe of all possible concepts involved in the task, it may be

helpful to get the subset of concepts associated with the concerned object at first,

and then make a choice in the small subset later. However, getting the subset of

concepts, that is, assigning proper class labels to such objects, is still a challenging

task.

We notice that as an alternative to representing an object by a single instance, in

many cases it is possible to represent a complicated object using a set of instances.

For example, multiple patches can be extracted from an image where each patch

is described by an instance, and thus the image can be represented by a set of

instances; multiple sections can be extracted from a document where each section

is described by an instance, and thus the document can be represented by a set

of instances; multiple links can be extracted from a web page where each link is
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described by an instance, and thus the web page can be represented by a set of

instances. Using multiple instances to represent those complicated objects may be

helpful because some inherent patterns which are closely related to some labels may

become explicit and clearer. In this paper, we propose the MIML (Multi-Instance

Multi-Label learning) framework, where an example is described by multiple in-

stances and associated with multiple class labels.

Compared to traditional learning frameworks, the MIML framework is more conve-

nient and natural for representing complicated objects. To exploit the advantages

of the MIML representation, new learning algorithms are needed. We propose the

MimlBoost algorithm and the MimlSvm algorithm based on a simple degener-

ation strategy, and experiments show that solving problems involving complicated

objects with multiple semantic meanings under the MIML framework can lead to

good performance. Considering that the degeneration process may lose informa-

tion, we also propose the D-MimlSvm (i.e., Direct MimlSvm) algorithm which

tackles MIML problems directly in a regularization framework. Experiments show

that this “direct” algorithm outperforms the “indirect” MimlSvm algorithm.

In some practical tasks we do not have access to the real objects themselves such

as the real images and the real web pages; instead, we are given observational data

where each real object has already been represented by a single instance. Thus,

in such cases we cannot capture more information from the real objects using the

MIML representation. Even in this situation, however, MIML is still useful. We

propose the InsDif (i.e., INStance DIFferentiation) algorithm which transforms

single-instances into MIML examples for learning. This algorithm is able to achieve

a better performance than learning the single-instances directly in some tasks. This

is not strange because for an object associated with multiple class labels, if it is

described by only a single instance, the information corresponding to these labels

are mixed and thus difficult for learning; if we can transform the single-instance into

a set of instances in some proper ways, the mixed information might be detached

to some extent and thus less difficult for learning.

MIML can also be helpful for learning single-label objects. We propose the SubCod

(i.e., SUB-COncept Discovery) algorithm which works by discovering sub-concepts

of the target concept at first and then transforming the data into MIML examples
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for learning. This algorithm is able to achieve a better performance than learning

the single-label examples directly in some tasks. This is also not strange because for

a label corresponding to a high-level complicated concept, it may be quite difficult

to learn this concept directly since many different lower-level concepts are mixed;

if we can transform the single-label into a set of labels corresponding to some sub-

concepts, which are relatively clearer and easier for learning, we can learn these

labels at first and then derive the high-level complicated label based on them with

a less difficulty.

The rest of this paper is organized as follows. In Section 2, we review some related

work. In Section 3, we propose the MIML framework. In Section 4 we propose the

MimlBoost andMimlSvm algorithms, and apply them to tasks where the objects

are represented as MIML examples. In Section 5 we present the D-MimlSvm

algorithm and compare it with the “indirect” MimlSvm algorithm. In Sections 6

and 7, we study the usefulness of MIML when we do not have access to real objects.

Concretely, in Section 6, we propose the InsDif algorithm and show that using

MIML can be better than learning single-instances directly; in Section 7 we propose

the SubCod algorithm and show that using MIML can be better than learning

single-label examples directly. Finally, we conclude the paper in Section 8.

2 Related Work

Much work has been devoted to the learning of multi-label examples under the

umbrella of multi-label learning. Note that multi-label learning studies the problem

where a real-world object described by one instance is associated with a number of

class labels 1 , which is different from multi-class learning or multi-task learning [28].

In multi-class learning each object is only associated with a single label; while in

multi-task learning different tasks may involve different domains and different data

sets. Actually, traditional two-class and multi-class problems can both be cast into

multi-label problems by restricting that each instance has only one label. The

generality of multi-label problems, however, inevitably makes it more difficult to

1 Most work on multi-label learning assumes that an instance can be associated with

multiple valid labels, but there is also some work assuming that only one of the labels

among those associated with an instance is correct [35].
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address.

One famous approach to solving multi-label problems is Schapire and Singer’s

AdaBoost.MH [56], which is an extension of AdaBoost and is the core of a

successful multi-label learning system BoosTexter [56]. This approach maintains

a set of weights over both training examples and their labels in the training phase,

where training examples and their corresponding labels that are hard (easy) to

predict get incrementally higher (lower) weights. Later, De Comité et al. [22] used

alternating decision trees [30] which are more powerful than decision stumps used in

BoosTexter to handle multi-label data and thus obtained the AdtBoost.MH

algorithm. Probabilistic generative models have been found useful in multi-label

learning. McCallum [47] proposed a Bayesian approach for multi-label document

classification, where a mixture probabilistic model (one mixture component per

category) is assumed to generate each document and an EM algorithm is employed

to learn the mixture weights and the word distributions in each mixture component.

Ueda and Saito [65] presented another generative approach, which assumes that the

multi-label text has a mixture of characteristic words appearing in single-label text

belonging to each of the multi-labels. It is noteworthy that the generative models

used in [47] and [65] are both based on learning text frequencies in documents, and

are thus specific to text applications.

Many other multi-label learning algorithms have been developed, such as decision

trees, neural networks, k-nearest neighbor classifiers, support vector machines, etc.

Clare and King [21] developed a multi-label version of C4.5 decision trees through

modifying the definition of entropy. Zhang and Zhou [79] presented multi-label

neural network Bp-Mll, which is derived from the Backpropagation algorithm by

employing an error function to capture the fact that the labels belonging to an

instance should be ranked higher than those not belonging to that instance. Zhang

and Zhou [80] also proposed the Ml-knn algorithm, which identifies the k near-

est neighbors of the concerned instance and then assigns labels according to the

maximum a posteriori principle. Elisseeff and Weston [27] proposed the RankSvm

algorithm for multi-label learning by defining a specific cost function and the cor-

responding margin for multi-label models. Other kinds of multi-label Svms have

been developed by Boutell et al. [11] and Godbole and Sarawagi [33]. In partic-

ular, by hierarchically approximating the Bayes optimal classifier for the H-loss,
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Cesa-Bianchi et al. [15] proposed an algorithm which outperforms simple hierar-

chical Svms. Recently, non-negative matrix factorization has also been applied to

multi-label learning [43], and multi-label dimensionality reduction methods have

been developed [74, 85].

Roughly speaking, earlier approaches to multi-label learning attempt to divide

multi-label learning to a number of two-class classification problems [36, 72] or

transform it into a label ranking problem [27,56], while some later approaches try

to exploit the correlation between the labels [43, 65, 85].

Most studies on multi-label learning focus on text categorization [22,33,39,47,56,

65, 74], and several studies aim to improve the performance of text categorization

systems by exploiting additional information given by the hierarchical structure

of classes [14, 15, 53] or unlabeled data [43]. In addition to text categorization,

multi-label learning has also been found useful in many other tasks such as scene

classification [11], image and video annotation [38,48], bioinformatics [7,12,13,21,

27], and even association rule mining [50, 63].

There is a lot of research on multi-instance learning, which studies the problem

where a real-world object described by a number of instances is associated with a

single class label. Here the training set is composed of many bags each containing

multiple instances; a bag is labeled positively if it contains at least one positive

instance and negatively otherwise. The goal is to label unseen bags correctly. Note

that although the training bags are labeled, the labels of their instances are un-

known. This learning framework was formalized by Dietterich et al. [24] when they

were investigating drug activity prediction.

Long and Tan [44] studied the Pac-learnability of multi-instance learning and

showed that if the instances in the bags are independently drawn from product

distribution, the Apr (Axis-Parallel Rectangle) proposed by Dietterich et al. [24]

is Pac-learnable. Auer et al. [5] showed that if the instances in the bags are not

independent then Apr learning under the multi-instance learning framework is

NP-hard. Moreover, they presented a theoretical algorithm that does not require

product distribution, which was transformed into a practical algorithm named

Multinst [4]. Blum and Kalai [10] described a reduction from Pac-learning un-

der the multi-instance learning framework to Pac-learning with one-sided random
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classification noise. They also presented an algorithm with smaller sample com-

plexity than that of the algorithm of Auer et al. [5].

Many multi-instance learning algorithms have been developed during the past

decade. To name a few, Diverse Density [45] and Em-dd [83], k-nearest neigh-

bor algorithms Citation-knn and Bayesian-knn [67], decision tree algorithms

Relic [54] and Miti [9], neural network algorithms Bp-mip and extensions [77,90]

and Rbf-mip [78], rule learning algorithm Ripper-mi [20], support vector ma-

chines and kernel methods mi-Svm and Mi-Svm [3], Dd-Svm [18], MissSvm [88],

Mi-Kernel [32], Bag-Instance Kernel [19], Marginalized Mi-Kernel [42]

and convex-hull method Ch-Fd [31], ensemble algorithmsMi-Ensemble [91],Mi-

Boosting [70] and MilBoosting [6], logistic regression algorithm Mi-lr [51],

etc. Actually almost all popular machine learning algorithms have their multi-

instance versions. Most algorithms attempt to adapt single-instance supervised

learning algorithms to the multi-instance representation, by shifting their focus

from discrimination on instances to discrimination on bags [91]. Recently there

is some proposal on adapting the multi-instance representation to single-instance

algorithms by representation transformation [93].

It is worth mentioning that standard multi-instance learning [24] assumes that if

a bag contains a positive instance then the bag is positive; this implies that there

exists a key instance in a positive bag. Many algorithms were designed based on

this assumption. For example, the point with maximal diverse density identified

by the Diverse Density algorithm [45] actually corresponds to a key instance;

many Svm algorithms defined the margin of a positive bag by the margin of itsmost

positive instance [3,19]. As the research of multi-instance learning goes on, however,

some other assumptions have been introduced [29]. For example, in contrast to

assuming that there is a key instance, some work has assumed that there is no key

instance and every instance contributes to the bag label [17, 70]. There is also an

argument that the instances in the bags should not be treated independently [88].

All those assumptions have been put under the umbrella of multi-instance learning,

and generally, in tackling real tasks it is difficult to know which assumption is the

fittest. In other words, in different tasks multi-instance learning algorithms based

on different assumptions may have different superiorities.
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In the early years of the research of multi-instance learning, most work considered

multi-instance classification with discrete-valued outputs. Later, multi-instance re-

gression with real-valued outputs was studied [2,52], and different versions of gen-

eralized multi-instance learning have been defined [58, 68]. The main difference

between standard multi-instance learning and generalized multi-instance learning

is that in standard multi-instance learning there is a single concept, and a bag is

positive if it has an instance satisfying this concept; while in generalized multi-

instance learning [58, 68] there are multiple concepts, and a bag is positive only

when all concepts are satisfied (i.e., the bag contains instances from every concept).

Recently, research on multi-instance clustering [82], multi-instance semi-supervised

learning [49] and multi-instance active learning [60] have also been reported.

Multi-instance learning has also attracted the attention of the Ilp community. It

has been suggested that multi-instance problems could be regarded as a bias on

inductive logic programming, and the multi-instance paradigm could be the key be-

tween the propositional and relational representations, being more expressive than

the former, and much easier to learn than the latter [23]. Alphonse and Matwin [1]

approximated a relational learning problem by a multi-instance problem, fed the

resulting data to feature selection techniques adapted from propositional represen-

tations, and then transformed the filtered data back to relational representation for

a relational learner. Thus, the expressive power of relational representation and the

ease of feature selection on propositional representation are gracefully combined.

This work confirms that multi-instance learning can really act as a bridge between

propositional and relational learning.

Multi-instance learning techniques have already been applied to diverse applica-

tions including image categorization [17, 18], image retrieval [71, 84], text catego-

rization [3, 60], web mining [86], spam detection [37], computer security [54], face

detection [66, 76], computer-aided medical diagnosis [31], etc.

3 The MIML Framework

Let X denote the instance space and Y the set of class labels. Then, formally, the

MIML task is defined as:
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(a) Traditional supervised learning (b) Multi-instance learning

(c) Multi-label learning (d) Multi-instance multi-label learning

Fig. 1. Four different learning frameworks

• MIML (multi-instance multi-label learning): To learn a function f : 2X → 2Y

from a given data set {(X1, Y1), (X2, Y2), · · · , (Xm, Ym)}, where Xi ⊆ X is a set

of instances {xi1,xi2, · · · ,xi,ni
}, xij ∈ X (j = 1, 2, · · · , ni), and Yi ⊆ Y is a

set of labels {yi1, yi2, · · · , yi,li}, yik ∈ Y (k = 1, 2, · · · , li). Here ni denotes the

number of instances in Xi and li the number of labels in Yi.

It is interesting to compare MIML with the existing frameworks of traditional

supervised learning, multi-instance learning, and multi-label learning.

• Traditional supervised learning (single-instance single-label learning): To

learn a function f : X → Y from a given data set {(x1, y1), (x2, y2), · · · , (xm, ym)},
where xi ∈ X is an instance and yi ∈ Y is the known label of xi.

• Multi-instance learning (multi-instance single-label learning): To learn a func-

tion f : 2X → Y from a given data set {(X1, y1), (X2, y2), · · · , (Xm, ym)}, where
Xi ⊆ X is a set of instances {xi1,xi2, · · · ,xi,ni

}, xij ∈ X (j = 1, 2, · · · , ni), and

yi ∈ Y is the label of Xi.
2 Here ni denotes the number of instances in Xi.

