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Abstract

Partial label learning (PLL) addresses situations where each
training example is associated with a set of candidate labels,
among which only one corresponds to the true class label. As
the candidate labels often come from crowdsourced work-
ers, their generation is inherently dependent on the features
of the instance. Existing PLL methods primarily aim to re-
solve these ambiguous labels to enhance classification accu-
racy, overlooking the opportunity to use this feature depen-
dency for causal representation learning. This focus on accu-
racy can make PLL systems vulnerable to stylistic variations
and shifts in domain. In this paper, we explore the learn-
ing of causal representations within an instance-dependent
PLL framework, introducing a new approach that uncov-
ers identifiable latent representations. By separating content
from style in the identified causal representation, we intro-
duce CausalPLL+, an algorithm for instance-dependent PLL
based on causal representation. Our algorithm performs ex-
ceptionally well in terms of both classification accuracy and
generalization robustness. Qualitative and quantitative exper-
iments on instance-dependent PLL benchmarks and domain
generalization tasks verify the effectiveness of our approach.

1 Introduction
Causal Representation Learning (CRL) (Schölkopf et al.
2021) aims to infer compact high-level latent variables from
high-dimensional and low-level observations. A core task in
CRL is learning identifiable latent representation, i.e., devel-
oping representation learning algorithms that can provably
identify high-level latent factors such as an object’s shape,
location, and colour. While problems such as domain shift,
out-of-distribution samples, and data bias have long plagued
modern statistical learning systems (Liu et al. 2022; Zhu
et al. 2025), CRL offers a unique and promising perspective
to achieve greater effectiveness in robustness and general-
ization.

Since previous work has demonstrated that learning iden-
tifiable representations is impossible for arbitrary data-
generating process in an unsupervised setting (Locatello
et al. 2019; Khemakhem et al. 2020), much of the recent
efforts in CRL have been diverted to learning causal rep-
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resentation from data with additional structures and super-
visions (Khemakhem et al. 2020; Kivva et al. 2022). For
example, several recent studies have delved into understand-
ing causal representations with additional information or un-
der specific types of weak supervision signals (Zhang et al.
2022; Brehmer et al. 2022; Yao et al. 2021; Lin et al. 2024).

This paper explores the possibility of identifying causal
representation under the Partial Label Learning (PLL)
paradigm and its benefits for more stable and robust weakly
supervised learning systems. PLL has garnered significant
attention over the past decade as a form of weakly super-
vised learning due to its prevalence in many real-world ap-
plications, such as automatic image annotation (Chen, Pa-
tel, and Chellappa 2017; Tang, Zhang, and Zhang 2024b,
2023; Yang, Tang, and Zhang 2024), web mining (Luo and
Orabona 2010; Scheffer, Decomain, and Wrobel 2001) and
multimedia content analysis (Zeng et al. 2013; Cour et al.
2009; Tang et al. 2024; Tang, Zhang, and Zhang 2024a).
Unlike standard supervised learning, where the training data
contains i.i.d. samples associated with a single class label,
learners in PLL are given samples associated with candidate
label sets containing the (unknown) ground-truth label and
several candidate labels.

In real-world PLL applications, candidate labels are typi-
cally provided by crowd-sourced annotators who select sev-
eral labels that are likely correct. Therefore, the generation
process of these candidate labels is closely tied to the charac-
teristics of the instance, a concept adeptly termed Instance-
Dependent Partial Label Learning (IDPLL) (Xu et al. 2021).
IDPLL is a realistic yet particularly challenging scenario.
The candidate labels are related to the sample feature, mak-
ing it difficult for the model to discern the ground-truth la-
bels from the candidate set. Furthermore, the ambiguity of
unknown ground-truth labels makes it difficult for models to
learn the core differences between different categories.

Since the generation of instance-dependent candidate la-
bels inherently depends on the instance feature under the
IDPLL setting, it is desirable to model the generative re-
lationship between the instance features and their asso-
ciated candidate labels. For example, consider an image
with the ground-truth label ‘Husky’, which may be pro-
vided with false-positive candidate labels such as ‘Wolf’ and
‘Samoyed’ due to their visual similarity. Instead of treat-
ing the candidate label set as noises and disambiguating



the ground-truth label from false positive ones, it is ad-
vantageous to separate the characteristics specific to each
breed from those shared across breeds and external condi-
tions such as background or lighting. This would allow the
model to concentrate on disambiguating the core features
and reduce the influence of extraneous factors.