2 According to notions used in multi-instance learning, (Xi, yi) is a labeled bag while Xi

an unlabeled bag.
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• Multi-label learning (single-instance multi-label learning): To learn a function

f : X → 2Y from a given data set {(x1, Y1), (x2, Y2), · · · , (xm, Ym)}, where

xi ∈ X is an instance and Yi ⊆ Y is a set of labels {yi1, yi2, · · · , yi,li}, yik ∈ Y
(k = 1, 2, · · · , li). Here li denotes the number of labels in Yi.

From Fig. 1 we can see the differences among these learning frameworks. In fact,

the multi- learning frameworks are resulted from the ambiguities in representing

real-world objects. Multi-instance learning studies the ambiguity in the input space

(or instance space), where an object has many alternative input descriptions, i.e.,

instances; multi-label learning studies the ambiguity in the output space (or label

space), where an object has many alternative output descriptions, i.e., labels; while

MIML considers the ambiguities in both the input and output spaces simultane-

ously. In solving real-world problems, having a good representation is often more

important than having a strong learning algorithm, because a good representa-

tion may capture more meaningful information and make the learning task easier

to tackle. Since many real objects are inherited with input ambiguity as well as

output ambiguity, MIML is more natural and convenient for tasks involving such

objects.

It is worth mentioning that MIML is more reasonable than (single-instance) multi-

label learning in many cases. Suppose a multi-label object is described by one

instance but associated with l number of class labels, namely label1, label2, . . .,

labell. If we represent the multi-label object using a set of n instances, namely

instance1, instance2, . . ., instancen, the underlying information in a single instance

may become easier to exploit, and for each label the number of training instances

can be significantly increased. So, transforming multi-label examples to MIML

examples for learning may be beneficial in some tasks, which will be shown in Sec-

tion 6. Moreover, when representing the multi-label object using a set of instances,

the relation between the input patterns and the semantic meanings may become

more easily discoverable. Note that in some cases, understanding why a particular

object has a certain class label is even more important than simply making an

accurate prediction, while MIML offers a possibility for this purpose. For exam-

ple, under the MIML representation, we may discover that one object has label1

because it contains instancen; it has labell because it contains instancei; while the

occurrence of both instance1 and instancei triggers labelj .
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(a) Africa is a complicated high-level concept

(b) The concept Africa may become easier to learn through exploiting some sub-concepts

Fig. 2. MIML can be helpful in learning single-label examples involving complicated

high-level concepts

MIML can also be helpful for learning single-label examples involving complicated

high-level concepts. For example, as Fig. 2(a) shows, the concept Africa has a

broad connotation and the images belonging to Africa have great variance, thus it

is not easy to classify the top-left image in Fig. 2(a) into the Africa class correctly.

However, if we can exploit some low-level sub-concepts that are less ambiguous

and easier to learn, such as tree, lions, elephant and grassland shown in Fig. 2(b),

it is possible to induce the concept Africa much easier than learning the concept

Africa directly. The usefulness of MIML in this process will be shown in Section 7.
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Fig. 3. The two general degeneration solutions.

4 Solving MIML Problems by Degeneration

It is evident that traditional supervised learning is a degenerated version of multi-

instance learning as well as a degenerated version of multi-label learning, while

traditional supervised learning, multi-instance learning and multi-label learning

are all degenerated versions of MIML. So, a simple idea to tackle MIML is to

identify its equivalence in the traditional supervised learning framework, using

multi-instance learning or multi-label learning as the bridge, as shown in Fig. 3.

• Solution A: Using multi-instance learning as the bridge:

The MIML learning task, i.e., to learn a function f : 2X → 2Y , can be

transformed into a multi-instance learning task, i.e., to learn a function fMIL :

2X × Y → {−1,+1}. For any y ∈ Y , fMIL(Xi, y) = +1 if y ∈ Yi and −1
otherwise. The proper labels for a new example X∗ can be determined accord-

ing to Y ∗ = {y|sign[fMIL(X
∗, y)] = +1}. This multi-instance learning task

can be further transformed into a traditional supervised learning task, i.e., to

learn a function fSISL : X × Y → {−1,+1}, under a constraint specifying

how to derive fMIL(Xi, y) from fSISL(xij, y) (j = 1, 2, · · · , ni). For any y ∈ Y ,
fSISL(xij, y) = +1 if y ∈ Yi and −1 otherwise. Here the constraint can be

fMIL(Xi, y) = sign[
∑ni

j=1 fSISL(xij, y)] which has been used by Xu and Frank [70]

in transforming multi-instance learning tasks into traditional supervised learning

tasks. Note that other kinds of constraint can also be used here.

• Solution B: Using multi-label learning as the bridge:

The MIML learning task, i.e., to learn a function f : 2X → 2Y , can be trans-

formed into a multi-label learning task, i.e., to learn a function fMLL : Z → 2Y .

For any zi ∈ Z, fMLL(zi) = fMIML(Xi) if zi = φ(Xi), φ : 2X → Z. The proper
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labels for a new example X∗ can be determined according to Y ∗ = fMLL(φ(X
∗)).

This multi-label learning task can be further transformed into a traditional su-

pervised learning task, i.e., to learn a function fSISL : Z × Y → {−1,+1}. For
any y ∈ Y , fSISL(zi, y) = +1 if y ∈ Yi and −1 otherwise. That is, fMLL(zi) =

{y|fSISL(zi, y) = +1}. Here the mapping φ can be implemented with construc-

tive clustering which was proposed by Zhou and Zhang [93] in transforming

multi-instance bags into traditional single-instances. Note that other kinds of

mappings can also be used here.

In the rest of this section we will propose two MIML algorithms, MimlBoost

and MimlSvm. MimlBoost is an illustration of Solution A, which uses category-

wise decomposition for the A1 step in Fig. 3 and MiBoosting for A2; MimlSvm

is an illustration of Solution B, which uses clustering-based representation trans-

formation for the B1 step and MlSvm for B2. Other MIML algorithms can be

developed by taking alternative options. Both MimlBoost and MimlSvm are

quite simple. We will see that for dealing with complicated objects with multiple

semantic meanings, good performance can be obtained under the MIML framework

even by using such simple algorithms. This demonstrates that the MIML frame-

work is very promising, and we expect better performance can be achieved in the

future if researchers put forward more powerful MIML algorithms.

4.1 MimlBoost

Now we propose the MimlBoost algorithm according to the first solution men-

tioned above, that is, identifying the equivalence in the traditional supervised learn-

ing framework using multi-instance learning as the bridge. Note that this strategy

can also be used to derive other kinds of MIML algorithms.

Given any set Ω, let |Ω| denote its size, i.e., the number of elements in Ω; given

any predicate π, let [[π]] be 1 if π holds and 0 otherwise; given (Xi, Yi), for any

y ∈ Y , let Ψ(Xi, y) = +1 if y ∈ Yi and −1 otherwise, where Ψ is a function

Ψ : 2X × Y → {−1,+1} which judges whether a label y is a proper label of Xi

or not. The basic assumption of MimlBoost is that the labels are independent
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so that the MIML task can be decomposed into a series of multi-instance learning

tasks to solve, by treating each label as a task. The pseudo-code of MimlBoost

is summarized in Appendix A (Table A.1).

In the first step of MimlBoost, each MIML example (Xu, Yu) (u = 1, 2, · · · , m) is

transformed into a set of |Y| number of multi-instance bags, i.e., {[(Xu, y1),Ψ(Xu, y1)],

[(Xu, y2),Ψ(Xu, y2)], · · · , [(Xu, y|Y|), Ψ(Xu, y|Y|)]}. Note that [(Xu, yv),Ψ(Xu, yv)]

(v = 1, 2, · · · , |Y|) is a labeled multi-instance bag where (Xu, yv) is a bag con-

taining nu number of instances, i.e., {(xu1, yv), (xu2, yv), · · · , (xu,nu
, yv)}, and

Ψ(Xu, yv) ∈ {−1,+1} is the label of this bag.

Thus, the original MIML data set is transformed into a multi-instance data set

containing m × |Y| number of bags. We order them as [(X1, y1),Ψ(X1, y1)], · · · ,
[(X1, y|Y|),Ψ(X1, y|Y|)], [(X2, y1),Ψ(X2, y1)], · · · , [(Xm, y|Y|), Ψ(Xm, y|Y|)], and let

[(X(i), y(i)),Ψ(X(i), y(i))] denote the i-th of these m × |Y| number of bags which

contains ni number of instances.

Then, from the data set a multi-instance learning function fMIL can be learned,

which can accomplish the desired MIML function because fMIML(X
∗) = {y|sign

[fMIL(X
∗, y)] = +1}. In this paper, the MiBoosting algorithm [70] is used to

implement fMIL. Note that by using MiBoosting, the MimlBoost algorithm

assumes that all instances in a bag contribute independently in an equal way to

the label of that bag.

For convenience, let (B, g) denote the bag [(X, y),Ψ(X, y)], B ∈ B, g ∈ G, and E

denotes the expectation. Then, here the goal is to learn a function F(B) minimizing

the bag-level exponential loss EBEG|B[exp(−gF(B))], which ultimately estimates

the bag-level log-odds function 1
2
log Pr(g=1|B)

Pr(g=−1|B)
on the training set. In each boosting

round, the aim is to expand F(B) into F(B) + cf(B), i.e., adding a new weak

classifier, so that the exponential loss is minimized. Assuming that all instances in

a bag contribute equally and independently to the bag’s label, f(B) = 1
nB

∑

j h(bj)

can be derived, where h(bj) ∈ {−1,+1} is the prediction of the instance-level

classifier h(·) for the j-th instance of the bag B, and nB is the number of instances

in B.

It has been shown by [70] that the best f(B) to be added can be achieved by seek-
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ing h(·) which maximizes
∑

i

∑ni

j=1[
1
ni
W (i)g(i)h(b

(i)
j )], given the bag-level weights

W = exp(−gF(B)). By assigning each instance the label of its bag and the corre-

sponding weight W (i)/ni, h(·) can be learned by minimizing the weighted instance-

level classification error. This actually corresponds to the Step 3a of MimlBoost.

When f(B) is found, the best multiplier c > 0 can be got by directly optimizing

the exponential loss:

EBEG|B[exp(−gF(B) + c(−gf(B)))]=
∑

i
W (i) exp



c



−g
(i)∑

j h(b
(i)
j )

ni









=
∑

i
W (i) exp[(2e(i) − 1)c] , (1)

where e(i) = 1
ni

∑

j[[(h(b
(i)
j ) 6= g(i))]] (computed in Step 3b). Minimization of this ex-

pectation actually corresponds to Step 3d, where numeric optimization techniques

such as quasi-Newton method can be used. Note that in Step 3c if e(i) ≥ 0.5, the

Boosting process will stop [89]. Finally, the bag-level weights are updated in Step

3f according to the additive structure of F(B).

4.2 MimlSvm

Now we propose the MimlSvm algorithm according to the second solution men-

tioned before, that is, identifying the equivalence in the traditional supervised

learning framework using multi-label learning as the bridge. Note that this strat-

egy can also be used to derive other kinds of MIML algorithms.

Again, given any set Ω, let |Ω| denote its size, i.e., the number of elements in Ω;

given (Xi, Yi) and zi = φ(Xi) where φ : 2X → Z, for any y ∈ Y , let Φ(zi, y) = +1

if y ∈ Yi and −1 otherwise, where Φ is a function Φ : Z×Y → {−1,+1}. The basic
assumption of MimlSvm is that the spatial distribution of the bags carries relevant

information, and information helpful for label discrimination can be discovered by

measuring the closeness between each bag and the representative bags identified

through clustering. The pseudo-code of MimlSvm is summarized in Appendix A

(Table A.2).

In the first step of MimlSvm, the Xu of each MIML example (Xu, Yu) (u =

1, 2, · · · , m) is collected and put into a data set Γ. Then, in the second step, k-

medoids clustering is performed on Γ. Since each data item in Γ, i.e. Xu, is an
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unlabeled multi-instance bag instead of a single instance, Hausdorff distance [26]

is employed to measure the distance. The Hausdorff distance is a famous metric

for measuring the distance between two bags of points, which has often been used

in computer vision tasks; other techniques that can measure the distance between

bags of points, such as the set kernel [32], can also be used here. In detail, given

two bags A = {a1,a2, · · · ,anA
} and B = {b1, b2, · · · , bnB

}, the Hausdorff distance

between A and B is defined as

dH(A,B) = max{max
a∈A

min
b∈B
‖a− b‖,max

b∈B
min
a∈A
‖b− a‖} , (2)

where ‖a− b‖ measures the distance between the instances a and b, which takes

the form of Euclidean distance here.

After the clustering process, the data set Γ is divided into k partitions, whose

medoids are Mt (t = 1, 2, · · · , k), respectively. With the help of these medoids,

the original multi-instance example Xu is transformed into a k-dimensional nu-

merical vector zu, where the i-th (i = 1, 2, · · · , k) component of zu is the dis-

tance between Xu and Mi, that is, dH(Xu,Mi). In other words, zui encodes some

structure information of the data, that is, the relationship between Xu and the

i-th partition of Γ. This process reassembles the constructive clustering process

used by Zhou and Zhang [93] in transforming multi-instance examples into single-

instance examples except that in [93] the clustering is executed at the instance

level while here it is executed at the bag level. Thus, the original MIML exam-

ples (Xu, Yu) (u = 1, 2, · · · , m) have been transformed into multi-label examples

(zu, Yu) (u = 1, 2, · · · , m), which corresponds to the Step 3 of MimlSvm.

Then, from the data set a multi-label learning function fMLL can be learned, which

can accomplish the desired MIML function because fMIML(X
∗) = fMLL(z

∗). In

this paper, the MlSvm algorithm [11] is used to implement fMLL. Concretely,

MlSvm decomposes the multi-label learning problem into multiple independent

binary classification problems (one per class), where each example associated with

the label set Y is regarded as a positive example when building Svm for any

class y ∈ Y , while regarded as a negative example when building Svm for any

class y /∈ Y , as shown in the Step 4 of MimlSvm. In making predictions, the T-

Criterion [11] is used, which actually corresponds to the Step 5 of the MimlSvm

algorithm. That is, the test example is labeled by all the class labels with positive
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Svm scores, except that when all the Svm scores are negative, the test example is

labeled by the class label which is with the top (least negative) score.

4.3 Experiments

4.3.1 Multi-Label Evaluation Criteria

In traditional supervised learning where each object has only one class label, ac-

curacy is often used as the performance evaluation criterion. Typically, accuracy

is defined as the percentage of test examples that are correctly classified. When

learning with complicated objects associated with multiple labels simultaneously,

however, accuracy becomes less meaningful. For example, if approach A missed one

proper label while approach B missed four proper labels for a test example having

five labels, it is obvious that A is better than B, but the accuracy of A and B may

be identical because both of them incorrectly classified the test example.

Five criteria are often used for evaluating the performance of learning with multi-

label examples [56,92]; they are hamming loss, one-error, coverage, ranking loss and

average precision. Using the same denotation as that in Sections 3 and 4, given

a test set S = {(X1, Y1), (X2, Y2), · · · , (Xp, Yp)}, these five criteria are defined as

below. Here, h(Xi) returns a set of proper labels of Xi; h(Xi, y) returns a real-value

indicating the confidence for y to be a proper label of Xi; rank
h(Xi, y) returns the

rank of y derived from h(Xi, y).

• hlossS(h) =
1
p

∑p
i=1

1
|Y| |h(Xi)∆Yi|, where ∆ stands for the symmetric difference

between two sets. The hamming loss evaluates how many times an object-

label pair is misclassified, i.e., a proper label is missed or a wrong label is pre-

dicted. The performance is perfect when hlossS(h) = 0; the smaller the value of

hlossS(h), the better the performance of h.

• one-errorS(h) =
1
p

∑p
i=1[[[arg maxy∈Y h(Xi, y)] /∈ Yi]]. The one-error evaluates how

many times the top-ranked label is not a proper label of the object. The perfor-

mance is perfect when one-errorS(h) = 0; the smaller the value of one-errorS(h),

the better the performance of h.
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• coverageS(h) =
1
p

∑p
i=1maxy∈Yi

rankh(Xi, y)− 1. The coverage evaluates how far

it is needed, on the average, to go down the list of labels in order to cover all

the proper labels of the object. It is loosely related to precision at the level of

perfect recall. The smaller the value of coverageS(h), the better the performance

of h.

• rlossS(h) = 1
p

∑p
i=1

1
|Yi||Y i|

|{(y1, y2)|h(Xi, y1) ≤ h(Xi, y2), (y1, y2) ∈ Yi × Yi}|,
where Yi denotes the complementary set of Yi in Y . The ranking loss evaluates

the average fraction of label pairs that are misordered for the object. The per-

formance is perfect when rlossS(h) = 0; the smaller the value of rlossS(h), the

better the performance of h.

• avgprecS(h) =
1
p

∑p
i=1

1
|Yi|

∑

y∈Yi

|{y′ |rankh(Xi,y
′
)≤rankh(Xi,y), y

′∈Yi}|
rankh(Xi,y)

. The average pre-

cision evaluates the average fraction of proper labels ranked above a particular

label y ∈ Yi. The performance is perfect when avgprecS(h) = 1; the larger the

value of avgprecS(h), the better the performance of h.

In addition to the above criteria, we design two new multi-label criteria, average

recall and average F1, as below.

• avgreclS(h) =
1
p

∑p
i=1

|{y|rankh(Xi,y)≤|h(Xi)|, y∈Yi}|
|Yi| . The average recall evaluates the

average fraction of proper labels that have been predicted. The performance is

perfect when avgreclS(h) = 1; the larger the value of avgreclS(h), the better the

performance of h.

• avgF1S(h) =
2×avgprec

S
(h)×avgrecl

S
(h)

avgprec
S
(h)+avgrecl

S
(h)

. The average F1 expresses a tradeoff be-

tween the average precision and the average recall. The performance is perfect

when avgF1S(h) = 1; the larger the value of avgF1S(h), the better the perfor-

mance of h.

Note that since the above criteria measure the performance from different aspects,

it is difficult for one algorithm to outperform another on every one of these criteria.

In the following we study the performance of MIML algorithms on two tasks in-

volving complicated objects with multiple semantic meanings. We will show that

for such tasks, MIML is a good choice, and good performance can be achieved even
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by using simple MIML algorithms such as MimlBoost and MimlSvm.

4.3.2 Scene Classification

The scene classification data set consists of 2,000 natural scene images belonging to

the classes desert, mountains, sea, sunset and trees. Over 22% of the images belong

to multiple classes simultaneously. Each image has already been represented as a

bag of nine instances generated by the Sbn method [46], which uses a Gaussian

filter to smooth the image and then subsamples the image to an 8 × 8 matrix of

color blobs where each blob is a 2× 2 set of pixels within the matrix. An instance

corresponds to the combination of a single blob with its four neighboring blobs

(up, down, left, right), which is described with 15 features. The first three features

represent the mean R, G, B values of the central blob and the remaining twelve

features express the differences in mean color values between the central blob and

other four neighboring blobs respectively. 3

We evaluate the performance of the MIML algorithmsMimlBoost andMimlSvm.

Note that MimlBoost and MimlSvm are merely proposed to illustrate the two

general degeneration solutions to MIML problems shown in Fig. 3. We do not claim

that they are the best algorithms that can be developed through the degenera-

tion paths. There may exist other processes for transforming MIML examples into

multi-instance single-label (MISL) examples or single-instance multi-label (SIML)

examples. Even by using the same degeneration process as that used in Miml-

Boost and MimlSvm, there are also many alternatives to realize the second step.

For example, by using mi-Svm [3] to replace the MiBoosting used in Miml-

Boost and by using the two-layer neural network structure [81] to replace the

MlSvm used in MimlSvm, we get MimlSvmmi and MimlNn respectively. Their

performance is also evaluated in our experiments.

We compare the MIML algorithms with several state-of-the-art algorithms for

learning with multi-label examples, including AdtBoost.MH [22], RankSvm

[27], MlSvm [11] and Ml-knn [80]; these algorithms have been introduced briefly

in Section 2. Note that these are single-instance algorithms that regard each image

as a 135-dimensional feature vector, which is obtained by concatenating the nine

3 The data set is available at http://lamda.nju.edu.cn/data MIMLimage.ashx.
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instances in the direction from upper-left to right-bottom.

The parameter configurations of RankSvm, MlSvm and Ml-knn are set by con-

sidering the strategies adopted in [27], [11] and [80] respectively. For RankSvm,

polynomial kernel is used where polynomial degrees of 2 to 9 are considered as

in [27] and chosen by hold-out tests on training sets. For MlSvm, Gaussian kernel

is used. For Ml-knn, the number of nearest neighbors considered is set to 10.

The boosting rounds of AdtBoost.MH and MimlBoost are set to 25 and 50,

respectively; The performance of the two algorithms at different boosting rounds

is shown in Appendix B (Fig. B.1), it can be observed that at those rounds the

performance of the algorithms have become stable. Gaussian kernel Libsvm [16]

is used for the Step 3a of MimlBoost. The MimlSvm and MimlSvmmi are also

realized with Gaussian kernels. The parameter k of MimlSvm is set to be 20% of

the number of training images; The performance of this algorithm with different k

values is shown in Appendix B (Fig. B.2), it can be observed that the setting of k

does not significantly affect the performance of MimlSvm. Note that in Appendix

B (Figs. B.1 and B.2) we plot 1−average precision, 1−average recall and 1−average
F1 such that in all the figures, the lower the curve, the better the performance.

Here in the experiments, 1,500 images are used as training examples while the

remaining 500 images are used for testing. Experiments are repeated for thirty runs

by using random training/test partitions, and the average and standard deviation

are summarized in Table 1, 4 where the best performance on each criterion has

been highlighted in boldface.

Pairwise t-tests with 95% significance level disclose that all the MIML algorithms

are significantly better than AdtBoost.MH and MlSvm on all the seven eval-

uation criteria. This is impressive since as mentioned before, these evaluation cri-

teria measure the learning performance from different aspects and one algorithm

rarely outperforms another algorithm on all criteria. MimlSvm and MimlSvmmi

are both significantly better than RankSvm on all the evaluation criteria, while

MimlBoost and MimlNn are both significantly better than RankSvm on the

4 For the shared implementation of AdtBoost.MH (http://www.grappa.univ-lille3.fr/

grappa/en index.php3?info=software), ranking loss, average recall and average F1 are

not available in the program’s outputs.
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Table 1
Results (mean±std.) on scene classification data set (‘↓’ indicates ‘the smaller the better’;
‘↑’ indicates ‘the larger the better’)

Compared
Evaluation Criteria

Algorithms
hloss ↓ one-error ↓ coverage ↓ rloss ↓ aveprec ↑ averecl ↑ aveF1 ↑

MimlBoost .193±.007 .347±.019 .984±.049 .178±.011 .779±.012 .433±.027 .556±.023

MimlSvm 189±.009 .354±.022 1.087±.047 .201±.011 .765±.013 .556±.020 .644±.018

MimlSvmmi .195±.008 .317±.018 1.068±.052 .197±.011 .783±.011 .587±.019 .671±.015

MimlNn .185±.008 .351±.026 1.057±.054 .196±.013 .771±.015 .509±.022 .613±.020

AdtBoost.MH .211±.006 .436±.019 1.223±.050 N/A .718±.012 N/A N/A

RankSvm .210±.024 .395±.075 1.161±.154 .221±.040 .746±.044 .529±.068 .620±.059

MlSvm .232±.004 .447±.023 1.217±.054 .233±.012 .712±.013 .073±.010 .132±.017

Ml-knn .191±.006 .370±.017 1.085±.048 .203±.010 .759±.011 .407±.026 .529±.023

first five criteria. MimlNn is significantly better than Ml-knn on all the eval-

uation criteria. Both MimlBoost and MimlSvmmi are significantly better than

Ml-knn on all criteria except hamming loss. MimlSvm is significantly better than

Ml-knn on one-error, average precision, average recall and average F1, while there

are ties on the other criteria. Moreover, note that the best performance on all eval-

uation criteria are always attained by MIML algorithms. Overall, comparison on

the scene classification task shows that the MIML algorithms can be significantly

better than the non-MIML algorithms; this validates the powerfulness of the MIML

framework.

4.3.3 Text Categorization

The Reuters-21578 data set is used in this experiment. The seven most frequent

categories are considered. After removing documents that do not have labels or

main texts, and randomly removing some documents that have only one label,

a data set containing 2,000 documents is obtained, where over 14.9% documents

have multiple labels. Each document is represented as a bag of instances according

to the method used in [3]. Briefly, the instances are obtained by splitting each

document into passages using overlapping windows of maximal 50 words each. As

a result, there are 2,000 bags and the number of instances in each bag varies from

2 to 26 (3.6 on average). The instances are represented based on term frequency.

The words with high frequencies are considered, excluding “function words” that
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Table 2
Results (mean±std.) on text categorization data set (‘↓’ indicates ‘the smaller the better’;
‘↑’ indicates ‘the larger the better’)

Compared
Evaluation Criteria

Algorithms
hloss ↓ one-error ↓ coverage ↓ rloss ↓ aveprec ↑ averecl ↑ aveF1 ↑

MimlBoost .053±.004 .094±.014 .387±.037 .035±.005 .937±.008 .792±.010 .858±.008

MimlSvm .033±.003 .066±.011 .313±.035 .023±.004 .956±.006 .925±.010 .940±.008

MimlSvmmi .041±.004 .055±.009 .284±.030 .020±.003 .965±.005 .921±.012 .942±.007

MimlNn .038±.002 .080±.010 .320±.030 .025±.003 .950±.006 .834±.011 .888±.008

AdtBoost.MH .055±.005 .120±.017 .409±.047 N/A .926±.011 N/A N/A

RankSvm .120±.013 .196±.126 .695±.466 .085±.077 .868±.092 .411±.059 .556±.068

MlSvm .050±.003 .081±.011 .329±.029 .026±.003 .949±.006 .777±.016 .854±.011

Ml-knn .049±.003 .126±.012 .440±.035 .045±.004 .920±.007 .821±.021 .867±.013

have been removed from the vocabulary using the Smart stop-list [55]. It has been

found that based on document frequency, the dimensionality of the data set can

be reduced to 1-10% without loss of effectiveness [73]. Thus, we use the top 2%

frequent words, and therefore each instance is a 243-dimensional feature vector. 5

The parameter configurations of RankSvm, MlSvm and Ml-knn are set in the

same way as in Section 4.3.2. The boosting rounds of AdtBoost.MH and Miml-

Boost are set to 25 and 50, respectively. Linear kernels are used. The parameter k

of MimlSvm is set to be 20% of the number of training images. The single-instance

algorithms regard each document as a 243-dimensional feature vector which is

obtained by aggregating all the instances in the same bag; this is equivalent to

represent the document using a sole term frequency feature vector.