CRL provides unique tools for effectively modelling the
generative relationship between the instance features and
their associated candidate labels. As each candidate la-
bel inherently contains style and content information that
is closely related to the instance feature, CRL algorithms
have the potential to identify their corresponding low-
dimensional latent factors. It is worth noting that the goal
here is not to learn completely disentangled latent repre-
sentation, i.e., identifying dimension-wise independent la-
tent factors. Instead, we aim to identify latent representa-
tions that block-separated content from style, as this will not
only facilitate the task of PLL classification but also improve
the classifier’s robustness to distribution shifts.

From the perspective of exploiting instance-dependent
candidate labels for causal representation learning, this work
proposes a novel generative approach for effectively mod-
elling the generation process of instances and candidate la-
bel sets while extracting identifiable and content-style dis-
entangled causal representations. Furthermore, we introduce
a prior-based contrastive learning method and a label refine-
ment disambiguation strategy to further improve the model’s
representation quality and classification performance. The
proposed model not only achieves state-of-the-art classifi-
cation performance on IDPLL benchmarks but also demon-
strates robustness to the changes between training and test
distributions. Our contributions can be summarized as:

• We introduce a novel VAE framework enabling the
model to learn identifiable causal representations from
data, achieving disentanglement of content and style.

• Based on this framework, we propose an effective Partial
Label Learning algorithm, CausalPLL+, which enables
effective disambiguation in instance-dependent scenarios
through contrastive learning and label refinement.

• We conduct extensive empirical studies on various
datasets and settings, proposing a new, more realistic
method for IDPLL data generation. Experimental results
demonstrate the effectiveness of CausalPLL+ in IDPLL
classification and domain shift scenarios.

2 Related Work
2.1 VAE and Identifiable Causal Representations
Variational Autoencoders (VAEs) are a class of deep gen-
erative models that combine amortized variational inference
and neural networks to model the generation process by fit-
ting the posterior and likelihood distributions of samples
(Kingma and Welling 2013). Specifically, VAEs optimize
the evidence lower bound (ELBO) of the likelihood:

Ez∼qϕ(z|x) [ln pθ(x|z)]−KL(qϕ(z|x)||pθ(z)). (1)

VAEs are inherently related to the field of causal represen-
tation learning due to their flexibility in modelling proba-

Figure 1: Framework of CausalPLL+. Unless otherwise
specified (arrows), components within the shaded area do
not exchange information with those outside. The dashed ar-
row on prior net and contrastive learning module means that
CL is conducted between zc and distribution parameters of
all classes in the prior net, rather than A[u] and B[u].

bility graphical models. This has attracted considerable re-
search efforts into their latent variable identifiability. Lo-
catello et al. suggests that it is impossible to learn identi-
fiable representations from the data in completely unsuper-
vised settings. Meanwhile, Khemakhem et al. provided iden-
tifiable results under the VAE framework for the first time. It
has been shown that latent factors z can be identified by em-
ploying a conditionally factorized prior distribution pθ(z|u)
over the latent variables, where u is an additionally observed
variable (Khemakhem et al. 2020).

However, most recent efforts in CRL have been focusing
on learning identifiable latent representations that are mutu-
ally independent and their causal structures (Brehmer et al.
2022; Lin et al. 2024); however, our focus is instead infer-
encing identifiable representations under the data generation
process of IDPLL and exploring their benefits for partial la-
bel classification.

2.2 Partial Label Learning
Partial Label Learning (PLL) (Cour et al. 2009) is a sub-
class of weakly supervised learning (Zhou 2017). In PLL,
each training sample is associated with a candidate label set
containing an unknown ground-truth label and several false
positive labels. Early efforts in PLL have focused on scenar-
ios in which the candidate labels are randomly generated or
class-dependent. For instance, Lv et al. (2020) and Wen et al.
employ self-training techniques to determine ground-truth
labels during training iteratively. Feng et al. (2020) studies
consistent classifiers under the assumption of uniformly gen-
erated partial labels. Wu, Wang, and Zhang (2022) studies
manifold-preserving consistency regularizations in PLL.