Here in the experiments, 1,500 documents are used as training examples while

the remaining 500 documents are used for testing. Experiments are repeated for

thirty runs by using random training/test partitions, and the average and standard

deviation are summarized in Table 2, where the best performance on each criterion

has been highlighted in boldface.

Pairwise t-tests with 95% significance level disclose that, impressively, bothMimlSvm

andMimlSvmmi are significantly better than all the non-MIML algorithms.MimlNn

is significantly better than AdtBoost.MH, RankSvm, and Ml-knn on all the

5 The data set is available at http://lamda.nju.edu.cn/data MIMLtext.ashx
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evaluation criteria; significantly better than MlSvm on hamming loss, average

recall and average F1 while there are ties on the other criteria. MimlBoost is

significantly better than AdtBoost.MH on all criteria except that there is a tie

on hamming loss ; significantly better than RankSvm on all criteria; significantly

better thanMlSvm on average recall and there is a tie on average F1 ; significantly

better than Ml-knn on one-error, coverage, ranking loss and average precision.

Moreover, note that the best performance on all evaluation criteria are always at-

tained by MIML algorithms. Overall, comparison on the text categorization task

shows that the MIML algorithms are better than the non-MIML algorithms; this

validates the powerfulness of the MIML framework.

5 Solving MIML Problems by Regularization

The degeneration methods presented in Section 4 may lose information during the

degeneration process, and thus a “direct” MIML algorithm is desirable. In this

section we propose a regularization method for MIML. In contrast to MimlSvm

and MimlSvmmi, this method is developed from the regularization framework

directly and so we call it D-MimlSvm. The basic assumption of D-MimlSvm

is that the labels associated to the same example have some relatedness, and the

performance of classifying the bags depends on the loss between the labels and

the predictions on the bags as well as on the constituent instances. Moreover,

considering that for any class label the number of positive examples is smaller than

that of negative examples, this method incorporates a mechanism to deal with

class imbalance. We employ the constrained concave-convex procedure (Cccp)

which has well-studied convergence properties [62] to solve the resultant non-convex

optimization problem. We also present a cutting plane algorithm that finds the

solution efficiently.

5.1 The Loss Function

Given a set of MIML training examples {(X1, Y1), (X2, Y2), · · · , (Xm, Ym)}, the goal
of D-MimlSvm is to learn a mapping f : 2X → 2Y where the proper label set for

each bag X ⊆ X corresponds to f (X) ⊆ Y . Specifically, D-MimlSvm chooses to

instantiate f with T functions, i.e. f = (f1, f2, · · · , fT ), where T is the number of
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labels in the label space Y = {l1, l2, · · · , lT}. Here, the t-th function ft : 2
X → R

determines the belongingness of lt for X , i.e. f (X) = {lt | ft(X) > 0, 1 ≤ t ≤ T}.
In addition, each single instance x ∈ X in a bag X can be viewed as a bag {x}
containing only one instance, such that f ({x}) = (f1({x}), f2({x}), · · · , fT ({x}))
is also a well-defined function. For convenience, f ({x}) and ft({x}) are simplified

as f (x) and ft(x) in the rest of this section.

To train the component functions ft (1 ≤ t ≤ T ) in f , D-MimlSvm employs the

following empirical loss function V involving two terms (balanced by λ):

V ({Xi}mi=1, {Yi}mi=1, f ) = V1({Xi}mi=1, {Yi}mi=1, f ) + λ · V2({Xi}mi=1, f ) (3)

Here, the first term V1 considers the loss between the ground-truth label set of

each training bag Xi, i.e. Yi, to its predicted label set, i.e. f (Xi). Let yit = 1 if

lt ∈ Yi holds (1 ≤ i ≤ m, 1 ≤ t ≤ T ). Otherwise, yit = −1. Furthermore, let

(z)+ = max(0, z) denote the hinge loss function. Accordingly, the first loss term V1

is defined as:

V1({Xi}mi=1, {Yi}mi=1, f ) =
1

mT

m∑

i=1

T∑

t=1

(1− yitft(Xi))+ (4)

The second term V2 considers the loss between f (Xi) and the predictions of Xi’s

constituent instances, i.e. {f (xij) | 1 ≤ j ≤ ni}, which reflects the relation-

ships between the bag Xi and its instances {xi1,xi2, · · · ,xi,ni
}. Here, the com-

mon assumption in multi-instance learning is that the strength for Xi to hold a

label is equal to the maximum strength for its instances to hold the label, i.e.

ft(Xi) = max
j=1,··· ,ni

ft(xij).
6 Accordingly, the second loss term V2 is defined as:

V2({Xi}mi=1, f ) =
1

mT

m∑

i=1

T∑

t=1

l
(

ft(Xi), max
j=1,··· ,ni

ft(xij)
)

(5)

Here, l(v1, v2) can be defined in various ways and is set to be the l1 loss in this

paper, i.e. l(v1, v2) = |v1 − v2|. By combining Eq. 4 and Eq. 5, the empirical loss

function V in Eq. 3 is then specified as:

6 Note that this assumption may be restrictive to some extent. There are many cases

where the label of the bag does not rely on the instance with the maximum predictions,

as discussed in Section 2. In addition, in classification only the sign of prediction is

important [19], i.e. sign(ft(Xi)) = sign( max
j=1,··· ,ni

ft(xij)). However, in this paper the

above common assumption is still adopted due to its popularity and simplicity.
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V ({Xi}mi=1, {Yi}mi=1, f )=
1

mT

m∑

i=1

T∑

t=1

(1− yitft(Xi))+

+
λ

mT

m∑

i=1

T∑

t=1

l
(

ft(Xi), max
j=1,··· ,ni

ft(xij)
)

(6)

5.2 Representer Theorem for MIML

For simplicity, we assume that each function ft is a linear model, i.e., ft(x) =

〈wt, φ(x)〉 where φ is the feature map induced by a kernel function k and 〈·, ·〉 de-
notes the standard inner product in the Reproducing Kernel Hilbert Space (RKHS)

H induced by the kernel k. We recall that an instance can be regarded as a bag

containing only one instance, so the kernel k can be any kernel defined on a set of

instances, such as the set kernel [32]. In the case of classification, objects (bags or

instances) are classified according to the sign of ft.

D-MimlSvm assumes that the labels associated with a bag should have some re-

latedness; otherwise they should not be associated with the bag simultaneously. To

reflect this basic assumption, D-MimlSvm regularizes the empirical loss function

in Eq. 6 with an additional term Ω(f ):

Ω(f ) + γ · V ({Xi}mi=1, {Yi}mi=1, f ) (7)

Here, γ is a regularization parameter balancing the model complexity Ω(f ) and

the empirical risk V . Inspired by [28], we assume that the relatedness among the

labels can be measured by the mean function w0,

w0 =
1

T

T∑

t=1

wt (8)

The original idea in [28] is to minimize
∑T

t=1 ||wt−w0||2 and meanwhile minimize

||w0||2, i.e. to set the regularizer as:

Ω(f ) =
1

T

T∑

t=1

||wt −w0||2 + η||w0||2 (9)

According to Eq.8, the first term in the RHS of Eq. 9 can be rewritten as:

1

T

T∑

t=1

‖wt −w0‖2 =
1

T

T∑

t=1

‖wt‖2 − ‖w0‖2 (10)
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Therefore, by substituting Eq. 10 into Eq. 9, the regularizer can be simplified as:

Ω(f ) =
1

T

T∑

t=1

||wt||2 + µ||w0||2 (11)

Further note that ‖wt‖2 = ‖ft‖2H and ‖w0‖2 = ‖
∑T

t=1
ft

T
‖2H, by substituting Eq. 11

into Eq. 7, we have the regularization framework of D-MimlSvm as follows:

min
f∈H

1

T

T∑

t=1

‖ft‖2H + µ‖
∑T

t=1 ft
T
‖2H + γ · V ({Xi}mi=1, {Yi}mi=1, f ) (12)

Here, µ is a parameter to trade off the discrepancy and commonness among the

labels, that is, how similar or dissimilar the wt’s are. Refer to Eq. 10, we have

Ω(f ) = 1
T

∑T
t=1 ‖ft‖2H + µ‖

∑T

t=1
ft

T
‖2H = 1

T

∑T
t=1 ‖ft−

∑T

t=1
ft

T
‖2H + (µ+1)‖

∑T

t=1
ft

T
‖2H.

Intuitively, when µ+1 (or µ) is large, minimization of Eq. 12 will force ‖
∑T

t=1
ft

T
‖2H

to tend to be zero and the discrepancy among the labels becomes more important;

when µ+1 (or µ) is small, minimization of Eq. 12 will force ‖ft−
∑T

t=1
ft

T
‖2H to tend

to be zero and the commonness among the labels becomes more important [28].

Given the above setup, we can prove the following representer theorem.

Theorem 1 The minimizer of the optimization problem 12 admits an expansion

ft(x) =
m∑

i=1



αt,i0k (x, Xi) +
ni∑

j=1

αt,ijk(x,xij)





where all αt,i0, αt,ij ∈ R.

Proof. Analogous to [28], we first introduce a combined feature map

Ψ (x, t) =






φ(x)√
r
, 0, · · · , 0
︸ ︷︷ ︸

t−1

, φ(x), 0, · · · , 0
︸ ︷︷ ︸

T−t






and its decision function, i.e., f̂(x, t) = 〈ŵ,Ψ(x, t)〉 where

ŵ = (
√
rw0,w1 −w0, · · · ,wT −w0).

Here r = µT + T . Let k̂ denote the kernel function induced by Ψ and Ĥ is its

corresponding RKHS. We have Eqs. 13 and 14.

f̂(x, t) = 〈ŵ,Ψ(x, t)〉 = 〈(w0 +wt −w0), φ(x)〉 = 〈wt, φ(x)〉 = ft(x) (13)
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‖f̂‖2Ĥ = ||ŵ||2 =
T∑

i=1

||wt −w0||2 + r||w0||2 =
T∑

i=1

||wt||2 + µT ||w0||2 (14)

Therefore, loss function in Eq.6 can be represented by V̂ ({Xi}mi=1, {Yi}mi=1, f̂), i.e.,

V̂ ({Xi}mi=1, {Yi}mi=1, f̂)=
1

mT

m∑

i=1

T∑

t=1

(

1− yitf̂ (Xi, t)
)

+

+
λ

mT

m∑

i=1

T∑

t=1

l
(

f̂ (Xi, t) , max
j=1,··· ,ni

f̂ (xij, t)
)

. (15)

Thus, Eq. 12 is equivalent to

min
f̂∈Ĥ

1

T
||f̂ ||2Ĥ + γV̂ ({Xi}mi=1, {Yi}mi=1, f̂). (16)

Note that ||f̂ ||2Ĥ : [0,∞) → R is a strictly monotonically increasing function.

According to representer theorem (Theorem 4.2 in [57]), each minimizer f̂ of the

functional risk in Eq. 16 admits a representation of the form

f̂(x, t) =
T∑

t=1

m∑

i=1



βt,i0k̂ ((Xi, t) , (x, t)) +
ni∑

j=1

βt,ijk̂ ((xij, t) , (x, t))



 , (17)

where βt,ij ∈ R and the corresponding weight vector ŵ is represented as

ŵ =
T∑

t=1

m∑

i=1



βt,i0Ψ (Xi, t) +
ni∑

j=1

βt,ijΨ (xij, t)



 . (18)

Finally, with Eqs. 13 and 18, we have

ft(x) = 〈wt, φ(x)〉 = 〈w,Ψ(x, t)〉

=
m∑

i=1



αt,i0k (x, Xi) +
ni∑

j=1

αt,ijk(x,xij)



 (19)

where αt,ij =
1√
r
(
∑

t βt,ij) + βt,ij/r. �

Note that x in Eq. 19 can be regarded not only as a bag Xi but also an instance

xij. In other words, both ft(Xi) and ft(xij) can be obtained by Eq. 19.

5.3 Optimization

Considering the use of l1 loss for l(v1, v2), Eq.12 can be re-written as
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min
f∈H,ξ,δ

1

T

T∑

t=1

‖ft‖2H + µ‖
∑T

t=1 ft
T
‖2H +

γ

mT
ξ′1+

γλ

mT
δ′1

s.t. yitft(Xi) ≥ 1− ξit,

ξ ≥ 0,

−δit ≤ ft(Xi)− max
j=1,...,ni

ft(xij) ≤ δit ∀i = 1, . . . , m, t = 1, . . . , T (20)

where ξ = [ξ11, ξ12, · · · , ξit, · · · , ξmT ]
′ are slack variables for the errors on the train-

ing bags for each label, δ = [δ11, δ12, · · · , δit, · · · , δmT ]
′, and 0 and 1 are all-zero

and all-one vector, respectively.

Without loss of generality, assume that the bags and instances are ordered as

(X1, · · · , Xm, x11, · · · ,x1,n1, · · · ,xm,1, · · · ,xm,nm
). Thus, each object (bag or in-

stance) in the training set can then be indexed by the following function I, i.e.,






I(Xi) = i

I(xij) = m+
i−1∑

l=1
nl + j

for j = 1, · · · , ni and i = 1, · · · , m. With this ordering, we can obtain the (m +

n) × (m + n) kernel matrix K defined on all objects in the training set, where

n =
∑m

i=1 ni. Denote the i-th column of K by ki. According to theorem 1, we have

ft(Xi) = k′
I(Xi)

αt + bt and ft(xij) = k′
I(xij)

αt + bt. Here, the bias bt for each label

is included.

According to definition of ft in Eq. 19, Eq. 20 can be cast as the optimization

problem

min
A,ξ,δ,b

1

2T

T∑

t=1

α′
tKαt +

µ

T 2
1′A′KA1+

γ

mT
ξ′1+

γλ

mT
δ′1 (21)

s.t. yit(k
′
I(Xi)

αt + bt) ≥ 1− ξit,

ξ ≥ 0,

k′
I(xij)

αt − δit ≤ k′
I(Xi)

αt,

k′
I(Xi)

αt − max
j=1,··· ,ni

k′
I(xij)

αt ≤ δit,

where A = [α1,α2, · · · ,αT ] and b = [b1, b2, · · · , bT ]′ .

The above optimization problem is a non-convex optimization problem since the

last constraint is non-convex. Note that this non-convex constraint is a difference

between two convex functions, and thus the optimization problem can be solved
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by Cccp [19,62], which is one of the most standard techniques to solve such kind

of non-convex optimization problems. Cccp is guaranteed to converge to a local

minimum [75], and in many cases it can even converge to a global solution [25].

Here, for solving the optimization problem 21, Cccp works by solving a sequential

convex quadratic problems. Concretely, given the initial subgradient
∑ni

j=1 ρijtk
′
I(xij )

αt

of maxj=1,··· ,ni
k′
I(xij)

αt, we solve the following convex quadratic optimization (QP)

problem

min
A,ξ,δ,b

1

2T

T∑

t=1

α′
tKαt +

µ

T 2
1′A′KA1+

γ

mT
ξ′1+

γλ

mT
δ′1 (22)

s.t. yit(k
′
I(Xi)

αt + bt) ≥ 1− ξit,

ξ ≥ 0,

k′
I(xij)

αt − δit ≤ k′
I(Xi)

αt,

k′
I(Xi)

αt −
∑ni

j=1
ρijtk

′
I(xij)

αt ≤ δit.

Then, in the next iteration we update ρijk according to

ρijt =







= 0, if k′
I(xij)

αt 6= max
k=1,··· ,ni

(

k′
I(xik)

αt

)

,

= 1/nd, otherwise,

where nd is the number of active xij ’s. It holds
ni∑

j=1
ρijt = 1 for any t’s. The iteration

continues and this procedure is guaranteed to converge to a local minimum.

5.4 Handling Class-Imbalance

The above solution may be improved further if we explicitly take into account the

instance-level class-imbalance, that is, for any class label the number of positive

instances is smaller than the number of negative instances in MIML problems.

We can roughly estimate the imbalance rate, which is the ratio of the number of

positive instances to that of negative instances, for each class label using the strat-

egy adopted by [41]. In detail, for a specific label y ∈ Y , we can divide the training

bags {(X1, Y1), (X2, Y2), · · · , (Xm, Ym)} into two subsets, A1 = {(Xi, Yi)|y ∈ Yi}
and A2 = {(Xi, Yi)|y /∈ Yi}. It is obvious that all the instances in A2 are negative

to y. Then, for every (Xi, Yi) in A1, assuming that the instances of different labels

is roughly equally distributed, the number of positive instances of y in (Xi, Yi) is
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roughly ni× 1
|Yi| where |Yi| returns the number of labels in Yi. Thus, the imbalance

rate of y is:

ibr (y) =
m∑

i=1
y∈Yi

ni

|Yi|
× 1

m∑

i=1
ni

=
m∑

i=1
y∈Yi

ni

n× |Yi|
.

There are many class-imbalance learning methods [69]. One of the most popular and

effective methods is rescaling [87], which can be incorporated into our framework

easily. In short, after obtaining the estimated imbalance rate for every class label,

we can use these rates to modulate the loss caused by different misclassifications.

In detail, ξ in Eq. 22 is directly related to the hinge loss (1− yitft (Xi))+. According

to the rescaling method [87], without loss of generality, we can rewrite the loss

function into Eq. 23.

(
yit + 1

2
− yit × ibr(yit)

)

(1− yitft(Xi)) . (23)

Let τ = [τ11, τ12, · · · , τit, · · · , τmT ], where τit =
(
yit+1

2
− yit × ibr(yit)

)

. Then, to

minimize the loss defined in Eq. 23, Eq. 22 becomes Eq. 24. Here ξ′τ indicates the

weighted loss after considering the instance-level class-imbalance. It is evident that

the problem in Eq. 24 is still a standard QP problem.

min
A,ξ,δ,b

1

2T

T∑

t=1

α′
tKαt +

µ

T 2
1′A′KA1+

γ

mT
ξ′τ +

γλ

mT
δ′1 (24)

s.t. yit(k
′
I(Xi)

αt + bt) ≥ 1− ξit,

ξ ≥ 0,

k′
I(xij)

αt − δit ≤ k′
I(Xi)

αt,

k′
I(Xi)

αt −
ni∑

j=1

ρijtk
′
I(xij )

αt ≤ δit.

5.5 Efficient Algorithm

Eq. 24 is a large-scale quadratic programming problem that involves many con-

straints and variables. To make it tractable and scalable, and observing that most

of the constraints in Eq. 24 are redundant, we present an efficient algorithm which

constructs a nested sequence of tighter relaxations of the original problem using

the cutting plane method [40].
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Similar to its use with structured prediction [64], we add a constraint (or a cut) that

is most violated by the current solution, and then find the solution in the updated

feasible region. Such a procedure will converge to an optimal (or ε-suboptimal)

solution of the original problem. Moreover, Eq. 24 supports a natural problem

decomposition since its constraint matrix is a block diagonal matrix, i.e., each

block corresponds to one label.

The pseudo-code of the algorithm is summarized in Appendix A (Table A.3). We

first initialize the working sets St’s as empty sets and the solutions as all zeros

(Line 1). Then, instead of testing all the constraints, which is rather expensive

when there are lots of constraints, we use the speedup heuristic as described in [61],

i.e., we use p constraints to approximate the whole constraints (Line 4). Smola and

Schölkopf [61] have shown that when p is larger than 59, the selected violated

constraint is with probability 0.95 among the 5% most violated constraints among

all constraints. The Lossi (Line 5) is calculated as max{0,u′x− d} where u and d

are the linear coefficients and bias of the i-th linear constraint, respectively. If the

maximal Loss is lower than the given stopping criteria ε (we simply set ε as 10−4

in our experiments), no update will be taken for the working set St; otherwise the

constraint with the maximal Loss will be added into St (lines 8 and 9). Once a

new constraint is added, the solution will be re-computed with respect to St via

solving a smaller quadratic program problem (line 10). The algorithm stops when

there is no update for all St’s.

5.6 Experiments

The previous experiments in Section 4.3 have shown that different MIML algo-

rithms have different advantages on different performance measures. In this sec-

tion we propose the D-MimlSvm algorithm. We do not claim that D-MimlSvm

is the best MIML algorithm. What we want to show is that, in contrast to heuris-

tically solving the MIML problem by degeneration, developing algorithms from a

regularization framework directly offers a better choice. So the most meaningful

comparison is between the D-MimlSvm, MimlSvm and MimlSvmmi algorithms,

the latter two not being derived from the regularization framework directly.

To study the behavior of D-MimlSvm, MimlSvm and MimlSvmmi under differ-
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Fig. 4. Results on the scene classification data set with different percentage of multi-label

data. The lower the curve, the better the performance.

ent amounts of multi-label data, we derive five data sets from the scene data used

in Section 4.3.2. By randomly removing some single-label images, we obtain a data

set where 30% (or 40%, or 50%) images belonging to multiple classes simultane-

ously; by randomly removing some multi-label images, we obtain a data set where

10% (or 20%) images belong to multiple classes simultaneously. A similar process

is applied to the text data used in Section 4.3.3 to derive five data sets. On the

derived data sets we use 25% data for training and the remaining 75% data for

testing, and experiments are repeated for thirty runs with random training/test

partitions. The parameters of D-MimlSvm, MimlSvm and MimlSvmmi are all

set by hold-out tests on training sets. Since D-MimlSvm needs to solve a large

optimization problem, although we have incorporated advanced mechanisms such

as cutting-plane algorithm, the current D-MimlSvm can only deal with moderate

training set sizes.

The seven criteria introduced in Section 4.3.1 are used to evaluate the performance.

The average and standard deviation are plotted in Figs. 4 and 5. Note that in the

figures we plot 1−average precision, 1−average recall and 1−average F1 such that

in all the figures, the lower the curve, the better the performance.

As shown in Figs. 4 and 5, the performance of D-MimlSvm is better than those

of MimlSvm and MimlSvmmi in most cases. Specifically, pairwise t-tests with
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Fig. 5. Results on the text categorization data set with different percentage of multi-label

data. The lower the curve, the better the performance.

95% significance level disclose that: a) On the scene classification task, among all

the 35 configurations (7 evaluation criteria × 5 percentages of multi-label bags),

the performance of D-MimlSvm is superior to MimlSvm and MimlSvmmi in

88% and 80% cases, comparable to them in 6% and 20% cases, and inferior to

them in only 6% and none cases; b) On the text categorization task, among all the

35 configurations, the performance of D-MimlSvm is superior to MimlSvm and

MimlSvmmi in 82% and 82% cases, comparable to them in 9% and 18% cases, and

inferior to them in only 9% and none cases. The results suggest that D-MimlSvm

is a good choice for learning with moderate number of MIML examples.

5.7 Discussion

The regularization framework presented in this section has an important assump-

tion, that is, all the class labels share some commonness, i.e., the w0 in Eq. 8. This

assumption makes the regularization easier to realize, however, it over-simplifies

the real scenario. In fact, in real applications it is rare that all class labels share

some commonness; it is more typical that some class labels share some common-

ness, but the commonness shared by different labels may be different. For example,

class label y1 may share something with class label y2, and y2 may share something

with y3, but maybe y1 shares nothing with y3. So, a more reasonable assumption is
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that different pairs of labels share different things (or even nothing). By considering

this assumption, a more powerful method may be developed.

Actually, it is not difficult to modify the framework of Eq. 12 by replacing the role

of w0 by W whose element Wij expresses the relatedness between the i-th and

j-th class labels, that is,

min
1

2T 2

∑

i,j

‖ wi −Wij ‖2 +
1

T 2

∑

i,j

µij ‖Wij ‖2 +γV . (25)

Note that W is a tensor and Wij is a vector.

To minimize Eq. 25, taking derivative to Wij, we have

−(wi −Wij)− (wj −Wji) + 2µijWij + 2µjiWji = 0 .

Considering Wij = Wji and µij = µji, we have

−(wi −Wij)− (wj −Wij) + 4µijWij = 0 ,

and so,

Wij =
wi +wj

4µji + 2
. (26)

Put Eq. 26 into Eq. 25, we have

min
1

2T 2

∑

i,j

‖ (4µij + 1)wi −wj

4µij + 2
‖2 + 1

T 2

∑

i,j

µij ‖
wi +wj

4µij + 2
‖2 +γV . (27)

After simplification, Eq. 25 becomes

min
1

8T 2

∑

i,j

(

16µ2
ij + 10µij + 1

(2µij + 1)2
‖ wi ‖2 +

2µij + 1

(2µij + 1)2
‖ wj ‖2

)

− 1

4T 2

∑

i,j

2µij + 1

(2µij + 1)2
〈wi,wj〉+ γV .

So, the new optimization task becomes
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min
A,ξ,δ,b

1

8T 2

T∑

i=1

T∑

j=1

(

16µ2
ij + 10µij + 1

(2µij + 1)2
α

′

iKαi +
2µij + 1

(2µij + 1)2
α

′

jKαj

)

(28)

− 1

4T 2

T∑

i=1

T∑

j=1

2µij + 1

(2µij + 1)2
α

′

iKαj +
γ

mT
ξ

′

1+
γλ

mT
δ

′

1

s.t. yit(k
′
I(Xi)

αt + bt) ≥ 1− ξit,

ξ ≥ 0,

k′
I(xij)

αt − δit ≤ k′
I(Xi)

αt,

k′
I(Xi)

αt − max
j=1,··· ,ni

k′
I(xij)

αt ≤ δit.

By solving Eq. 28 we can get not only an MIML learner, but also some understand-

ing on the relatedness between pairs of labels from Wij , and some understanding

on the different importance of the Wij’s in determining the concerned class label

from µij’s; this may be very helpful for understanding the complicated concepts

underlying the task. Eq. 28, however, is difficult to solve since it involves too many

variables. Thus, how to exploit/understand the pairwise relatedness between dif-

ferent pairs of labels remains an open problem.

6 Solving Single-Instance Multi-Label Problems through MIML Trans-

formation

The previous sections show that when we have access to the real objects and

are able to represent complicated objects as MIML examples, using the MIML

framework is beneficial. However, in many practical tasks we are given observational

data where each object has already been represented by a single instance, and we

do not have access to the real objects. In such case, we cannot capture more

information from the real objects using the MIML representation. Even in this

situation, however, MIML is still useful. Here we propose the InsDif (i.e., INStance

DIFferentiation) algorithm which transforms single-instance multi-label examples

into MIML examples to exploit the power of MIML.

6.1 InsDif

For an object associated with multiple class labels, if it is described by only a

single instance, the information corresponding to these labels are mixed and thus

difficult to learn. The basic assumption of InsDif is that the spatial distribution of
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instances with different labels encodes information helpful for discriminating these

labels, and such information will become more explicit by breaking the single-

instances into a number of instances each corresponds to one label.