As the generation of candidate labels depends on the in-
stance features in real-world PLL applications, IDPLL (Xu
et al. 2021) more closely resembles the data generation pro-
cess of practical situations. Xu et al. (2021) employ varia-
tional inference to estimate the latent label distribution. Wu,
Wang, and Zhang (2024) perform knowledge distillation and
leverage a rectifcation process to obtain reliable represen-
tations. However, existing literature (Qiao, Xu, and Geng



2022; Xia et al. 2022; Xu et al. 2023) rarely explores the gen-
erative process between examples and candidate label sets,
nor does it address spurious features and domain shift is-
sues in IDPLL scenarios. This paper explicitly models the
generative relationship between instances and their candi-
date labels to extract causal representations which decouple
content and style, improving classification and robustness.

3 Methodology
Notations Let X ⊂ RD denote the D-dimensional in-
stance space and Y = {1, 2, · · · ,K} denote the label space
with K distinct labels. Z ⊂ RM is the M -dimensional latent
space where M ≪ D. PLL assumes that the ground-truth
label y ∈ Y of an instance x ∈ X is contained within a can-
didate label set S ⊂ Y . For simplicity, we use the Boolean
vector s ∈ {0, 1}K to represent the partial label correspond-
ing to S. The goal of PLL is to learn a classifier h : Z → Y
on a partial label dataset D = {(xi, si)|1 ≤ i ≤ N}. For the
classifier h, we use hk(z) to denote the output of classifier
h on label k given input z. For the VAE framework, we use
A,B ∈ RK×Mc to denote the matrix storing the mean and
variance of the content prior p(zc|u) for K categories, re-
spectively. u stands for auxiliary variable, which is usually a
normalized candidate label vector. For convenience, we de-
note the mean and variance corresponding to the categories
contained in u as A[u] and B[u], respectively. Lastly, we
use ŝ to represent the refined candidate labels.

3.1 Model Identifiability and Content-Style
Disentangled Causal Representation

Identifiability in existing VAE frameworks is often achieved
through a conditional prior p(z|u)), where u serves as an
auxiliary variable. Suppose we could observe instance x ∈
RD and auxiliary variable u ∈ RK , and z ∈ RM is a la-
tent variable. The observed instance x can be regarded as
generated by z through an arbitrary mixing function f :

x = f(z) + ϵ, (2)

where ϵ is a noise variable with probability density function
p(ϵ) independent of z or f . Hence, we can express the pos-
terior likelihood of the data in the following form:

pf (x|z) = pϵ(x− f(z)). (3)

Furthermore, let θ = (f ,T ,λ) be the parameters of the
following conditional generative model, the data generation
process can be expressed as:

pθ(x, z|u) = pf (x|z)pT ,λ(z|u). (4)

Without loss of generality, it is common to assume that the
latent prior distribution p(z|u) follows the exponential fam-
ily distribution:

pT ,λ(z|u) =
∏
i

Qi (zi)

Zi(u)
exp

 k∑
j=1

Ti,j (zi)λi,j(u)

 .

(5)
With the generative model specified according to (3)-(5),

Khemakhem et al. (2020) have shown that the model param-
eters (f ,T ,λ) can be identified up to an equivalence class

induced by component-wise and invertible linear transfor-
mations with the following assumptions:

(a) The set {x ∈ X |ϕϵ(x) = 0} has measure zero, where ϕϵ

is the characteristic function of the density pϵ defined in
(3).

(b) The mixing function f in (3) is injective.
(c) The sufficient statistics Ti,j in (5) are differentiable al-

most everywhere, and (Ti,j)1≤j≤k are linearly indepen-
dent on any subset of X of measure greater than zero.

(d) There exist nk + 1 distinct points u0, . . . ,unk such that
the matrix

L = (λ(u1)− λ(u0), . . . ,λ(unk)− λ(u0))

of size nk × nk is invertible.

According to the above theory, one basis for achieving
identifiability is to introduce a prior p(z|u) which is condi-
tioned on an auxiliary variable u. In weakly supervised clas-
sification problems such as semi-supervised learning and
multi-instance learning (Zhang et al. 2022), a common ap-
proach to learning causal representations is to utilize the
class information as an auxiliary variable and map it to prior
parameters through a prior network. Unlike other weakly su-
pervised learning methods, the supervision information in
PLL does not provide exact class label indices, but rather a
set of candidate labels. This means that the weak supervision
signals in PLL cannot be directly translated into a specific
class priority as in other methods.