InsDif is a two-stage algorithm, which is based on instance differentiation. In the

first stage, InsDif transforms each example into a bag of instances, by deriving

one instance for each class label, in order to explicitly express the ambiguity of the

example in the input space; in the second stage, an MIML learner is utilized to learn

from the transformed data set. For the consistency with our previous description of

the algorithm [81], in the current version of InsDif we use a two-level classification

strategy, but note that other MIML algorithms such as D-MimlSvm can also be

applied.

Using the same denotation as that in Sections 3 and 4, that is, given data set

S = {(x1, Y1), (x2, Y2), · · · , (xm, Ym)}, where xi ∈ X is an instance and Yi ⊆ Y
a set of labels {yi1, yi2, · · · , yi,li}, yik ∈ Y (k = 1, 2, · · · , li). Here li denotes the

number of labels in Yi.

In the first stage, InsDif derives a prototype vector vl for each class label l ∈ Y
by averaging all the training instances belonging to l, i.e.,

vl =
1

|Sl|




∑

xi∈Sl

xi



 , (29)

where

Sl = {xi|{xi, Yi} ∈ S, l ∈ Yi}, l ∈ Y .

Here vl can be approximately regarded as a profile-style vector describing common

characteristics of the class l. Actually, this kind of prototype vectors have already

shown their usefulness in solving text categorization problems. For example, the

Rocchio method [34, 59] forms a prototype vector for each class by averaging all

the documents (represented by weight vectors) of this class, and then classifies the

test document by calculating the dot-products between the weight vector represent-

ing the document and each of the prototype vectors. Here we use such prototype

vectors to facilitate bag generation. After obtaining the prototype vectors, each

example xi is re-represented by a bag of instances Bi, where each instance in Bi

expresses the difference between xi and a prototype vector according to Eq. 30. In
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this way, each example is transformed into a bag whose size equals to the number

of class labels.

Bi = {xi − vl|l ∈ Y} (30)

In fact, such a process attempts to exploit the spatial distribution since xi − vl

in Eq. 30 is a kind of distance between xi and vl. The transformation can also be

realized in other ways. For example, other than referring to the prototype vector of

each class, one could also consider the following approach. For each possible class

l, identify the k-nearest neighbors of xi among training instances that have l as

a proper label. Then, the mean vector of these neighbors can be regarded as an

instance in the bag. Note that the transformation of a single instance into a bag of

instances can be realized as a general pre-processing method which can be plugged

into many learning systems.

In the second stage, InsDif learns from the transformed training set S∗ = {(B1, Y1),

(B2, Y2), · · · , (Bm, Ym)}. This task can be realized by any MIML learning algo-

rithm. By default we use the MimlNn algorithm introduced in Section 4.3.2. The

use of other MIML algorithms for this stage will also be studied in the next section.

The pseudo-code of InsDif is summarized in Appendix A (Table A.4). In the

first stage (Steps 1 to 2), InsDif transforms each example into a bag of instances

by querying the class prototype vectors. In the second stage (Step 3), an MIML

algorithm is used to learn from the transformed data set. A test example x∗ is

then transformed into the corresponding bag representation B∗ and then fed to

the learned MIML model.

6.2 Experiments

We compare InsDif with several state-of-the-art multi-label learning algorithms,

including AdtBoost.MH [22], RankSvm [27], MlSvm [11], Ml-knn [80] and

Cnmf [43]; these algorithms have been introduced briefly in Section 2. In addi-

tion, by using MimlBoost, MimlSvm and MimlSvmmi respectively to replace

MimlNn for realizing the second stage of InsDif, we get three variants of InsDif,

i.e., InsDifMIMLBOOST, InsDifMIMLSVM and InsDifMIMLSVMmi
. These variants are

also evaluated for comparison.
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Note that the experiments here are very different from that in Sections 4.3 and

5.6. In Sections 4.3 and 5.6, it is assumed that the data are MIML examples;

while in this section, it is assumed that we are given observational data where each

real object has already been represented as a single instance. In other words, in

this section we are trying to learn from single-instance multi-label examples, and

therefore the experimental data sets are different from those used in Sections 4.3

and 5.6.

6.2.1 Yeast Gene Functional Analysis

The task here is to predict the gene functional classes of the Yeast Saccharomyces

cerevisiae, which is one of the best studied organisms. Specifically, the Yeast data

set investigated in [27,80] is studied. Each gene is represented by a 103-dimensional

feature vector generated by concatenating a gene expression vector and the corre-

sponding phylogenetic profile. Each 79-element gene expression vector reflects the

expression levels of a particular gene under two different experimental conditions,

while the phylogenetic profile is a Boolean string, each bit indicating whether the

concerned gene has a close homolog in the corresponding genome. Each gene is

associated with a set of functional classes whose maximum size can be potentially

more than 190. Elisseeff and Weston [27] have pre-processed the data set where

only the known structure of the functional classes are used. In fact, the whole set of

functional classes is structured into hierarchies up to 4 levels deep. 7 Illustrations

on the first level of the hierarchy used to generate the Yeast data can be found

in [27, 79, 80]. The resulting multi-label data set contains 2,417 genes, fourteen

possible class labels and the average number of labels for each gene is 4.24± 1.57.

For InsDif, the parameter M is set to be 20% of the size of training set; The

performance of this algorithm with different M settings is shown in Appendix B

(Fig. B.3), it can be found that its performance is not sensitive to the setting of

M . The boosting rounds of AdtBoost.MH are set to 25; The performance of

this algorithm at different boosting rounds is shown in Appendix B (Fig. B.4), it

can be observed that after this round its performance has become stable. (Similar

observations are also found in Section 6.2.2.) For RankSvm, polynomial kernel

7 See http://mips.gsf.de/proj/yeast/catalogues/funcat/ for more details.
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Table 3
Results (mean±std.) on Yeast gene data set (‘↓’ indicates ‘the smaller the better’; ‘↑’
indicates ‘the larger the better’).

Compared
Evaluation Criteria

Algorithms
hloss ↓ one-error ↓ coverage ↓ rloss ↓ aveprec ↑ avgrecl ↑ avgF1 ↑

InsDif .189±.010 .214±.030 6.288±0.240 .163±.017 .774±.019 .602±.026 .677±.023

InsDifMIMLSVM .189±.009 .232±.040 6.625±0.261 .179±.015 .763±.021 .591±.023 .666±.022

InsDifMIMLSVMmi
.196±.011 .238±.043 6.396±0.206 .172±.012 .765±.019 .655±.024 .706±.017

AdtBoost.MH .212±.008 .247±.029 6.385±0.151 N/A .739±.022 N/A N/A

RankSvm .207±.013 .243±.039 7.090±0.502 .195±.021 .750±.026 .500±.047 .600±.041

MlSvm .199±.009 .227±.032 7.220±0.338 .201±.019 .749±.021 .572±.023 .649±.022

Ml-knn .194±.010 .230±.030 6.275±0.240 .167±.016 .765±.021 .574±.022 .656±.021

Cnmf N/A .354±.184 7.930±1.089 .268±.062 .668±.093 N/A N/A

with degree 8 is used as suggested in [27]. For MlSvm, a Gaussian kernel is used

with default Libsvm setting for kernel width (i.e. 1
# features

). For Cnmf, a normal-

ized Gaussian kernel as recommended in [43] is used to compute the pairwise class

similarity. For Ml-knn, the number of nearest neighbors considered is set to 10.

The criteria introduced in Section 4.3.1 are used to evaluate the learning perfor-

mance. Ten-fold cross-validation is conducted on this data set and the results are

summarized in Table 3, 8 where the best performance on each criterion has been

highlighted in boldface.

Table 3 shows that InsDif and its variants achieve good performance on the Yeast

gene functional data set. Pairwise t-tests with 95% significance level disclose that:

a) InsDif is significantly better than all the compared multi-label learning algo-

rithms (i.e., the second part of Table 3) on all criteria, except that on coverage

it is worse than Ml-knn but the difference is not statistically significant; 9 b)

8 Hamming loss, average recall and average F1 are not available for Cnmf; ranking

loss, average recall and average F1 are not available for AdtBoost.MH. The perfor-

mance of InsDifMIMLBOOST is not reported since this algorithm did not terminate within

reasonable time on this data.
9 Note that our implementation of RankSvm was obtained with the help of the authors

of [27], yet our results are somewhat worse than the best results reported in [27]. We

think that the performance gap may be caused by the minor implementation differences

and the different experimental data partitions. Nevertheless, it is worth mentioning that

the results of InsDif are better than the best results of RankSvm in [27] in terms

of hamming loss, one-error and average precision, and as same as the best results of
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InsDifMIMLSVM is significantly better than the compared multi-label learning al-

gorithms for more than 68% cases, and is significantly inferior to them for less than

11% cases; c) InsDifMIMLSVMmi
is significantly better than the compared multi-

label learning algorithms for more than 65% cases, and is never significantly inferior

to them. Specifically, InsDifMIMLSVMmi
outperforms all the compared algorithms

in terms of average recall and average F1. It is noteworthy that Cnmf performs

quite poorly compared to other algorithms although it has used test set informa-

tion. The reason may be that the key assumption of Cnmf, i.e., two examples with

high similarity in the input space tend to have large overlap in the output space,

does not hold on this gene data since there are some genes whose functions are

quite different but the physical appearances are similar.

Overall, results on the Yeast gene functional analysis task suggest that MIML can

be useful when we are given observational data where each complicated object has

already been represented by a single instance.

6.2.2 Web Page Categorization

The web page categorization task has been studied in [39, 65, 80]. The web pages

were collected from the “yahoo.com” domain and then divided into 11 data sets

based on Yahoo’s top-level categories. 10 After that, each page is classified into a

number of Yahoo’s second-level subcategories. Each data set contains 2,000 training

documents and 3,000 test documents. The simple term selection method based on

document frequency (the number of documents containing a specific term) was

applied to each data set to reduce the dimensionality. Actually, only 2% words

with the highest document frequency were retained in the final vocabulary. Other

term selection methods such as information gain and mutual information can also

be adopted. After term selection, each document in the data set is described as a

feature vector using the “Bag-of-Words” representation, i.e., each feature expresses

the number of times a vocabulary word appearing in the document.

Characteristics of the web page data sets are summarized in Appendix C (Ta-

ble C.1). Compared to the Yeast data in Section 6.2.1, here the instances are rep-

RankSvm in [27] in terms of ranking loss.
10 Data set available at http://www.kecl.ntt.co.jp/as/members/ueda/yahoo.tar.gz.
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Table 4
Results (mean±std.) on eleven web page categorization data sets (‘↓’ indicates ‘the
smaller the better’; ‘↑’ indicates ‘the larger the better’).

Compared
Evaluation Criteria

Algorithms
hloss ↓ one-error ↓ coverage ↓ rloss ↓ aveprec ↑ avgrecl ↑ aveF1 ↑

InsDif .039±.013 .381±.118 4.545±1.285 .102±.037 .686±.091 .377±.163 .479±.154

InsDifMIMLSVM .043±.015 .395±.119 6.823±1.623 .166±.045 .653±.093 .501±.105 .566±.102

AdtBoost.MH .044±.014 .477±.144 4.177±1.261 N/A .621±.108 N/A N/A

RankSvm .043±.014 .424±.135 7.228±2.442 .182±.057 .621±.108 .252±.172 .345±.177

MlSvm .042±.015 .375±.119 6.919±1.767 .168±.047 .660±.093 .378±.167 .472±.156

Ml-knn .043±.015 .471±.157 4.097±1.236 .102±.045 .625±.116 .292±.189 .381±.196

Cnmf N/A .509±.142 6.717±1.588 .171±.058 .561±.114 N/A N/A

resented by much higher-dimensional feature vectors and a large portion of them

(about 20-45%) are multi-labeled. Moreover, here the number of categories (21-40)

are much larger and many of them are rare categories (about 20-55%). So, the web

page data sets are more difficult than the Yeast data to learn.

The parameter settings are similar as those in Section 6.2.1. That is, for InsDif,

the parameter M is set to be 20% of the size of training set; the boosting rounds

of AdtBoost.MH are set to 25; for RankSvm, polynomial kernel is used where

polynomial degrees of 2 to 9 are considered as in [27] and chosen by hold-out

tests on training sets; for MlSvm and Cnmf, linear and Gaussian kernel are used

respectively; for Ml-knn, the number of nearest neighbors considered is set to 10.

Results of the eleven data sets are shown in Appendix C (Fig. C.1), and the average

results are summarized in Table 4 where the best performance on each criterion

has been highlighted in boldface. 11

Table 4 shows that InsDif and InsDifMIMLSVM perform well on the Yahoo data.

Pairwise t-tests with 95% significance level disclose that: a) InsDif is only infe-

rior to AdtBoost.MH and Ml-knn in terms of coverage, inferior to MlSvm

11 The performance of InsDifMIMLBOOST and InsDifMIMLSVMmi
are not reported since

these algorithms did not terminate within reasonable time on this data. Note that though

the significant differences between some numbers in the table might be subtle at the first

glance (e.g., InsDif vs. RankSvm in terms of one-error), statistical tests based on

detailed information (in online supplementary file) justify the significance.
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in terms of one-error, comparable to Ml-knn in terms of ranking loss, compa-

rable to MlSvm in terms of average recall and average F1. Under all the other

circumstances (more than 79% cases), the performance of InsDif is significantly

better than the compared multi-label learning algorithms (i.e., the second part of

Table 4); b) InsDifMIMLSVM is significantly better than the compared multi-label

learning algorithms for more than 44% cases, and is significantly inferior to them for

less than 18% cases. Specifically, InsDifMIMLSVM achieves the best performance in

terms of average recall and average F1 ; on one-error, it is only inferior to MlSvm

but significantly superior the other compared multi-label learning algorithms.