A naive approach is straightforwardly mapping the labels
in the candidate label set into a set of prior distributions;
however, this approach poses several problems. Firstly, as
the candidate label sets often exhibit highly imbalanced and
long-tailed distributions (Wu, Wang, and Zhang 2024), using
them directly would severely impede model learning. Fur-
thermore, as the candidate label sets only contain class la-
bels, i.e., label indexes instead of actual semantics, attempt-
ing to fit such simple relationships with flexible variational
inference models can lead to the collapsing of the variational
posterior, resulting in learning failures, as observed in our
preliminary experiments.

To avoid posterior collapsing and effectively infer repre-
sentations from candidate label sets, we propose to exploit
the auxiliary information without directly mapping the can-
didate label sets into prior parameters. Specifically, assum-
ing that each class’s latent corresponds to a Gaussian distri-
bution in the latent representation space, we consider them a
Gaussian mixture distribution containing the mixture com-
ponents of their candidate labels with unknown mixing co-
efficients. Although the Gaussian mixture is not an exponen-
tial family distribution, there exists another Gaussian distri-
bution p∗ that minimizes the reverse KL divergence between
this distribution and the Gaussian mixture corresponding to
the set. This distribution p∗ can be considered as the ”true”
conditional prior corresponding to the current candidate la-
bel set. Formally, we have the following proposition:
Proposition. (Content prior). Let p∗(zc|u) denote the
ground-truth content prior. Then, p∗(zc|u) minimizes the
KL divergence KL(p∗(zc|u)||p(zc|u)).



Prior p∗(zc|u) is Gaussian which belongs exponential
family, thus identifiability conditions could be satisfied.
Moreover, we have the following theorem, which could
make optimization more feasible.

Theorem 1. Suppose we have p(zc|u) as a Gaussian mix-
ture distribution:

p(zc|u) =
K∑

k=1

uk · φ(zc;Ak,Bk), (6)

where φ(zc;Ak,Bk) is the density of mixing component
N (Ak,Bk). And we use

p∗(zc|u) = φ(zc;µ∗,σ
2
∗I), (7)

to denote the distribution which minimizes the KL
divergence KL(p∗(zc|u)||p(zc|u)). Then, minimiz-
ing KL(q(zc|x)||p(zc|u)) is equivalent to minimizing
KL(q(zc|x)||p∗(zc|u)).

Although the above discussion addresses the latent iden-
tifiability in PLL by effectively leveraging the weakly su-
pervised information provided in the candidate label set, an-
other unique hurdle exists: not all information contained in
the latent factors is necessary for weakly supervised clas-
sification. To see this, consider partitioning the latent fac-
tors into the ones that capture content zc and style infor-
mation ze, respectively. On the one hand, the content latent
factors capture the core characteristics of each class shared
across all instances. On the other hand, the style latent fac-
tors correspond to information not causally related to class,
e.g., background and lighting variations that are inconsistent
across different instances of the same class. Formally,

Assumption 1. (Content-invariance). For x, x̃ ∈ X and
y = ỹ, the conditional density of the latents pz̃|z satisfies:

pz̃|z(z̃|z) = δ(z̃c − zc)pz̃e|ze
(z̃e|ze),

where z = (zc, ze), and δ is the Dirac delta function. In
other words, z̃c = zc almost everywhere.

Assumption 2. (Style-variation). Let A be a set containing
subsets of styles A ⊆ {1, · · · , ns} and let pA be a proba-
bility distribution on A. The style conditional distributions
should satisfy:

A ∼ pA, pA(A) > 0 for all A ⊆ {1, · · · , ns} and A ̸= ∅,

pz̃e|ze,A(z̃e|ze, A) = δ(z̃e
Ac − ze

Ac)pz̃e
A|ze

A
(z̃eA|ze

A).

Loosely speaking, the first assumption asserts that the
content within each category should remain constant, while
the second assumption specifies that certain style factors
should change. Importantly, the second assumption is flexi-
ble as it does not require all styles to change.