Overall, results on the web page categorization task suggest that MIML can be

useful when we are given observational data where each complicated object has

already been represented by a single instance.

7 Solving Multi-Instance Single-Label Problems through MIML Trans-

formation

In many tasks we are given observational data where each object has already been

represented as a multi-instance single-label example, and we do not have access to

the real objects. In such case, we cannot capture more information from the real

objects using the MIML representation. Even in this situation, however, MIML

is still useful. Here we propose the SubCod (i.e., SUB-COncept Discovery) algo-

rithm which transforms multi-instance single-label examples into MIML examples

to exploit the power of MIML.

7.1 SubCod

For an object that has been described by multi-instances, if it is associated with a

label corresponding to a high-level complicated concept such as Africa in Fig. 2(a),

it may be quite difficult to learn this concept directly. The basic assumption of

SubCod is that high-level complicated concepts can be derived by a number of

lower-level sub-concepts which are relatively clearer and easier for learning, so that

we can transform the single-label into a set of labels each corresponds to one sub-

concept. Therefore, we can learn these labels at first and then derive the high-level
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complicated label based on them, as illustrated in Fig. 2(b).

SubCod is a two-stage algorithm, which is based on sub-concept discovery. In

the first stage, SubCod transforms each single-label example into a multi-label

example by discovering and exploiting sub-concepts involved by the original label;

this is realized by constructing multiple labels through unsupervised clustering all

instances and then treating each cluster as a set of instances of a separate sub-

concept. In the second stage, the outputs learned from the transformed data set are

used to derive the original labels that are to be predicted; this is realized by using a

supervised learning algorithm to predict the original labels from the sub-concepts

predicted by an MIML learner.

Using the same denotation as that in Sections 3 and 4, that is, given data set

{(X1, y1), (X2, y2), · · · , (Xm, ym)}, where Xi ⊆ X is a set of instances {xi1,xi2, · · · ,
xi,ni
}, xij ∈ X (j = 1, 2, · · · , ni), and yi ∈ Y is the label of Xi. Here ni denotes

the number of instances in Xi.

In the first stage, SubCod collects all instances from all the bags to compose a

data set D = {x11, · · · ,x1,n1,x21, · · · ,x2,n2, · · · ,xm1, · · · ,xm,nm
}. For the ease of

discussion, let N =
∑m

i=1 ni and re-index the instances in D as {x1,x2, · · · ,xN}.
A Gaussian mixture model with M mixture components is to be learned from D

by the EM algorithm, and the mixture components are regarded as sub-concepts.

The parameters of the mixture components, i.e., the means µk, covariances Σk

and mixing coefficients πk (k = 1, 2, · · · ,M), are randomly initialized and the

initial value of the log-likelihood is evaluated. In the E-step, the responsibilities

are measured according to

γik =
πkN (xi|µk,Σk)

M∑

j=1
πjN (xi|µj,Σj)

(i = 1, 2, · · · , N) . (31)

In the M-step, the parameters are re-estimated according to

µnew
k =

N∑

i=1
γikxi

N∑

i=1
γik

, (32)
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Σnew
k =

N∑

i=1
γik(xi − µnew

k )(xi − µnew
k )T

N∑

i=1
γik

, (33)

πnew
k =

N∑

i=1
γik

N
, (34)

and the log-likelihood is evaluated according to

ln p (D|µ,Σ, π) =
N∑

i=1

ln

(
M∑

k=1

πnew
k N (xi|µnew

k ,Σnew
k )

)

. (35)

After the convergence of the EM process (or after a pre-specified number of it-

erations), we can estimate the associated sub-concept for every instance xi ∈ D

(i = 1, 2, · · · , N) by

sc(xi) = argmax
k

γik (k = 1, 2, · · · ,M) . (36)

Then, we can derive the multi-label for each Xi (i = 1, 2, · · · , m) by considering the

sub-concept belongingness. Let ci denote an M-dimensional binary vector where

each element is either +1 or −1. For j = 1, 2, · · · ,M , cij = +1 means that the

sub-concept corresponding to the j-th Gaussian mixture component appears in

Xi, while cij = −1 means that this sub-concept does not appear in Xi. Here the

value of cij can be determined according to a simple rule that cij = +1 if Xi has

at least one instance which takes the j-th sub-concept (i.e., satisfying Eq. 36);

otherwise cij = −1. Note that for examples with identical single-label, the derived

multi-labels for them may be different.

The above process works in an unsupervised way which does not consider the

original labels of the bagsXi’s. Thus, the derived multi-labels ci need to be polished

by incorporating the relation between the sub-concepts and the original label of

Xi. Here the maximum margin criterion is used. In detail, consider a vector zi with

elements zij ∈ [−1.0,+1.0] (j = 1, 2, · · · ,M); zij = +1 means that the label cij

should not be modified while zij = −1 means that the label cij should be inverted.

Denote qi = ci ⊙ zi as that for j = 1, 2, · · · ,M , qij = cijzij. Let θ denote the

smallest number of labels that cannot be inverted. SubCod attempts to optimize

the objective
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min
w,b,ξ,Z

1

2
‖w‖22 + C

m∑

i=1

ξi (37)

s.t. yi(w
T(ci ⊙ zi) + b) ≥ 1− ξi,

ξ ≥ 0, −1 ≤ zij ≤ 1
∑

i,j

zij ≥ 2θ −mM ,

where Z = [z1, z2, · · · , zm].

By solving Eq. 37 we will get the vector zi which maximizes the margin of the

prediction of the proper labels of Xi. Here we solve Eq. 37 iteratively. We initialize

Z with all 1’s. First, we fix Z to get the optimal w and b; this is a standard QP

problem. Then, we fixw and b to get the optimal Z; this is a standard LP problem.

These two steps are iterated till convergence. Finally, we set the multi-label vector’s

elements which correspond to positive cijzij ’s (i = 1, 2, · · · , m; j = 1, 2, · · · ,M) to

+1, and set the remaining ones to −1. Thus, we get all the polished multi-label vec-

tors c̃i for the bagsXi. Thus, the original data set {(X1, y1), (X2, y2), · · · , (Xm, ym)}
is transformed to an MIML data set {(X1, c̃1), (X2, c̃2), · · · , (Xm, c̃m)}, and any

MIML algorithms can be applied.

To map the multi-labels predicted by the MIML classifier for a test example to the

original single-labels y ∈ Y , in the second stage of SubCod, a traditional classifier

f : {+1,−1}M → Y is generated from the data set {(c̃1, y1), (c̃2, y2), · · · , (c̃m, ym)}.
This is relatively simple and traditional supervised learning algorithms can be

applied.

The pseudo-code of SubCod is summarized in Appendix A (Table A.5). In the

first stage (Steps 1 to 3), SubCod derives multi-labels via sub-concept discovery

and transforms single-label examples into MIML examples, from which an MIML

learner is generated. In the second stage (Step 4), a traditional classifier is trained

to map the derived multi-labels to the original single-labels. Test example X∗ is

fed to the MIML learner to get its multi-labels, and the multi-labels are then fed

to the supervised classifier to get the label y∗ predicted for X∗.
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7.2 Experiments

We compare SubCod with several state-of-the-art multi-instance learning algo-

rithms, including Diverse Density [45], Em-dd [83], mi-Svm and Mi-Svm [3],

and Ch-Fd [31]; these algorithms have been introduced briefly in Section 2.For

SubCod, the MIML learner in Step 3 is realized by MimlSvm and the classifier in

Step 4 is realized by Smo with default parameters. In addition, by using MimlNn

andMimlSvmmi respectively to replaceMimlSvm for realizing Step 3 of SubCod,

we get two variants of SubCod, i.e., SubCodMIMLNN and SubCodMIMLSVMmi
.

They are also evaluated for comparison. 12

Note that the experiments here are very different from that in Sections 4.3, 5.6 and

6.2. Both Sections 4.3 and 5.6 deal with learning from MIML examples, Section 6.2

deals with learning from single-instance multi-label examples, while this section

deals with learning from multi-instance single-label examples, and therefore the

experimental data sets in this section are different from those used in Sections 4.3,

5.6 and 6.2.

Five benchmark multi-instance learning data sets are used, includingMusk1,Musk2,

Elephant, Tiger and Fox. BothMusk1 andMusk2 are drug activity prediction data

sets, publicly available at the UCI machine learning repository [8]. Here every bag

corresponds to a molecule, while every instance corresponds to a low-energy shape

of the molecule [24]. Musk1 contains 47 positive bags and 45 negative bags, and the

number of instances contained in each bag ranges from 2 to 40. Musk2 contains

39 positive bags and 63 negative bags, and the number of instances contained

in each bag ranges from 1 to 1,044. Each instance is a 166-dimensional feature

vector. Elephant, Tiger and Fox are three image annotation data sets generated

by [3] for multi-instance learning. Here every bag is an image, while every instance

corresponds to a segmented region in the image [3]. Each data set contains 100 pos-

itive and 100 negative bags, and each instance is a 230-dimensional feature vector.

These data sets are popularly used in evaluating the performance of multi-instance

learning algorithms.

12 We have also evaluated the variant SubCodMIMLBOOST which is obtained by employ-

ing MimlBoost to replace MimlSvm, however, it did not terminate within reasonable

time and so its performance is not reported in this section.
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Table 5
Predictive accuracy on Musk1, Musk2, Elephant, Tiger and Fox data sets

Compared
Data sets

Algorithms
Musk1 Musk2 Elephant Tiger Fox

SubCod 0.850±0.035 0.921±0.014 0.836±0.010 0.808±0.013 0.616±0.020

SubCodMIMLNN 0.859±0.025 0.888±0.022 0.815±0.023 0.795±0.018 0.599±0.032

SubCodMIMLSVMmi
0.870±0.023 0.869±0.020 0.805±0.017 0.787±0.016 0.590±0.015

Diverse Density 0.880 0.840 N/A N/A N/A

Em-dd 0.848 0.849 0.783 0.721 0.561

mi-Svm 0.874 0.836 0.820 0.789 0.582

Mi-Svm 0.779 0.843 0.814 0.840 0.594

Ch-Fd 0.888 0.857 0.824 0.822 0.604

Parameters of SubCod are determined by hold-out tests on training sets. Specifi-

cally, candidate values of M (the number of Gaussian mixture components) range

between [10, 70], while candidate values of θ (the smallest number of labels that

cannot be inverted) range between [mM × 10%, mM × 70%]. Ten runs of ten-fold

cross validation are performed and the results are summarized in Table 5, where

the best performance on each data set has been highlighted in boldface. Note that

the results of the compared algorithms (second part of Table 5) are the best per-

formance reported in literatures [3, 31]. 13

Table 5 shows that SubCod and its variants are very competitive to state-of-the-

art multi-instance learning algorithms. In particular, on Musk2 their performance

are much better than other algorithms. This is expectable because Musk2 is a

complicated data set which has the largest number of instances, while on such

data set the sub-concept discovery process of SubCod may be more effective.

Overall, the experimental results suggest that MIML could be useful when we

are given observational data where each object has already been represented as a

multi-instance single-label example.

13 The tradition of the multi-instance learning community is to compare with the best

performance reported in literature. Since the detailed results are not available [3, 17,18,

31,32,45,67,83], we do not perform statistical significance tests at here.
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8 Conclusion

This paper extends our preliminary work [81, 92] to formalize the MIML Multi-

Instance Multi-Label learning framework, where an example is described by mul-

tiple instances and associated with multiple class labels. It was inspired by the

recognition that when solving real-world problems, having a good representation

is often more important than having a strong learning algorithm because a good

representation may capture more meaningful information and make the learning

task easier to tackle. Since many real objects are inherited with input ambiguity as

well as output ambiguity, MIML is more natural and convenient for tasks involving

such objects.

To exploit the advantages of the MIML representation, we propose the Miml-

Boost algorithm and the MimlSvm algorithm based on a simple degeneration

strategy. Experiments on scene classification and text categorization show that

solving problems involving complicated objects with multiple semantic meanings

under the MIML framework can lead to good performance. Considering that the

degeneration process may lose information, we also propose the D-MimlSvm al-

gorithm which tackles MIML problems directly in a regularization framework.

Experiments show that this “direct” Svm algorithm outperforms the “indirect”

MimlSvm algorithm.

In some practical tasks we are given observational data where each complicated

object has already been represented by a single instance, and we do not have access

to the real objects such that we cannot capture more information from the real

objects using the MIML representation. For such scenario, we propose the InsDif

algorithm which transforms single-instances into MIML examples to learn. Exper-

iments on Yeast gene functional analysis and web page categorization show that

such algorithm is able to achieve a better performance than learning the single-

instances directly. This is not difficult to understand. Actually, by representing the

multi-label object using multi-instances, the structure information collapsed in tra-

ditional single-instance representation may become easier to exploit, and for each

label the number of training instances can be significantly increased. So, trans-

forming multi-label examples to MIML examples for learning may be beneficial in

some tasks.
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MIML can also be helpful for learning single-label examples involving complicated

high-level concepts. Usually it may be quite difficult to learn such concepts directly

since many different lower-level concepts are mixed together. If we can transform

the single-label into a set of labels corresponding to some sub-concepts, which are

relatively clearer and easier to learn, we can learn these labels at first and then

derive the high-level complicated label based on them. Inspired by this recognition,

we propose the SubCod algorithm which works by discovering sub-concepts of

the target concept at first and then transforming the data into MIML examples to

learn. Experiments show that this algorithm is able to achieve better performance

than learning the single-label examples directly in some tasks.