However, VAEs in previous work uniformly extract all
factors possibly needed for reconstruction. The vanilla
VAE’s KL divergence requires the posterior distribution to
fit a standard normal distribution as closely as possible, in-
evitably hindering clear separations between different cate-
gories. This also explains why using features extracted from
VAEs for classification often yields dissatisfactory results

in practical applications. In contrast, models like iVAE in-
corporate learnable priors during training, adjusting the KL
divergence to bring the posterior distribution closer to the
learned conditional priors. However, such settings default
all latent factors to impact sample classification, indiscrim-
inately utilizing non-causal features in the data, thereby in-
evitably suffering severe damage during distribution shift.

The above two cases not only affect the performance and
robustness of the model, but also deviate from the original
intention of causal representation learning. Summarizing the
above two cases, we can see that if you want to acquire high-
quality features, style and content may be handled differ-
ently. Therefore, an idea of this paper is born. In the follow-
ing methods, we will divide the latent embedding into two
parts and treat them separately according to their character-
istics. Specifically, we divide latent code z into zc and ze,
i.e. z = (zT

c , z
T
e )

T . Where zc follows a conditional prior
p(zc|u) regulated by the auxiliary variable u, and the prior
of ze is a standard normal distribution. At the same time,
because the components of z are independent of each other,
z still obeys an exponential family distribution as a whole.

3.2 Overall Framework

Figure 1 provides a concise overview of the model’s struc-
ture. It consists primarily of five components: the encoder
q(z|x), the decoder p(x|z), the prior network p(zc|u), the
classifier q(y|zc), and the contrastive learning module. x
and the auxiliary variable u are fed into the encoder and
prior network, respectively. Subsequently, we sample from
the posterior distribution using reparameterization to obtain
the latent code z. As mentioned earlier, the latent embed-
ding z can be divided into two parts: the content embed-
ding zc, which encodes category-related information whose
prior following conditional distribution p(zc|u), and the
style representation ze, independent of class, with its prior
p(ze) following a standard normal distribution N (0, I).

Since the content and style components of z are indepen-
dent, the KL divergence can be expressed as:

KL(q(zc|x)∥p(zc|u)) + KL(q(ze|x)∥p(ze)), (8)

where parameters for the conditional distribution p(zc|u)
are generated by the prior network. In practice, the prior net-
work is implemented as a single-layer linear mapping sim-
ilar to word embedding. This not only avoids issues of pat-
tern collapse but also enhances the model’s interpretability.
It is worth noting that instead of directly using the candi-
date label set s as the auxiliary information, CausalPLL+
integrates the learning of latent representations with the re-
finement of the candidate label set. This approach addresses
two problems inherent in IDPLL. Firstly, discerning the true
class label from the candidate label set is naturally integrated
with the inference of the representations. Secondly, refining
the candidate label set further improves the auxiliary infor-
mation for inferencing the representation. A more detailed
elaboration of the integrated label refinement process is dis-
cussed in Section 3.3.

The evidence lower bound (ELBO) of the model can be



Table 1: Accuracy (mean±std) comparisons on FashionMNIST, Kuzushiji-MNIST, SVHN and CIFAR10 with instance-
dependent partial labels on different ambiguity levels.

Dataset Method τ = 16 τ = 32 τ = 64

FashionMNIST

CausalPLL+ 94.49 ± 0.37% 93.60 ± 0.10% 92.75 ± 0.18%
PLCR 93.28 ± 0.24% 92.46 ± 0.13% 90.72 ± 0.15%

VALEN 88.36 ± 0.20% 87.25 ± 0.19% 85.67 ± 0.24%
LWS 88.50 ± 0.19% 84.84 ± 0.51% 81.23 ± 2.07%

PRODEN 87.32 ± 0.19% 86.34 ± 0.08% 85.15 ± 0.24%
RC 89.56 ± 0.18% 89.05 ± 0.12% 87.65 ± 0.10%
CC 89.31 ± 0.07% 88.46 ± 0.03% 87.11 ± 0.11%

Fully Supervised 95.54 ± 0.07%

KMNIST

CausalPLL+ 98.49 ± 0.08% 97.89 ± 0.14% 96.96 ± 0.10%
PLCR 97.84 ± 0.04% 96.03 ± 0.60% 91.43 ± 0.58%

VALEN 86.08 ± 0.37% 82.23 ± 0.36% 77.18 ± 0.56%
LWS 88.94 ± 0.17% 86.37 ± 0.89% 83.16 ± 0.46%

PRODEN 88.50 ± 0.24% 86.27 ± 0.33% 82.92 ± 0.45%
RC 91.41 ± 0.07% 89.63 ± 0.06% 87.15 ± 0.11%
CC 91.77 ± 0.08% 89.81 ± 0.12% 86.40 ± 0.15%

Fully Supervised 99.03 ± 0.04%

SVHN

CausalPLL+ 97.50 ± 0.21% 97.05 ± 0.37% 96.56 ± 0.26%
PLCR 97.15 ± 0.09% 96.59 ± 0.15% 95.97 ± 0.18%

VALEN 96.58 ± 0.20% 96.02 ± 0.39% 95.27 ± 0.37%
LWS 96.24 ± 0.08% 95.87 ± 0.09% 94.79 ± 0.18%

PRODEN 96.18 ± 0.17% 95.31 ± 0.22% 94.83 ± 0.25%
RC 95.68 ± 0.24% 95.38 ± 0.13% 94.77 ± 0.16%
CC 95.39 ± 0.26% 94.75 ± 0.47% 93.58 ± 0.38%

Fully Supervised 98.09 ± 0.06%

CIFAR10

CausalPLL+ 95.91 ± 0.28% 94.04 ± 0.26% 89.66 ± 0.32%
PLCR 96.28 ± 0.09% 93.97 ± 0.07% 88.82 ± 0.11%

VALEN 89.63 ± 0.34% 86.35 ± 0.32% 78.28 ± 0.41%
LWS 85.38 ± 0.21% 81.47 ± 0.20% 74.10 ± 0.25%

PRODEN 93.84 ± 0.48% 90.07 ± 0.49% 86.36 ± 0.53%
RC 86.33 ± 0.11% 81.19 ± 0.11% 74.93 ± 0.21%
CC 86.26 ± 0.10% 82.73 ± 0.23% 76.48 ± 0.12%

Fully Supervised 97.67 ± 0.13%

expressed as:

LELBO = Ez∼q(z|x) [ln p(x|z)]

−KL(q(zc|x)∥p(zc|u = ŝ))

−KL(q(ze|x)∥p(ze)).

(9)

As the only exact supervision information in PLL is that
non-candidate labels are not ground truth, we utilize an
“only negatives matter” loss function on the the content rep-
resentation zc for classification. In this part, we also use the
refined candidate vectors ŝ. Specifically,

Lerr =

K∑
k=1

(1− ŝk) · ln(1− hk(zc)). (10)

While performing reconstruction and classification, we
also introduce a novel contrastive learning module based on
the latent space. Specifically:

LCL =
−1

|S|
∑
i∈S

ln
exp(z · µ̃i)∑

j∈Y exp(z · µ̃j)
, (11)

where µ̃i is the i-th mean vector in content prior mean ma-
trix A. Finally, the loss function of CausalPLL+ is:

L = λELBO · LELBO + λCL · LCL + Lerr. (12)

3.3 Candidate Label Refinement
Traditional PLL disambiguation methods mostly solely uti-
lize the discriminative information provided by supervi-
sion. However, by using variational generative models, we
can also reconstruct the data generation process. In the
CausalPLL+ framework, more precise auxiliary information
enables the model to learn better priors, and these improved
priors, in turn, help the model achieve more accurate clas-
sification, which leads to even more veracious auxiliary in-
formation. This iterative process ensures that by the end of
training, the model not only effectively models the gener-
ative process and priors but also achieves outstanding dis-
criminative performance. Therefore, we proposed a candi-
date label refinement strategy to gradually eliminate labels
that are more likely to be wrong. Specifically, for each sam-
ple, we maintain a vector and perform momentum updates
using the unnormalized prediction scores from the classifier.



Table 2: Accuracy (mean±std) comparisons on MNIST→MNIST-M, MNIST→SVHN, SVHN→USPS with instance-
dependent partial labels on different ambiguity levels.