We believe that semantics exist in the connections between atomic input patterns

and atomic output patterns; while a prominent usefulness of MIML, which has

not been realized in this paper, is the possibility of identifying such connection.

As stated in Section 3, in the MIML framework it is possible to understand why

a concerned object has a certain class label; this may be more important than

simply making an accurate prediction, because the results could be helpful for

understanding the source of ambiguous semantics.
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Appendix

A Pseudo-codes of the Learning Algorithms

Table A.1
The MimlBoost algorithm

1 Transform each MIML example (Xu, Yu) (u = 1, 2, · · · ,m) into |Y| number of multi-

instance bags {[(Xu, y1),Ψ(Xu, y1)], · · · , [(Xu, y|Y|),Ψ(Xu, y|Y|)]}. Thus, the original

data set is transformed into a multi-instance data set containing m× |Y| number of

multi-instance bags, denoted by {[(X(i), y(i)),Ψ(X(i), y(i))]} (i = 1, 2, · · · ,m× |Y|).

2 Initialize weight of each bag to W (i) = 1
m×|Y| (i = 1, 2, · · · ,m× |Y|).

3 Repeat for t = 1, 2, · · · , T iterations:

3a Assign the bag’s label Ψ(X(i), y(i)) to each of its instances (x
(i)
j , y(i)) (i = 1, 2,

· · · ,m× |Y|; j = 1, 2, · · · , ni), set the weight of the j-th instance of the i-th bag

W
(i)
j = W (i)/ni, and build an instance-level predictor ht[(x

(i)
j , y(i))] ∈ {−1,+1}.

3b For the i-th bag, compute the error rate e(i) ∈ [0, 1] by counting the number of

misclassified instances within the bag, i.e. e(i) =

∑ni
j=1

[[ht[(x
(i)
j

,y(i))] 6=Ψ(X(i),y(i))]]

ni
.

3c If e(i) < 0.5 for all i ∈ {1, 2, · · · ,m× |Y|}, go to Step 4.

3d Compute ct = argminct
∑m×|Y|

i=1 W (i) exp[(2e(i) − 1)ct].

3e If ct ≤ 0, go to Step 4.

3f Set W (i) = W (i) exp[(2e(i) − 1)ct] (i = 1, 2, · · · ,m× |Y|) and re-normalize such

that 0 ≤W (i) ≤ 1 and
∑m×|Y|

i=1 W (i) = 1.

4 Return Y ∗ = {y|sign
(
∑

j

∑

t ctht[(x
∗
j , y)]

)

= +1} (x∗
j is X∗’s j-th instance).
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Table A.2
The MimlSvm algorithm

1 For MIML examples (Xu, Yu) (u = 1, 2, · · · ,m), Γ = {Xu|u = 1, 2, · · · ,m}.

2 Randomly select k elements from Γ to initialize the medoids Mt (t = 1, 2, · · · , k),
repeat until all Mt do not change:

2a Γt = {Mt} (t = 1, 2, · · · , k).
2b Repeat for each Xu ∈ (Γ− {Mt|t = 1, 2, · · · , k}):

index = argmin
t∈{1,··· ,k}

dH(Xu,Mt), Γindex = Γindex ∪ {Xu}.

2c Mt = argmin
A∈Γt

∑

B∈Γt

dH(A,B) (t = 1, 2, · · · , k).

3 Transform (Xu, Yu) into a multi-label example (zu, Yu) (u = 1, 2, · · · ,m), where

zu = (zu1,zu2, · · · ,zuk) = (dH(Xu,M1), dH (Xu,M2), · · · , dH(Xu,Mk)).

4 For each y ∈ Y, derive a data set Dy = {(zu,Φ (zu, y)) |u = 1, 2, · · · ,m}, and then

train an Svm hy = SVMTrain(Dy).

5 Return Y ∗ = {argmax
y∈Y

hy(z
∗)} ∪ {y|hy(z∗) ≥ 0, y ∈ Y}, where z∗ = (dH(X∗,M1),

dH(X∗,M2), · · · , dH(X∗,Mk)).

Table A.3
Efficient Algorithm for Eq. 24

Input: K, λ, µ, γ, ε, {Xi, Yi}mi=1

1 ∀t, St = ∅, vt = (αT
t , ξt1, · · · , ξtm, δt1, · · · , δtm, bt) = 0

2 Repeat

3 For t = 1, · · · , T
4 Pick p indexes of constraints that are not in St randomly, denoted by I;

5 Compute Lossi for every constraint in I;

6 % find out the cutting plane

7 q = argmaxi∈I Lossi

8 If Lossq > ε

9 St = St ∪ {q};
10 vt ← optimized over St;

11 End If

12 End For

13 Until no St changes
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Table A.4
The InsDif algorithm

1 For single-instance multi-label examples (xu, Yu) (u = 1, 2, · · · ,m), compute the

prototype vectors vl (l ∈ Y) using Eq. 29.

2 Derive the new training set S∗ by transforming each xi into a bag of instances Bi

using Eq. 30.

3 Learning from S∗ = {(B1, Y1), (B2, Y2), · · · , (Bm, Ym)} by using an MIML algorithm.

Table A.5
The SubCod algorithm

1 For multi-instance single-label examples (Xu, yu) (u = 1, 2, · · · ,m), collect all the

instances x ∈ Xu together and identify the Gaussian mixture components through

the EM process detailed in Eqs. 31 to 35.

2 Determine the sub-concept for every instance x ∈ Xu according to Eq. 36, and

then derive the label vector cu for Xu.

3 Make corrections to cu by optimizing Eq. 37, which results in c̃u for Xu, and then

train an MIML learner ht(X) on {(Xu, c̃u)} (u = 1, 2, · · · ,m).

4 Train a classifier hy(c̃) on {(c̃u, yu)} (u = 1, 2, · · · ,m), which maps the derived

multi-labels to the original single-labels.

5 Return y∗ = hy (ht (X
∗)).
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B Parameter Settings of the Learning Algorithms

0 10 20 30 40 50
0.10

0.15

0.20

0.25

0.30

Number of rounds

H
a

m
m

. 
lo

ss

 

 

AdtBoost.MH

MIMLBoost

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of rounds

O
n

e−
er

ro
r

 

 

AdtBoost.MH

MIMLBoost

0 10 20 30 40 50
0.50

0.75

1.00

1.25

1.50

1.75

2.00

Number of rounds

C
o

ve
ra

g
e

 

 

AdtBoost.MH

MIMLBoost

0 10 20 30 40 50
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Number of rounds

R
a

n
k.

 l
o

ss

 

 

MIMLBoost

(a) hamming loss (b) one-error (c) coverage (d) ranking loss

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

Number of rounds

1
−

 A
ve

. 
p

re
c.

 

 

AdtBoost.MH

MIMLBoost

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of rounds

1
−

 A
ve

. 
re

ca
ll

 

 

MIMLBoost

0 10 20 30 40 50
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of rounds

1
−

 A
ve

. 
F

1

 

 

MIMLBoost

(e) 1− average precision (f) 1− average recall (g) 1− average F1

Fig. B.1. Performance of MimlBoost and AdtBoost.MH at different rounds on scene

classification data set.
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Fig. B.2. Performance of MimlSvm with different k values on scene classification data

set.
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Fig. B.3. Performance of InsDif with different M settings on Yeast gene data set.
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Fig. B.4. Performance of AdtBoost.MH at different rounds on Yeast gene data set.

C Web Page Data Sets

Table C.1
Characteristics of the web page data sets (after term selection). PMC denotes the per-
centage of documents belonging to more than one category; ANL denotes the average
number of labels for each document; PRC denotes the percentage of rare categories, i.e.,
the kind of category where only less than 1% instances in the data set belong to it.

Number of Vocabulary Training Set Test Set
Data Set

Categories Size PMC ANL PRC PMC ANL PRC

Arts&Humanities 26 462 44.50% 1.627 19.23% 43.63% 1.642 19.23%

Business&Economy 30 438 42.20% 1.590 50.00% 41.93% 1.586 43.33%

Computers&Internet 33 681 29.60% 1.487 39.39% 31.27% 1.522 36.36%

Education 33 550 33.50% 1.465 57.58% 33.73% 1.458 57.58%

Entertainment 21 640 29.30% 1.426 28.57% 28.20% 1.417 33.33%

Health 32 612 48.05% 1.667 53.13% 47.20% 1.659 53.13%

Recreation&Sports 22 606 30.20% 1.414 18.18% 31.20% 1.429 18.18%

Reference 33 793 13.75% 1.159 51.52% 14.60% 1.177 54.55%

Science 40 743 34.85% 1.489 35.00% 30.57% 1.425 40.00%

Social&Science 39 1 047 20.95% 1.274 56.41% 22.83% 1.290 58.97%

Society&Culture 27 636 41.90% 1.705 25.93% 39.97% 1.684 22.22%
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[71] C. Yang and T. Lozano-Pérez. Image database retrieval with multiple-instance

learning techniques. In Proceedings of the 16th International Conference on Data

Engineering, pages 233–243, San Diego, CA, 2000.

[72] Y. Yang. An evaluation of statistical approaches to text categorization. Information

Retrieval, 1(1-2):67–88, 1999.

[73] Y. Yang and J. O. Pedersen. A comparative study on feature selection in text

categorization. In Proceedings of the 14th International Conference on Machine

Learning, pages 412–420, Nashville, TN, 1997.

[74] K. Yu, S. Yu, and V. Tresp. Multi-label informed latent semantic indexing. In

Proceedings of the 28th Annual International ACM SIGIR Conference on Research

and Development in Information Retrieval, pages 258–265, Salvador, Brazil, 2005.

[75] A. L. Yuille and A. Rangarajan. The concave-convex procedure. Neural

Computation, 15(4):915–936, 2003.

[76] C. Zhang and P. Viola. Multiple-instance pruning for learning efficient cascade

detectors. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in

Neural Information Processing Systems 20, pages 1681–1688. MIT Press, Cambridge,

MA, 2008.

[77] M.-L. Zhang and Z.-H. Zhou. Improve multi-instance neural networks through

feature selection. Neural Processing Letters, 19(1):1–10, 2004.

[78] M.-L. Zhang and Z.-H. Zhou. Adapting RBF neural networks to multi-instance

learning. Neural Processing Letters, 23(1):1–26, 2006.

[79] M.-L. Zhang and Z.-H. Zhou. Multilabel neural networks with applications to

functional genomics and text categorization. IEEE Transactions on Knowledge and

Data Engineering, 18(10):1338–1351, 2006.

62



[80] M.-L. Zhang and Z.-H. Zhou. ML-kNN: A lazy learning approach to multi-label

learning. Pattern Recognition, 40(7):2038–2048, 2007.

[81] M.-L. Zhang and Z.-H. Zhou. Multi-label learning by instance differentiation. In

Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pages 669–674,

Vancouver, Canada, 2007.

[82] M.-L. Zhang and Z.-H. Zhou. Multi-instance clustering with applications to multi-

instance prediction. Applied Intelligence, 31(1):47–68, 2009.

[83] Q. Zhang and S. A. Goldman. EM-DD: An improved multi-instance learning

technique. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in

Neural Information Processing Systems 14, pages 1073–1080. MIT Press, Cambridge,

MA, 2002.

[84] Q. Zhang, W. Yu, S. A. Goldman, and J. E. Fritts. Content-based image retrieval

using multiple-instance learning. In Proceedings of the 19th International Conference

on Machine Learning, pages 682–689, Sydney, Australia, 2002.

[85] Y. Zhang and Z.-H. Zhou. Multi-label dimensionality reduction via dependency

maximization. ACM Transactions on Knowledge Discovery from Data, 4(3):Article

14, 2010.

[86] Z.-H. Zhou, K. Jiang, and M. Li. Multi-instance learning based web mining. Applied

Intelligence, 22(2):135–147, 2005.

[87] Z.-H. Zhou and X.-Y. Liu. On multi-class cost-sensitive learning. In Proceeding of

the 21st National Conference on Artificial Intelligence, pages 567–572, Boston, WA,

2006.

[88] Z.-H. Zhou and J.-M. Xu. On the relation between multi-instance learning and semi-

supervised learning. In Proceeding of the 24th International Conference on Machine

Learning, pages 1167–1174, Corvallis, OR, 2007.

[89] Z.-H. Zhou and Y. Yu. AdaBoost. In X. Wu and V. Kumar, editors, The Top Ten

Algorithms in Data Mining, pages 127–149. Chapman & Hall, Boca Raton, FL, 2009.

[90] Z.-H. Zhou and M.-L. Zhang. Neural networks for multi-instance learning.

Technical report, AI Lab, Department of Computer Science and Technology, Nanjing

University, Nanjing, China, August 2002.

[91] Z.-H. Zhou and M.-L. Zhang. Ensembles of multi-instance learners. In Proceeding

of the 14th European Conference on Machine Learning, pages 492–502, Cavtat-

Dubrovnik, Croatia, 2003.

63



[92] Z.-H. Zhou and M.-L. Zhang. Multi-instance multi-label learning with application to

scene classification. In B. Schölkopf, J. Platt, and T. Hofmann, editors, Advances in

Neural Information Processing Systems 19, pages 1609–1616. MIT Press, Cambridge,

MA, 2007.

[93] Z.-H. Zhou and M.-L. Zhang. Solving multi-instance problems with classifier

ensemble based on constructive clustering. Knowledge and Information Systems,

11(2):155–170, 2007.

64