Dataset Method τ = 16 τ = 32 τ = 64

MNIST→MNIST-M

CausalPLL+ 97.85 ± 0.11% 96.58 ± 0.10% 94.67 ± 0.18%
PLCR 97.63 ± 0.08% 95.34 ± 0.09% 94.59 ± 0.11%
PiCO 98.64 ± 0.07% 78.63 ± 1.60% 57.52 ± 4.17%
LWS 96.93 ± 0.09% 95.61 ± 0.15% 92.21 ± 0.18%
RC 96.77 ± 0.10% 96.47 ± 0.10% 93.59 ± 0.09%
CC 97.08 ± 0.05% 96.15 ± 0.10% 94.45 ± 0.07%

MNIST→SVHN

CausalPLL+ 94.13 ± 0.15% 93.11 ± 0.12% 91.04 ± 0.19%
PLCR 93.95 ± 0.10% 92.50 ± 0.09% 87.39 ± 0.18%
PiCO 95.57 ± 0.08% 84.67 ± 0.15% 62.30 ± 0.21%
LWS 93.80 ± 0.12% 67.52 ± 0.71% 42.18 ± 1.66%
RC 94.16 ± 0.08% 91.75 ± 0.10% 83.65 ± 0.15%
CC 93.81 ± 0.14% 91.81 ± 0.15% 86.39 ± 0.29%

USPS→SVHN

CausalPLL+ 86.72 ± 0.16% 81.65 ± 0.17% 73.15 ± 0.25%
PLCR 83.70 ± 0.17% 77.32 ± 0.23% 69.23 ± 0.27%
PiCO 80.17 ± 0.18% 56.24 ± 1.14% 36.61 ± 7.23%
LWS 78.25 ± 0.15% 28.05 ± 4.78% 26.68 ± 5.25%
RC 71.17 ± 0.20% 53.34 ± 1.28% 43.92 ± 3.16%
CC 80.23 ± 0.06% 56.97 ± 1.34% 43.99 ± 1.27%

This process can be expressed as:

γt+1 = (1−m) · γt +m · ŷ, (13)

where m is the momentum factor and γ is the average of
past model predictions. The refined candidate vector could
be expressed as:

ŝ = softmax(
γ − s · int max

T
), (14)

where T is the temperature. With this mechanism, we can
progressively eliminate the least scoring classes from the
current candidate label set.

4 Experiments
The experiments in this paper are primarily divided into
three parts. Section 4.2 focuses on the model’s classifica-
tion performance in IDPLL tasks. Section 4.3 investigates
the model’s generalization ability in the presence of style
variation. Finally, in Section 4.4, we examine the nature of
representations extracted by CausalPLL+ and observe the
different impacts of content embeddings and style embed-
dings on image generation.

4.1 Experiment Setup
Datasets For IDPLL classification tasks, experiments
were conducted on four well-known benchmarks: Fashion-
MNIST (Xiao, Rasul, and Vollgraf 2017), Kuzushiji-MNIST
(Clanuwat et al. 2018), SVHN (Netzer et al. 2011), and CI-
FAR10 (Krizhevsky, Hinton et al. 2009).

Regarding domain generalization issues, we utilized three
sets of classic datasets in this domain, mixing them at
different ratios in training and testing sets. These three
pairs include MNIST→MNIST-M, MNIST→SVHN, and
SVHN→USPS. Among them, the MNIST-M dataset (Ganin

and Lempitsky 2015) is obtained by blending digits from
the original set over patches randomly extracted from colour
photos from BSDS500 (Arbelaez et al. 2010). The mixing
ratio of these three pairs was 80%-20% in the training set
and 20%-80% in the test set. More details on implementa-
tion can be found in the supplementary material.

Data Generation Method In previous partial label learn-
ing research, it is a common practice to manually corrupt the
existing fully-supervised datasets into partially labelled ver-
sions. However, existing data generation methods in IDPLL
may suffer from an underconfidence problem, causing syn-
thetic data to diverge from real-world situations. For exam-
ple, for a sample y = (0, 0, 1)T which has a very confident
prediction ŷ = (.01, .01, .98)T , the corresponding s would
be (1, 1, 1)T , which is very unconfident. And the contradic-
tion appeared. Moreover, current research in IDPLL lacks
an approach similar to those in classical PLL that adjusts
the level of ambiguity in weakly supervised data. Therefore,
we proposed a novel data generation method that closely ap-
proximates real-world scenarios while allowing control over
the ambiguity of supervised information. In brief, τ repre-
sents the level of ambiguity in the candidate label set, where
a higher τ indicates greater ambiguity. Details of this data
generation mechanism will be provided in the appendix.

4.2 IDPLL Classification
In this section, we evaluated the classification performance
of CausalPLL+ across varying levels of ambiguity in ID-
PLL tasks. As shown in Table 1, CausalPLL+ achieved
superior performance across most levels of ambiguity on
three benchmarks. Moreover, its performance notably out-
performed other baseline models in situations with higher
ambiguity levels. The reason for this is that when the de-
gree of ambiguity is large, the model would be seriously



Figure 2: (Left) Controlled image generation by sampling from the latent space. Images in one row share the same style but
have different contents. (Middle and Right) The t-SNE visualization for the latent space of style versus content.

disturbed by too many candidate labels. Therefore, the la-
bel refinement mechanism can eliminate more false candi-
dates, thus contributing to the performance improvement of
the model. The experiments demonstrate that CausalPLL+
excels not only in conventional IDPLL classification tasks
but also highlights its effectiveness and superiority, suggest-
ing its versatility and broader applicability as an algorithm.

4.3 Domain Shift
We now study the model’s performance under variations
of styles and domain shifts. We selected three pairs of
datasets, exhibiting an increasing level of domain shift.
MNIST→MNIST-M involves mild changes in background
and color, while MNIST→SVHN and USPS→SVHN intro-
duce significant variations in camera angles, digit styles, and
background complexities. As the changes in distributions in-
tensify, the results show that these domain shifts have a sub-
stantial impact on the model’s performance, with more se-
vere shifts leading to a notable decline in accuracy.

Across all three benchmarks, CausalPLL+ outperformed
the baselines in most instances. The performance degra-
dation of the compared baselines is most noticeable on
USPS→SVHN, as most perform worse than a random
guess. This demonstrates that the method’s representation
decoupling mechanism effectively mitigates the impact of
domain shifts, enhancing the model’s robustness against dis-
tribution shifts.

4.4 Quantitative Results and Visualization
In this section, we observe the impacts of zc and ze on im-
age generation, while also studying their distinct properties
in the representation space.

Figure 2 (Left) showcases the model’s generation results
on the MNIST→MNIST-M dataset. These images are not
reconstructions of real samples but direct samples from the
latent space. Specifically, each row in the figure represents
different zc values. We obtain mean and variance parameters
for five classes from the prior network, reparameterizing to

derive five distinct zc values. Meanwhile, each column rep-
resents different ze, sampled directly from a standard nor-
mal distribution. From these generated images, it’s evident
that zc primarily influences image categories, while ze af-
fects style elements such as color and background, with less
impact on the image’s content or category. The distinct roles
of zc and ze validate our method’s effective content-style
decoupling. This decoupling not only enhances the model’s
robustness against style variations and domain shifts but also
demonstrates potential for controlled image generation. Fig-
ure 2 (Middle and Right) is the t-SNE visualization for the
latent space of style and content. The samples in the right
figure exhibit a clear separation while those in the middle
figure are completely mixed, which confirms that the con-
tent embeddings could effectively capture the class-specific
features while the style embeddings successfully maintain
class-irrelevant.

5 Conclusion and Discussion
In this paper, we investigate latent representation identi-
fiability within the PLL paradigm and propose a novel
framework, CausalPLL+, that addresses challenges in ID-
PLL classification, as well as domain shift and style varia-
tion problems that have plagued related algorithms. We in-
troduce a novel prior network that enhances model inter-
pretability without compromising performance, bridging the
gap between identifiability theory and practical PLL appli-
cations. Furthermore, we bifurcated the latent embedding
into two branches, explicitly decoupling content from style.
This enhancement equips the model with greater robust-
ness against style variations and domain shifts. Addition-
ally, we proposed a contrastive learning approach under the
PLL paradigm to effectively leverage the learned prior from
the model. Lastly, we introduced a label refinement disam-
biguation strategy that reduces vagueness in supervision by
progressively eliminating erroneous labels. This method is
particularly effective when dealing with highly ambiguous
candidate label sets. Extensive empirical studies confirm the
effectiveness of the proposed method.
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